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Welcome friends once again to my NPTEL MOOC module on Exploring Healthcare Survey

Data. We are in the last week of the module. We have been discussing about health care data

and in this particular lecture we are trying to understand generalized linear model. This GLM

is used when your linear model has certain limitations and all the assumptions are not

fulfilled.

Then we go for some generalizations of that linear model. Now I am just going to discuss

about who has developed it? & how it has emerged? So, GLM is an advanced statistical

modelling technique that generalizes the linear model. It was developed by John Nelder and

Robert Wedderburn in 1972. It is an umbrella term that encompasses many other models

which allows the response variable i.e., Y, to have an error distribution other than a normal

distribution
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Linear regression model is not suitable if the relations between X and Y is not linear. For

example, X increases exponentially, if there is exponential distribution like cumulative

density function which is not linear. In fact, in that case linear regression is not suitable.

Similarly, another one is called variance of error in the Y i.e., Y is not constant and varies

with X. So, the variance, if it is not constant throughout then in that case we already know

that linear regression model is not fitted and we go for some form of transformation.

If Response variable is discrete or categorical rather than a continuous one then in that case

linear regression is also not applicable. Therefore, we think of some possibility of some

generalization and try to use generalized least square method or generalized least square

model or generalized linear model.
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GLM extends linear model by allowing each outcome of the dependent variable to come from

a large range of probability distribution. Namely, the normal distribution, the Poisson

distribution, the binomial distribution and the gamma distribution. You might have heard

about this distribution. It has certain specifications or certain features of Poisson. We know

that it has certain count data of binomial, we know that it follows Bernoulli distribution with

binary numbers. So, gamma functions are accordingly defined normal distribution where the

data is of bell kind shape, symmetry is usually identified.



The generalized linear models were born out of a desire to bring under one umbrella, a wide

variety of regression models that span the spectrum from classical linear regression models

for real valued data to models that are counts based data such as logit, or probit or Poisson, to

models for survival analysis etc. just to give another example.

Poisson is like if you have certain count data such as number of consultations of doctors,

number of visits to the doctors etc., those are simply count and not continuous series. The

number of consultations cannot be just 1.8, 1.9 or 1.2. There is no fraction possibility. It has

to be a count or absolute number and therefore, they are called Poisson kind of data.
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So, GLM is made of a linear predictor of course, that is mentioned with a function called beta

naught (β0) plus beta1_X1I plus up to beta_p Xi pi. And two functions are usually discussed

in the case of GLM set up. One is called a link function, which describes how you get the

mean or the expected mean with the population mean depends on the linear predictor i.e., the

predictor value of the mean. And second one is the variance function, that describes how the

variance that is the var of Yi depends on the mean value of it. And that can be of this value as

per the equation whether that dispersion parameter theta is considered to be constant.
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So, some of the components those are usually discussed in GLM are called random

component, systematic component and link function. Random component is something that

refers to the probability distribution of the dependent variable. For example, normal

distribution for Y in the linear regression or binomial distribution for Y in the binary logistic

function. In case of systematic component, it specifies the explanatory variable such as X1 to

Xk variables in the model as a combination of linear predictors.

Link function specifies the link between random and systematic components. It says how the

expected value of the response relates to the linear predictor of explanatory variables. And

these are given in this equation with the function expected value of Y, how the function

further transformation of that function is also related to the expected value of Y for linear

regression. And that can be also applied through the logit function of the pi that is discussed

accordingly we shared it as logistic regression
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So here is a summary of GLM following Agresti paper of chapter 4 published in 2013. It has

given the GLM functions or models and how it is applied. As we know, the linear regression

is applied when the data is continuous.

But an ANOVA or ANCOVA analysis of covariance or variance are also discussed in the

context of categorical and mixed data. The link function gives the identity of it, the identity of

the variable that has discussed the randomness, is in fact defined to be normal. The

distribution is defined to be normal. So, in case of the specific GLM model like logistic

loglinear, Poisson and multinomial response.

