
Computer Aided Decision System- Industrial Practices using Big Analytics 

Professor Deepu Philip 

Department of Industrial & Management Engineering 

Indian Institute of Technology, Kanpur 

Professor Amandeep Singh 

Imagineering Laboratory  

Indian Institute of Technology, Kanpur 

Lecture - 14  

Transition of ER Diagram to DB 

(Refer Slide Time: 00:14)  

 

Good afternoon, everyone. Welcome to at another lecture of the Web Based Decision 

Support System course, which is intended for both business decision makers, practitioners 

and academicians. And we have been going through major aspects of it. And, we have 

assigned quick overview. We have studied that the DSS has four major components. And, we 

are now going to in slightly in depth into one other major component, the database 

management system DBMS, and proceeding with that.  

So, we have already seen major aspects of it, which includes what is the ER diagram? What 

is an entity? What is the relationship? How to translate from user specification to ER 

diagram, etcetera? So, without further delay, we will get into today is topic, which is the 

‘Translation of ER diagram (Entity Relationship diagram) to DB database’. 

 

 



(Refer Slide Time: 1:10)  

 

So, let us first start with the Major Definitions. So, this is what they call a (Recap) plus 

additional. So, we have yesterday discussed something called as: 

1) SQL (Structured Query Language): We had seen what it is, actually we talked about 

what is a query language and high-level stuff, etc. So, what we are telling today by 

definition:  

❖ A standardized query language for getting information from a relational database. 

So, it is a standardized query language, SQL is a standardized query language. But the idea is, 

whatever be the Relational Database Management System (RDBMS), whether it is MySQL, 

Oracle, Microsoft SQL Server it does not matter. It can get information from the relational 

database. So, that is the first thing.  

2) Relational Database: Let us recap this again, quickly. What is a relational database? 

So, we say is that,  

❖ It is a database that stores data, in the form of relational tables as opposed to flat files. 

So, when we say a relational database, it is a database that stores data in the form of 

relational tables. Tables that are related to each other or having data that are related to 

each other as against flat files. You are not storing it like the flat files.  

3) Database Management System (DBMS): So, one simple way to do it is,  

• A system that manages relational databases. 



• A collection of computer programs that enable the storage, modification and 

extraction of information from a database. So, it is a collection of computer programs 

that enable the storage, modification and extraction, the main functions of information 

from a database. So, that is also another definition of the DBMS.  

• The DBMS for this course is MySQL, Maria DB. Both are the pretty much the same. 

Maria DB is an open source portal. MySQL is the paid version out of Oracle. 

MySQL, which is an open source thing, it is now owned by Oracle.  

(Refer Slide Time: 5:48)  

 

So, what is MySQL and Maria DB? It is the main characteristics I am going to write.  

• It is an Open Source. Open Source mean it is freely available.  

• It is an Enterprise Level. So, you can use it for banks and other critical operations, etc.  

• It is a Multi-threaded, means multiple instances can be run at the same time. 

These three features are of Relational Database Management System. That is an open source, 

enterprise level, multi-threaded, relational database management system, that can store and 

retrieve data using the Structured Query Language (SQL). So, it is downloaded dependent 

upon the SQL. 

So, earlier, MySQL was only one, but then it became two. There is an Oracle version and 

Maria DB. The Maria DB is the open source version now. I think the Oracle version of the 

MySQL is now paid. I am not sure about that, but you can figure it out.  



(Refer Slide Time: 7:56)  

 

So, now in the database, the MySQL/Maria DB, the building block is the major lowest 

possible thing is what we call it as ‘Cell’.  So, how do we define a cell? 

❖ Cell is a single or scalar value.  

So, if I say 1234135, some number is being stored there. And this is one single set of value. 

Then we can call this as I say scalar or single cell, some people call it as a cell, some people 

call it a scalar value, some people call it as a single value.  

(Refer Slide Time: 8:47)  

 



 

Now, the next one is, what we call a Row. So, what is a Row? 

❖ It is a group of scalar values representing a single instance of an object or event. 

