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Zero-Sum Games: Proof of Minimax Theorem

Theorem 1 (Minmax Theorem, von Neumann). Every finite zero-sum game admits value.

Before proceeding with the proof we recall two results.

Proposition 1. Let C' be a compact convex subset of a euclidean space R™ and 0 ¢ C. Then
there exists a vector z € R™ such that

z-x>0forxeC.
Proof. Since C'is convex, there exists a unique point z € C such that
2" < Jaf?

forevery x € C.
Now consider the hyperplane for which z is normal and pick any point in this hyper plane.
Note that for any = € C,

127 < 111 = @)z + ax]|* = (1 — a)?[l2]|* + 20(1 — @)z - & + o*||||*

Therefore,
0 < afa—=2)|z]* +2a(1 — a)z -z + |||

Dividing by «, we have
0<(a—2)z)?+2(1 —a)z -z +alz|?

Letting o — 0, we have
0< =2|z|*+2z-x

which gives the required inequality
2l < 22

Proposition 2. Let A be any matrix of order m x n. Then either
1. there exists v € R™, x # 0, x > 0 such that ' A > 0; or

2. there exists y € R", y # 0, y > 0 such that Ay < 0.



Proof. Letey,es,--- e, bethe unit vectors in R". Let the rows of A be denoted by a1, as, - ,a,, €
R"™. Let C be the convex hull of —e;, —es, -, —e, and a1, as, - - , a,,, then C'is a compact
convex subset of R™. Now two cases arise: 0 € C'or 0 € C.

Case 0 € C': In this case, there exists non-negative real numbers x1, To, - , Ty, N1, 72, 5
such that

T1a1 + Tolz + + 0+ Ty — M€ — N2 — -+ - — Npey = 0,
andzy + 22+ +xn+m+n+---+n, = 1. Clearly all of 1,29, , x,, can be zero.
Indeed, if t; = 29 = - - - = x,,, = 0, then we must have

mer + ez 4o+ npen = 0,m oAy =1

which contradicts the liner independence of the vectors ey, es,--- ,e,. Thus we have non-
negative real numbers x1, z9, - - - , x,, € R, not all of them zero, such that

101 + ToQg + ++ + Ty = 1)
where 1 = (11,72, - - 1,) € R™. Note that n > 0. In other words,
’A=n>0

where x = (x1, 22, -+ ,Z) € R™, x # 0 and x > 0. This proves (i).

Case 0 ¢ C': Since 0 ¢ C, there is a hyperplane separating 0 and C. In other words there
must exist z € R" such that
x-z>0forevery x € C.

Since —e; € C, we must have z; < 0 and hence z # 0, z < 0. Now a; € C and hence a;-z > 0

forevery: =1,2,--- ,m. Thus Az > 0. Now taking z = —y we obtain Ay < 0 which proves

(ii). ]
With these two lemmas in hand, we are now ready to prove the minmax theorem.

Proof. (Minmax Theorem)

From the previous result either we have two cases: there exists z > 0 € R™, ' # 0 such
that 2’A > 0 or there exists y > 0 € R", y # 0 such that Ay < 0. Letting z = Zc$z’ and
Y= ZL%_, we note that 7 € A, and y € A, and either 7’A > 0 or Ay < 0.

The first case means that 7’ Ay > 0 for ever y € A,, which means that the lower value of
the game

V7 (A) = max min 2’ Ay > 0.

TEAM YEA,
The second case means that x Ay < 0 for every x € A,,, which gives that the upper value of
the game

V*(A) = min max 2’ Ay < 0.
YEA, TEA,

Thus we have either V" (A) > 0or V7 (A) < 0. Let B = ((a;; — ¢)), where ¢ € R. Note that
V= (B)=V~(A) —cand V*(B) = V(A) — c. Thus we must have

V= (A) >cor VT (A) <c

for any ¢ € R. This can happen only if both V= (A) and V" (A) are equal. This completes the
proof of the minmax theorem. ]