The random number table or randomness of this distribution is no more normal, they are

either binomial Poisson or multinomial and according the link function it is defined as logit

log function or generalized logit function. And therefore, it has mixed responses.
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The comparison between linear model to GLM is mentioned here. In linear regression model,

the dependent variable Y is expressed as a linear function of all the predictors. The

underlining relationship between the response and the predictor predictors is linear. Also, the

error distribution should be normally distributed.

Coming to the context of GLM, this allows us to build a linear relationship between the

response and predictors, even though their underlining relationship is not linear but still it

actually emerged with linear relationship with certain transformation. This is made possible

by using the log link function. The way we have discussed in the previous slide which links

the response variable to a linear model unlike linear regression model.

The error distribution of the response variable need not necessarily to be defined as normally

distributed, the errors in the response variables are assumed to follow an exponential family

of distribution.

Therefore, we say that- though the distribution are accordingly defined as may be of

binomial, Poisson or gamma, but that are part of the exponential family of distribution.
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There are certain assumptions of GLM, the first one is that the data should be independent

and random. The response variable does not need to be normally distributed. Response

variable i.e., Yi need not be normally distributed, but the distribution is from an exponential

family nor from a normally distributed family.

So, binomial count can be poisson or multinomial or may be normal, but that should still

follow a exponential family. The original response variable need not have a linear

relationship with the independent variables, but the transform response variable through the

link function is linearly dependent on the independent variables that we have just discussed.
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Another assumption is that, the homoscedasticity need not be satisfied since our distribution

is following a different exponential format. So, its need not required to be satisfied. So, errors

are independent, but need not be normally distributed. Feature engineering on the

independent variable can be applied i.e., instead of taking the original raw independent

variables, variable transformation can be done, and the transformed independent variable,

such as taking a log transformation, squaring the variables, like reciprocal of the variables,

can also be used to build the GLM model. So, there are various forms of transformation we

do to develop a GLM model.
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Then there are various generalized least square methods like linear regression for continuous

outcome with normal distribution. In that case, identity link function is used which is the

simplest link function and the responses is continuous, predictors can be continuous or

categorical or can be transformed, errors are distributed normally and variance is constant in

case of linear regression. But we use binary logistic regression for dichotomous or binary

outcomes with binomial distribution.

There are another type of generalized least square method. Poisson regression is used for

count based outcomes with Poisson distribution. Here that counts are expressed as a linear

combination of the explanatory variables. So, the link function that is used here is usually

called the log link function.
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So, we follow the command that is a GLM that feeds generalized least square models of Y

with covariates of x. So, further g is taken as the transformation of the expected value of Y

that should follow a normal distribution with X beta.

And Y follows the density function where F stands for the density function and g is called the

link function because of some transformation and F is the distribution family or usually we

present in the CDF type of functions. Substituting various definitions for g function and F,

results in a surprising array of models.

So, if Y is distributed as Gaussian normal distribution and g is the identity function. We have

the expected Y is equal to nothing but the normal distribution or normal or linear regression.

If g is a function of the variables with the transformation called g as the logit function. And Y

is distributed as Bernoulli kind, we have the logit distribution that is otherwise called

Bernoulli or logistic regression that follows a sigmoid kind of function where the

concentration is usually at the extreme ends.

And, if g function is the natural log function. In that case, usually we go for the Poisson kind

of distribution. So, Poisson distribution are for the count data. And log ln is natural log and

expected value will convert the data to a linear function therefore, it is called log linear

functions.
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So, now we are just comparing between transformation and GLM. In some situations, a

response variable can be transformed to improve linearity and homogeneity of variance. So,

that a general linear model can be applied. This approach has some flaws like- response

variable has changed, transformation must simultaneously improve linearity and homogeneity

of variance, transformation may not be defined on the boundaries of the sample space that has

been considered. As an example, a common remedy for the variance increasing with the

mean is to apply the log transformation. If variance is there, simply taking the log

transformation that will reduce the variance. So, there are other ways by which we can also

do some expected value of the variance, log function can also be taken.
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Here, this is a linear model for the mean of log Y which cannot be or may not be always

appropriate. For example, if Y is income, perhaps we are really interested in the mean income

of population subgroups, in which case it would be better to model expected Y using the

GLM. GLM of this function i.e., log expected Yi is actually converting to a linear function.