It is complicated definition, but it is very easy to understand. If you think about this, cell is 

usually some attribute of an entity. So, some attribute of the entity usually gets stored in the 

form of a cell, whereas in a Row, what happens is, so an example of a Row is something like 

this, 1234135, and you have 113946241 or something like this. And then, there is something 

like a Letter: 23 July, 2022 something. So, assume that, this is something that is register, that 

we take care of a place. So, this is one instance. So, if this table contains another row, that 

may be something like this here later which is 16220031 843923231. And you can say that as 

a Gift Packet: 29 July, 2022, this is another instance. These are instances of an object or an 

event. Lot of times this could be an instance of an entity also. So, a lot of the times entities 

can be instances.  



(Refer Slide Time: 11:15)  

 

So, now then comes what we call as the Table. So, what is a Table?  

❖ We define a table as a series of row describing separate objects or events. 

So, let us say you have ER entity diagram, you have something called a STUDENT, and you 

have something like Student ID, and you have First name, Last name, Date of Birth. So, then, 

one of the way to think about it is, this can be translated to a table like this, where Student ID, 

First name, Last name, Date of Birth. So, you can say 23231, Ram, Charan, 01-01-2020 and 

64261 Gita, Rani, 30-08-2006, etc.  

So, the entire table is a representation of student. So, it is entity typically. So, table, you can 

think about it as equivalent to an entity. And each row of the table is an instance of entity. 

Sometimes, it is also known as ‘Tuple’ in some ways. So, same way, what we saw previous 

in that is the same thing, we have an ID, where these numbers are returned 1234, 1235 like 

this, these are consecutive IDs. And there is some docket ID, some other ID is going on. And 

this docket ID is one of the Labels says Letter with a number November 18, 2020.  

There is another Letter: July 23, 2020. then there is a Parcel to Korea. So, it might be a 

register, so this could be an entity which is like, Outgoing Register or something like this. 

And each one of them is an entry in the particular register. So, it is an instance of the register.  

So, that is what table is, typically all about in this regard. But also remember, each one of 

these the student ID, you can see the first name, last name, date of birth, each one of them. 

So, the Attributes, usually translate to what we call as columns in a table. So, that is how the 



attributes are considered most of the time. And each one of them, for example, you take this 

Charan, we call as a Cell. And, this is what we call as a Row. So, I hope now you guys have a 

mapping of how does an entity translates to what we call as a table and what are the different 

aspects of it.  

(Refer Slide Time: 14:57)  

 

Then, Databases, what is databases? Now, we have seen what is a Cell, we have seen what is 

a Row, we have seen what is a Table and we are seeing the connection between the cell the 

columns, the rows, entities, attributes, etc. Then, what is the Database? So, the definition is: 

❖ Database in simply It is a collection of related tables. The critical word is ‘related 

tables’.  

So, tables containing data that have some relation or we can identify some relation as part of 

this. And what does this related Tables to do? They describe various phases of a group of 

objects or events. So, that describe various aspects of it. So, here is an example, you have an 

object this is an object database or object table. This object table, which has three attributes 

so, you can draw this as like this OBJECT entity. You have ID, you have Docket ID and you 

have Label. So, this entity object gets translated to a table.  

So, then there is another entity called CLINKS. Which has something called Docket ID and 

there is something called COLID. So, let us assume Docket ID is the unique identifier. So, 

then that is connected here. Now, you can see that between these two docket IDs, you can 

connect you can relate these two databases using Docket ID. So, now the other one COLS, is 



basically whatever that entity is, you have ID as unique identifier, there is Name, URL and 

Abstract.  

So, that gets translated to another table and this ID is related to this ID. So, you can see that 

things can be connected or related using another relation. So, the Entities translated to Tables, 

Attributes to Columns. And, this is another way to think about it. And, then relationships into 

the form of case, we will see in an example.  

(Refer Slide Time: 18:04)  

 

So, now let us talk about what are the major type of Relations. The first relation is called 

‘One to One’. We have also seen this is also related to what we call as the ‘Cardinality of 

Relations’. We have seen one to one, 1, N and N, N. So, we will be trying to figure these out 

pretty much, all the three. So, this one what we are saying is one to one that means, one 

record. 1, 1 means,  

❖ One record or row in table 1 is exactly related to some other row or record in table 2. 

