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Lecture 15
Zero-Sum Games:

Properties of Saddle Point Equilibria

In the previous lecture we have proved the Minmax theorem for finite games. Now, let us ex-
plore some properties of the saddle points.

Proposition: Suppose (x∗,y∗) and (x̂, ŷ) are two saddle point equilibria of the matrix game A.
Then,

x∗T Ay∗ = x̂T Aŷ

Proof. This follows from the fact that

x∗T Ay∗ = min
y∈∆2

max
x∈∆1

xT Ay = max
x∈∆1

min
y∈∆2

xT Ay

Let us look at the definition of (x∗,y∗). As we have seen earlier, π(x,y) = xT Ay. Then, the above
equation becomes,

π(x,y∗)≤ π(x∗,y∗)≤ π(x∗,y)

for all x ∈ ∆1, y ∈ ∆2. This immediately implies the following. Consider the first part of the above
equation:

π(x,y∗)≤ π(x∗,y∗) ∀ x ∈ ∆1

⇒max
x∈∆1

π(x,y∗)≤ π(x∗,y∗)

Also,

π(x∗,y∗)≤ π(x∗,y) ∀ y ∈ ∆2

⇒π(x∗,y∗)≤ min
y∈∆2

π(x∗,y)

Hence, we have
max
x∈∆1

π(x,y∗)≤ π(x∗,y∗)≤ min
y∈∆2

π(x∗,y)

Now, we have already seen that the other side of inequalities also hold, so, we have:

max
x∈∆1

π(x,y∗) = π(x∗,y∗) = min
y∈∆2

π(x∗,y)

Therefore,

min
y∈∆2

max
x∈∆1

π(x,y)≤max
x∈∆1

π(x,y∗)
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and,

min
y∈∆2

π(x∗,y)≤max
x∈∆1

min
y∈∆2

π(x,y)

This implies,
min
y∈∆2

max
x∈∆1

π(x,y)≤ π(x∗,y∗)≤max
x∈∆1

min
y∈∆2

π(x,y)

But, the following always holds:

max
x∈∆1

min
y∈∆2

π(x,y)≤ min
y∈∆2

max
x∈∆1

π(x,y)

where,

V−(A) = max
x∈∆1

min
y∈∆2

π(x,y)V+(A) = min
y∈∆2

max
x∈∆1

π(x,y)

This gives us,
V−(A)≤V+(A)

But, we proved that,
V+(A)≤ π(x∗,y∗)≤V−(A)

Hence, we have
V+(A) = π(x∗,y∗) =V−(A)

This means that if x∗ and y∗ are two saddle point equilibria, then the value corresponding to that
x∗ and y∗ is the same as the lower security value which is equal to the upper security value. This
proves that any two Saddle Point Equilibria will give the same value.

Proposition. If (x̂, ŷ) and (x∗,y∗) are two Saddle Point Equilibria, then (x̂,y∗) is also a Saddle
point Equilibrium. This is known as the exchangeability property.

Proof. Consider the following:

π(x∗,y∗) = max
y∈∆2

π(x∗,y)

= min
x∈∆1

max
y∈∆2

π(x,y)

≤max
y∈∆2

π(x̂,y) = π(x̂, ŷ)

Therefore,

π(x∗,y∗) = max
y∈∆2

π(x∗,y)

= max
y∈∆2

π(x̂,y)

= min
x∈∆1

max
y∈∆2

π(x,y)

Therefore, both x̂ and x∗ are outer minimizers here. Therefore, (x̂,y∗) is a Saddle Point Equilib-
rium. Few details need to be added here to make the proof concrete. This is left for the reader as
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an exercise.

Another way to see this is the following. For any y ∈ ∆2,

BR1(y) = {x∗ ∈ ∆1 : π(x∗,y) = max
x∈∆1

π(x,y)}

This is called the Best Response of Player 1 when Player 2 plays y ∈ ∆2. Similarly,

BR2(x) = {y∗ ∈ ∆2 : π(x,y∗) = max
y∈∆2

π(x,y)}

is the Best Response of Player 2 when Player 1 plays x ∈ ∆1.

Result: (x∗,y∗) is a Saddle Point Equilibrium iff

x∗ ∈ BR1(y∗) & y∗ ∈ BR2(x∗)

The proof is left for the reader as an exercise.

Also, note that BR1(y) and BR2(x) are convex and compact sets. This is true as x∗ is the max-
imizer of π(x,y) which is a linear function in x. Hence, as we are maximizing a linear function
over a convex and compact set, the set of maximizers is also convex and compact.

Also, even though we have proved the above results for matrix games, these results hold for
general games as well. Of course, we need to make sure that the payoff function satisfies the
concave-convex property which we have assumed in the minmax theorem in a general setup, that
is the payoff function is concave in the maximizing variable and convex in the minimizing variable.
Proving them in a general setup is not hard and is left for the reader to check.

Next, we will see the linear programming connection of matrix games. Recall that, π(x,y) = xT AY .
Now, note that for x ∈ ∆1,

min
y∈∆2

xT Ay = min
1≤ j≤n

xT Ae j

This is intuitive. Given Player 1’s choice x ∈ ∆1, there is a pure strategy j such that y = e j mini-
mizes xT Ay. Here, e j signifies the pure strategy in the mixed strategy form: action j is played with
probability 1, the rest have probability 0 of being played.

Finding the optimal strategy for Player 1 amounts to the following optimization problem:

max
x∈∆1

min
1≤ j≤n

xT Ae j

s.t. xi ≥ 0
m

∑
i=1

xi = 1
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Now, we know that

min
1≤ j≤n

xT Ae j ≤ xT Ae j ∀ j = 1,2, ..,n

Let t = min
1≤ j≤n

xT Ae j. Then, the above inequality becomes,

t ≤ xT Ae j ∀ j = 1,2, ..,n

Now, the problem becomes,

max t

s.t. t ≤ xT Ae j ∀ j = 1,2, ..,n
xi ≥ 0 ∀ i = 1,2, ..,m

m

∑
i=1

xi = 1

This is a linear programming problem. Similarly, Player 2’s linear programming problem is given
by the following. For y ∈ ∆2,

max
x∈∆1

xT Ay = max
1≤i≤m

eT
i Ay

This gives us,
min
y∈∆2

max
x∈∆1

xT Ay = min
y∈∆2

max
1≤i≤m

eT
i Ay

Now, let s = max
1≤i≤m

eT
i Ay. Then, Player 2’s problem is given by:

mins

s.t. seT
i Ay ∀ i = 1,2, ..,m

y j ≥ 0 ∀ j = 1,2, ..,n
n

∑
j=1

y j = 1

Here is an interesting exercise. Show that these two linear programming problems are dual to each
other. This is an important and interesting exercise left for the reader. In the next lecture, we will
see some more interesting properties of zero-sum games.
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