(Refer Slide Time: 15:12)

So, some advantages of GLM over the simple linear regression which are counted and

necessary to define are- First one is that we do not need to transform the response Y to have a



normal distribution, the GLM command itself will automatically deal with this

transformation.

Then, the choice of link is separate from the choice of random component and thus have

more flexibility in modelling. So, the link function that we usually carry from the beginning

of the command may be like log transformation or logit. At the beginning we need to think

very carefully, but in this case with simple GLM command at the end we can specify the link

function and derive the result.

Third, if the link produces additive effects, then we do not need constant variance. And

fourth, the models are fitted via the MLE i.e., maximum likelihood estimation, thus optimal

properties of the estimators are also defined.
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One example we will also show you and on the basis of that you can just think of how you

would be able to derive the result and be confident about your result. If we fit a model that is

based on the data from a study of- risk factor associated with low birth weight as suggested in

a paper by Hosmer and Lemshow and Sturdivant in 2013, where we say that the command is

equal to glm then at first “dependent variable” i.e., low birth weight, and then age and then

other variables, which are reference categorical variable that we can also mention.

Now, after all such variables we can give a comma and define which family they belong to.

And if suppose we identify that they the data belongs to binomial family then your link



command will be of link logit link(within bracket logit) and then that will be giving you the

result.

So, here are other way of deriving the command- go to statistics, then GLM generalized,

linear models then generalized linear model GLM will be displayed on the screen. I will also

show that to you.
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Stata command for GLM- there are different command schedule. I am just going to show you

that how you can operate just for your reference.
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Here is the data. Now we want to operate it once GLM is here.
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So, the sample data we are just operating here for your reference, we have all those data and

we will also open the do file simultaneously or we can just directly run as per the command

we have given here is the command section. So, we simply copy from do file and you can run

for your own practice.
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So, here is the result on your screen. Now, this would have given you the idea that how the

link function is defined and how the families of the data are also defined. Now, this result has

given us the coefficients and their significant significance levels and on the basis of that we

can take decisions of interpreting the results. So, it seems that these results are similar to that

of the logit function.

A logit command that we have already specified can also be given in same way. Now you

mark that, this is also called the coefficient or the odd ratio. So, this has a combined operation

and we need not go for logit separately. Similarly, there are other Stata commands for GLM.

Once the link function and the family of it is known that your family is binomial, you can

give this command.

When your family is binomial, but you are also very clearly about the function to be applied

you can give that. So, GLM with your dependent variable, independent variable should be

specified when the is families of binomial type. But your distribution is more probabilistic

type or distribution follows normal distribution, error term might have followed a normal

distributive structure then in that case you can apply accordingly.

Similarly, other approaches are there that you can easily explore. Gamma function- if it is

there then bootstrapping through this particular command is going to be helpful for you.

Another approach that you can use is through the window through is statistics.
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You can go to statistics then it has what is called generalized linear models.
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Then here is your GLM now you can specify each of it, i.e., the dependent and independent

variable and with that it is possible for you and some family name you can give it. So, with

the family name like as I already discussed whether it is a Gaussian type, binomial, Poisson,

gamma etc. and your result will be displayed on your screen the way we have shown it to

you.



So, these is all in this lecture. I think at this moment we will come up with further details in

our next episode and with this we are going to stop here. And I look forward to your

comments or queries and we will be happy to address it.

Thank you.