You can also rewrite this. Another way of saying this is:  

❖ One tuple in relation 1 is exactly related to some other tuples in relation 2. So, when 

you hear the word ‘Tuple’, Tuple literally means a ‘Row’. Tuple is equivalent to a 

row, or an instance, which is equal to an instance of an entity. And then, entity 

equivalent to a Table, which is equivalent to also known as a Relation. So, these are 

the terms that you will see very popular in the DBMS. 

 



(Refer Slide Time: 20:17)  

 

Now, comes the second one, ‘One to Many’. This is the scenario, what we call it this in the 1, 

N. So, how do we say this, let us say this way,  

❖ One record/row/tuple in Table 1/Relation 1 is related to more than one 

record/row/tuple in Table 2 or Relation 2.  

So, we will see multiple example of this but this is the 1 common scenario, One Record. this 

is One Record or you can think about it as 1 row or 1 tuple whatever you want to call, it is 

related to multiple records in another table, and somehow related. So, if you take an example 

of here I say, it is a Student and these are the Courses like course 1, course 2 and course 3 for 

the student. This particular student is Student X is taking course 1, 2 and 3. So, that student 1 

is connected or related to these three courses.  

(Refer Slide Time: 21:57)  



 

Now, let us talk to what we called as ‘Many to Many’. So, this relation is many to many, 

where we call as M, N in the cardinality thing. So, the one way to write about this is the 

following the previous argument. We can write it as,  

❖ A record, tuple, row in a Table or Relation is related to many other records, tuples, 

rows in another Table or Relation and vice versa.  

For example, if you take this particular record, it is connected to this record and this record. 

But this record is also connected to another record in this Table, we can see that there are two 

connections possible as part of this. So, the same record can be connected to different records 

in the Table, both sides. So, it is a Many to Many. So, M to N relationship. It is more 

complicated to manage, but we can manage that.  

(Refer Slide Time: 23:35)  



 

So, let us look in this example of the what we call the Company Database, the ER diagram. 

We call it as this is (Adapted from Elmasri and Navathe). So, let us see that this is the ER 

diagram, where we have  

i) EMPLOYEE entity,  

ii) DEPARTMENT entity,  

iii) PROJECT entity,  

iv) DEPENDENT is a Weak Entity.  

And relationships were 

i) Manages,  

ii) Dependent of Controls,  

iii) Works for, etcetera.  

There is so many attributes so, this was the broader idea. So, now with this our fundamental 

attempt at this point is to translate this into what we call as a Schema or Schema Diagram. 

(Refer Slide Time: 25:16)  



 

We already seen the previous class,  

❖ It is an intermediate step between translation from ER diagram to actual database 

table design.  

So, it is an intermediary step. So, one of the way to look into this, the one of the thing is 

Employee. So, let us take how do we draw the Schema Diagram of the Employee. So, the 

Schema Diagram of the Employee will most probably be something like this, just going to 

draw this slightly big. This is the EMPLOYEE and the Attributes of this. So, it is the SSN 

(Social Security Number), which is a Key Attribute is written there, then the birth date, first 

name, middle name, last name. So, you have First name, Middle (initial), Last name. Then, 

sex, birthdate. Then you have address and salary. So, we will call it as apartment, street, city, 

state, pin code or zip code whatever you want to call it. And then what we have is the salary.  

So, this whole thing, what we just drew here is, what we call as the Schema of the Table. So, 

now let us do one more, let us take the Project as other one. Let us take the next entity as 

Project. So, Project has a name and a number and a location. So, we will draw something like 

this, it will be a PROJECT. PROJECT has a Number, it has a Name and the Location. So, if 

you look into this, then we know that the name and the number are underlined. So, that means 

there are Key Attributes. So, then we are also underlined the name and number, kind of it.  

So, then the next one is the DEPARTMENT. DEPARTMENT has a name, number and 

multivalued locations. So, it is Department Number, Department Name and Locations but 

these locations are Multi-Valued Attributes but these are same way. So. this Representation 



of the translation of an ER diagram, what we just wrote here, we call as the Schema, or 

basically the design of the Table, is what we call as the Schema Diagram.  

So, now there is one thing that you can think about is, there is an Employee that works for a 

department, whereas the Department can have multiple employees. So, one way to think 

about it is, there is a Department or Department as a Number and so if you think about this 

Employee Table. Let us call this as the Department Number. So, now what happens is, this 

Department Number is something, which department the employees working for. That 

Department Number is linked to this Department Number.  

