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Hello, friends. Welcome back to the lecture series on Applied Statistics and 

Econometrics. So today, we are going to start our discussion on estimation theory. So, we 

are going to cover a lot of topics. So, let us have a look at the agenda items.  
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So, under the statistical estimation theory, we will discuss the case of point estimation, 

very briefly. But we are going to then discuss the case of interval estimation at length and 

under this interval estimation category we are going to introduce some new concepts to 

you, namely confidence level, confidence interval, and then we are going to discuss the 

large sample and small sample cases.  

So, before we start the discussion on statistical estimation theory, let me briefly remind 

you about the problem at hand. So, we are actually in the first step of statistical inference, 

so, we actually have a large population or universe, but we do not have resources to reach 

out to the each element of this universe.  



So, we actually have drawn a small sample from the population and we are trying to infer 

about population characteristics by looking at some sample characteristics. So, that is 

basically the background and the entire field of statistical inference helps us to make 

accurate guesses about population characteristics from sample characteristics.  
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So, the characteristics of a random sample will basically mimic or resemble those of the 

population characteristics namely population mean, population median, and population 

variance, etc. Now, note that, mean of a sample from the population is an estimate of the 

mean of the population and standard deviation of a sample from the population is an 

estimator of the standard deviation of the population.  

Now, this resemblance or similitude or likeliness becomes much more higher as the 

number of observations in the random sample becomes larger. So, in the last class only 

we have discussed the case of point estimation and interval estimation. So, I have given 

you the definitions there, I have reproduced the definitions again, so that you can remind 

yourself. But basically in a nutshell, point estimation is basically giving you a particular 

value of the sample statistic and that is your best guess about the unknown parameter 

value theta.  



And in the case of interval estimation, you get a range of values as the best guess about 

the unknown population parameter theta. So, at this moment, let us look at some 

desirable properties of estimators. We are going to study a lot of estimators in this course. 

Now, how do you rank them? Because there are many estimators available when you are 

trying to draw some statistical inference from a sample about the population 

characteristics.  
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So, we are going to talk about 4 desirable properties or features of estimators and if these 

all 4 satisfied by 1 particular estimator, you can call that as a good estimator. Now, the 

most important property of a good estimator is the property of unbiasedness. So, what is 

unbiasedness? So, if expected value of the statistic is equal to the parameter value, then 

the estimator is unbiased. Note that, I have been talking about this feature of sample 

statistic from the very beginning, that sample statistic actually is a random variable 

associated with a probability distribution.  

So, of course, there will be an expected value of the sample statistic as you keep on 

drawing repeated samples from the same population. So, if you look at the mean, if that 

mean is equal to the true value of the unknown population parameter, then you can call 

that estimator as unbiased. So, the related concept is bias and that is defined as the 



difference between the expected value of the statistic and the true value of the population 

parameter to be estimated.  

So, now, we are going to talk about 2 sample statistic that we have seen several times in 

this course. So, first is sample mean and that is used to get a proxy measure for the 

population mean and that is an unbiased estimator, because we can prove, in fact, you can 

also prove that expectation of x bar is equal to mu. But note that, sample variance is a 

biased estimator and we have spoken about it.  

So, the second property that is in the list is the property of consistency. What do we mean 

by consistency? Well, we have spoken about this at length in the previous class, but it is 

not a bad idea to have a very brief recap of a minute or so. So, how do I define formally 

in simple words without involving any symbols, so, I define it in the following way; so, 

as the sample size small n increases to approach the population size, so n tends to infinity 

in mathematical terms, then the estimator gets closer and closer to the true value of the 

population parameter that we need to estimate.  

So, that is the feature of consistency. Now, the third in the least is the feature called 

relative efficiency. Now, efficiency is a very interesting and important property that we 

are going to visit again, when we will be dealing regression. But as of now, I just want to 

give you a flavor of that property just want to define it formally.  

So, the estimator should have a low variance amongst all the available or potential 

estimators and that is usually relative to the other estimators. So, relative efficiency can 

be computed and that is the ratio of 2 sampling variances. So, this is basically the 

sampling variance of the sample statistic, I mean.  

Now, the last but not the least in this list of criteria for good estimator is called minimum 

of mean squared error or that sometimes abbreviated as MSE. Now, this measure is 

defined as the sum of variance of the estimator and bias-squared. So, getting a small MSE 

often means that there is a trade off between the variance and the bias.  

Now, we are going to look at a pictorial depiction of sampling estimation theory. And I 

believe that through this diagrammatic slide, many concepts will be much more clearer to 



you, even from the previous lecture. Because in the previous lecture, we have spoken 

about certain theoretical concepts, which may look at it, in words or in symbols, so 

maybe diagram will be a better representation of that concept and not only the concepts 

from the previous lecture, but also what we have been talking in this lecture also, I have 

tried to give you a visual representation of these concepts.  
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So, let us start with population and there is a continuous random variable associated with 

that population and let that random variable be denoted by capital X. We are interested to 

know the unknown value of the population mean mu and the population actually has a 

distribution of course, because of this random variable x and that is denoted by these red 

colored curve. Note that, I have not assumed symmetry, because we do not have to. So, 

this is an asymmetric distribution.  