So, now you can see this Relationship what we see here, the Employee works for the 

Department is pretty much created by putting the Department Number in the Employee 

Table. So, the SSN is the Unique Key. Each Employee, each Row will have the unique value. 

So this kind of thing is called a Primary Key, whereas the Department for which the 

Employee is working for, which is a Primary Key of another table, this is sometimes called as 

a Foreign Key. We will explain what a Foreign Key in a minute now. But this in a Schema, it 

also allows you or the  

❖ Schema diagram translates the ER diagram to DB Table design, while identifying 

Foreign Keys to map the Relationship.  

The reason why we use a Schema Diagram is to convert the ER diagram the Entity concept, 

whatever we do in this. Translate thus into a DB Table Design, you want to design the 

Database Table, while you want to also identify the Foreign Keys. How do you map? How do 

you embed these Relationships works for Managers, Controls, Works On etcetera? These 

Relationships into different Tables by linking various Columns. That is what the main 

advantage of creating a Schema Diagram. This is an intermediary translation part. 



(Refer Slide Time: 31:35)  

 

 

 



 

Now, that I just mentioned Foreign Keys here, so, let us now talk about what is Foreign Keys 

in a second. So, Foreign Key is an important concept and again we are not going to go into 

too much of details. But the fundamental aspect is,  

• Transform each ‘One to One’ (or) ‘One to Many’ relationships as a “foreign key”.  

The main idea here is that use either One to One or One to Many relationship, you translate 

or transform each one of them into a Foreign Key. So, what is a One to One relationship? 

This is a One to One relationship, exactly one record and table 1 is related to another record 

in table 2, One to Many is One record or one tuple is related to Many other records in table 2. 

Table 1 one record is related to many records in table 2. So, in both cases, the one to one or 

one to many, we map the relationship as a Foreign Key.  

So, another way to think about it is,  

❖ Foreign Key is a reference in the child table or many table to the Primary Key of the 

parent or one table.  

So, what we are saying is, if you think about it, this table is what we call as the parent, this is 

the child. And same thing, this is the parent and this is the child.  

So, you think in that way, what we are talking here is Foreign Key is the reference in the 

child (in the many table) to that of the Primary Key of the parent (the one table), table from 

which it comes in. So now, let us take a look into this, Department and Employee. One 

department has multiple employees or employee works for one department or department has 

many employees. So, let us draw that as an example. So, let us take this, DEPARTMENT has 



EMPLOYEE. So, Department 1 N, that is how we do here. So, each employee will work for 

exactly one department, whereas one department will have multiple employees.  

So, if you want to really draw the min max here, the employee going this way. Employee will 

work for a minimum of one department, maximum of one department, a Department will 

have a minimum of one employee, maximum of N employees. So, that is another way to 

draw it.  

So, then when you have a relationship like this, how do you create or how do you translate 

that to tables? So, I am going to write two queries here. So, the first one is, I am going to 

create a table. My first step is:  

1) Create the Department Table. So, I will write the SQL command. So, let us write the 

SQL for the time being. Create Table Department, so I am going to say it as 

(department_number) as I am going to say is as INT, name is VARCHAR (variable 

character) as (50). And then I am saying that Primary Key is (department_number). 

So, this query will create a Table with two Columns. So, how would you call as a 

Table like this.  

If you think about it. Department underscore number, and name. So, Department number 1- 

HR, Department number 2- Accounts, Department number 3- Marketing, etcetera. So, each 

one of the Row is an example of a particular department. So, this department number 1, 2, 3, 

these are the Primary Key. So, one department, each department, how many employees so, in 

this case, the One Table or the Primary Table or the Parent Table will become the 

department. 

2) Create the Employee Table. Now, comes the Child Table in this, because our 

department can have many employees. So, I am going to write the SQL for creating 

the employee, that is Create Table Employee with EMP number (Employee number), 

INT, I am just putting as INT the stands for Integer. So, then, I am going to say as 

department underscore number as also as INT, name VARCHAR (100), as the name 

of the employee in this case.  

Then, what you call as Address for the time being. Address VARCHAR (250), something 

like this. Then, I will say Primary Key, I will say thus EMP (Employee number) that is the 

Primary Key. And then I also have something called Foreign Key, where I will say thus 

department no. REFRENCES Department. So, now this command tells the DBMS, that now I 



have another Table, that is the second Table, where I have EMP number, the employee 

number. Then, there is something called Department number and there is a Name and 

Address. 

So, I have Employee number as 101. Then there is an Employee number as 102, Employee 

number 103 etcetera and I have a Ram, Sita, Gita, like this and have Department numbers as 

2, 1 and 1 address is Ayodhya, something like that. Sita is New Delhi, Gita is Jaipur etcetera. 

So, you can see that Department 1, 1 which means these Sita and Gita belongs to the 

Department number 1, which is the HR.  

So, this Employee number is the Primary Key of the Child Table. This is the Child Table, 

whereas the Department number, which is the Primary Key of this is connected as the 

Foreign Key. So, the idea is, both the parent and the child when especially when it comes to 

what we call as the One to One or One to Many relationships, we create using the Foreign 

Key. we connect these tables using the Foreign Key.  

(Refer Slide Time: 41:22)  

 

So, I have an example. So, here is the Department. As department number 1, 2, 3, 

Department is the Relationship or Department Table. I have Department Number and 

Department Name as we wrote earlier, because this is the query that we created Department 

Name and Number. And then, we have Employee and Employee Number, Department 

Number. 

So, we have Gita Rani, Ajay Patel, Ram Charan, Ben Smith, Salman Khan, Judi Hepner, as 

different thing. So, you can see that from here Employee number 1 Gita Rani works for 



Department number 2. So, which is Department number 2, you go to Department Table 1, 

find the Primary Key, which is Department number 2 says Human Resource. So, Gita Rani 

works for Human Resources.  

So, by instead of typing the Department Name all here, this Primary Key can be put in here, 

so that we can cross reference each department. So now, what are the advantages of doing 

this? So, let us look into this quickly. Accounting has only one employee because this the 

Ben Smith one employee of Accounting. This is connected to each other. 

Then Human Resources has 2 employees how do you know there are 2 employees because 

Human Resource department is number 2. So, you have 2 and 2 so, 2 employees like this. 

And IT has 3 employees all the 3 in the department numbers related to IT. Instead of this, let 

us think about a scenario where you had something like this. Employee number, Department 

name and Employee name, assume it this way.  

And we had something like this, and Employee number 1. This is Human Resources. 

Employee name is Gita Rani. Employee number 2 is IT Ajay Patel, Employee number 3 is 

Human Resources Ram Charan, Employee number 4 is Accounting Ben Smith. Let us just 

take one more employee. Employee number 5 is IT Salman Khan.  

So, assume that somebody decided to change the name of IT department to Information 

System. Assume: IT changed to Information Systems.  

You changed the name of two Information Systems. In this design you only need to change 

this here, only one place to change. Just change this IT. In this case you will have to change 

many places, wherever you type IT, you have to go there and change.  

So, what happens is, this violates the principle of DBMS, because you want to eliminate 

redundancy, these kind of multiple changes, Redundant Changes or what we called as Update 

Anomaly. We will study about this later. But that is one of the other reasons why Foreign 

Keys are important rather than typing models information in a database.  



(Refer Slide Time: 45:03)  

 

 

Now, let us take the next one, what we call as the Many to Many Tables. So, the Many to 

Many Tables is, in this case, the primary rule or the fundamental guiding principle is,  

❖ Transform each many to many relationship as a table. 

Create a new Table. Each Many to Many relationship or is now translated to a Table. So now, 

how this happens?  

➢ The relationship table will contain the guideline, the Foreign Keys to the related 

entities as well as any relationship attributes. 

So, the relationship table, the new table that you will create, will contain the Foreign Keys to 

both of the related entities. So, both the Foreign Keys from both related tables. Many to 



Many is related to both tables. So, in that regard, we are creating a Foreign Keys from both 

table will come into this picture. And also, that any of the relationship attributes. What is the 

relationship attribute? Hoursis a relationship attribute.  

Let us take an example of the Project and Employee. The Employee works for a Project and 

let us take start date of something, that you need to capture. So, let us create a relationship 

here. So, we have PROJECT. And, PROJECT has EMPLOYEE and the Start Date of the 

Employee on that particular Project is an aspect of the relationship. If that is a case, then what 

we can do is, we can write a SQL command for this. Let us create this SQL command for 

creating this relationship table.  

 So, we write it as CREATE TABLE, I am going to name it as proj. has emp. I am 

saying that the Project has Employees. So, new relationship table that I am creating at 

this point. And you have something called Project number as the INT for the time 

being, then I have Employee number that is also Integer, then start date as DATE. 

Then I have Primary Key, I have Project number, Employee number. So, I have two 

of them, two of the Rows together, now identifying the Primary Key. So, these kind 

of Primary Keys are also known as Composite Primary Key, two of them are there. 

And then I am saying FOREIGN KEY, Project number is a Foreign Key, 

REFERENCES Project that is the references the Project table. And I am also going to 

say FOREIGN KEY Employee number REFERENCES Employee.  

So, what we are saying is the Primary Key in this regard, if I create a Schema Table, I will 

have Project number. I have another one called as emp number and then I have start date but 

both of these attributes together will be my Primary Key for this Project. And the Project 

number will refer to the Project Table. It will refer to this one, whereas the Employee number 

will refer to the Employee table. That will be the Primary Key of the Employee Table. So, 

that is how the relationship gets mapped out in this regard.  



(Refer Slide Time: 50:57)  

 

So, that is the case, then let us look at an example quickly. So, you have, I said earlier that 

Project Table has the Project number. Project number is the Primary Key for this one. Each 

Project is uniquely identified by Number in this regard. And then I have an Employee Table. 

As we were talking earlier, we have a Project Table. So, the here is your PROJECT and you 

have your EMPLOYEE. And this table is your Project has Employee Table. So, this is a new 

Table that captures the relationship. The Project has Employee. 

So, there is a Project Table and here is the Employee Table. So, there are three Projects, 

Employee Audit, Budget and intranet, and the employee number is 123456. So, from there, 

we create a new system that has a Table, that is called as Project has Employees. So, the 

Project number is now the Primary Key here, for this table. But this is a Foreign Key 

relationship. The Employee number, this is the Primary Key here, for the Employee table. 

But the Employee, this one is a Foreign Key relationship. Both of these put together as the 

Primary Key for this table. So, when you say that for Project number 1, which is Employee 

Audit, Employee number 4, 4 is Ben Smith, started working on it from the date is 06-04-

1999.  

So, if you look into the details, then we can say that the Employee Audit has one Employee 

that is Ben Smith, we are able to connect them using this. You take the Project number 3, 

Project number 3 is Intranet. Employee Number 6 is working on it. So, 6 is we look into this 

Judy Hepner. So, you can see Intranet Project has Judy Hepner. Then 3 has 5, Employee 

number 5 is Salman Khan, that is also there. Then Project number 3, which is again Intranet 

has Employee number 2. Employee number 2 is Ajay Patel.  



So, using this approach, you can map which Employee is working on which Project and the 

Start Date information which is a thing, that is connected to your relationship, as we shown 

here, is captured as part of the Table, in this regard.  

So, the Start Date this is an Attribute of the relationship. So, with this I hope the Translation, 

the Concept of Primary Key, Foreign Key etcetera are clear with you. And what we will do 

now is, after this, we will move to the next concept of how to form this table design, Primary 

Key, Foreign Key etcetera. We will talk about what is Database Normalization, so that the 

queries and other things can be done efficiently.  

And after that, we will look into some of the major SQL commands and then where to look to 

learn well, how can you learn some internal resources to learn MySQL and MySQL, Maria 

DB etc. And once that is completed, then I will give a quick introduction to Big Data and 

then, that will pretty much complete my portion of the Database aspect for this particular 

course.  

But also understand we are not gone into details of step by step or breaking it down. I am just 

giving you an overview. These kinds of steps of how to conceptually design from a User 

specification, come up with an ER diagram, from the ER diagram to a complete Schema, 

from Schema to a Table, identify Primary Key, Foreign Key create it, normalize it. All those 

continuous examples will be taught as part of the advanced component of this course. But this 

is to give you a fair idea what is going on? So, thank you for your patient listening and we 

will continue the remaining in the next class. Thank you. 

 

 

 