Now, what we would do, we have to draw a sample and if possible repeated samples 

from this population of same size. And then, we are going to proxy the population mean 

by the sample mean. So, sample mean is basically my statistic. So, if I now draw our 

distribution of the sample statistics, then we get some other distributions and let us have a 

look at these distributions.  



Now, note that, here at this moment, I would like to mention 2 different theorems that we 

have spoken about in the previous lectures and they are law of large numbers and central 

limit theorem. So, I just want to give you a brief recap of both of these major theorems, 

so that you can understand why the graphs are behaving in certain manner.  

So, I will first start with law of large numbers. So, in a very simple language, it says that 

as sample size n increases, the sample statistics get closer and closer to the population 

characteristics. And what the central limit theorem says? Central limit theorem says that, 

sample statistics computed from the means are approximately normally distributed 

regardless of the parent distribution.  

So, now, let us look at the next diagram and here, I am going to plot the values of sample 

mean along the x axis, our horizontal axis and you see that I am showing you 2 

distributions or 2 sampling distributions, one is for the smaller sample size and one for 

the larger sample size.  

So, as you can see, as we increase the number of n by following the law of large 

numbers, the distribution actually moves much more closer to the true value of the 

unknown population parameter. And by the virtue of central limit theorem, the derived 

distribution of the sample statistic is going to converge towards an approximately normal 

distribution.  

So, it can be approximated by a normal distribution and that is what I am showing here. 

So, if you look at that blue curve or the blue shaped curve distribution, that is basically 

corresponding to a smaller sample size and the lemon green or the light green colored 

curve is showing you the sampling distribution for sample mean for a larger sample size.  

And as I am dealing with a larger sample size, these theorems; law of large numbers and 

the central limit theorem are both in place. And hence, we see that we are going to get 

more or less like symmetric bell shaped curve, which can be useful for normal 

approximation and I get the mean of the sampling distribution at mu of x bar, which is 

very close to the unknown population parameter mu.  

 



So, we now look at 2 other interesting properties of the sampling distribution. I have 

already spoken about it for the mean, but let me complete it. So, if we are interested in 

the properties of a statistical distribution, the 2 quantities are of importance and they are 

mean and variance or standard deviation, if you take the square root of variance.  

So here, for the sampling distribution, we can say that mu of x bar is equal to mu. So, the 

mean of the sampling distribution is very close and in limit it is exactly equal to the true 

value of the population parameter. And the standard deviation of the sample mean sigma 

x bar is given by sigma over root n. Now, the second formula of the standard deviation 

leads me to the property of good estimator and that is consistency. Hopefully, you have 

understood that that mu of x bar equal to mu that talks about the unbiasedness property 

because that is very simple.  

So now, let me talk about the consistency property for the sigma x bar formula. So, here 

you can very well see that as number of observations or sample size increases, then sigma 

of x bar actually falls. And that is basically the consistency property talks about. So, as 

you are dealing with large and large sample, then the concentration of the mass for the 

sampling distribution actually comes closer towards the true value of the unknown 

population parameter. So, the variance actually declines and that is what consistency 

means.  

Now, I am going to explain a little bit more about these concepts of consistency and bias 

with help of 3 concentric circles diagram. Now, you focus on the bottom part of the slide. 

Here, I am going to show you 3 concentric circles to explain certain things. So, let us 

look at the first set of concentric circles, which are at the right hand side of the slide, 

when we draw a sample and suppose, we draw 3, 4 more samples then from every sample 

I get a value of the sample statistics, a sample mean. 

And then this gives me some approximate proxy for the true value of the population 

parameter. But, if they are very different from the true value of the population parameter, 

then there is a bias. And note that, all these 4 red dots actually are giving me the biased 

estimates for the population parameter.  



However, note that, it is not only the case of bias in this diagram, we can also see the 

issue of inconsistency or imprecision. Why? Because what we see are these 4 dots are 

actually lying in different locations of this bull’s eye or the concentric circles diagram 

and they are way apart. So it is like very random shot by an inexperienced archer or 

shooter, and that is why they are pretty much off the target.  

Now, the second or in the middle diagram, I am going to explain you the concept of a 

consistent but a biased estimator. So here you see, you see again, 3 dots, and these 2 dots 

are in blue. And you see that although they are off from the target, they are not very close 

to the target. But at least these 3 shots at the bull’s eye are coming very close of each 

other. So, you can say that they are consistent, but they are biased.  

Now finally, we are going to look at the best possible scenario and here in the concentric 

circles diagram, in the left hand side of the slide, I am going to show you again 3 bullet 

points or 3 green circles and they are actually hitting the bull’s eye of this concentric 

circles. And not only they are hitting the bull’s eye, but they are also pretty close to each 

other. So you can say that the estimator that I am talking about in this particular case is 

consistent and is unbiased also, because the difference between the sample statistic value 

and the population parameter value, true unknown population parameter value is 

minimal.  
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Now, we are going to discuss the case of point estimation in greater detail. So, for point 

estimation, we have several methods available like method of moments, method of 

maximum likelihood and the method of least squares. But we are going to look at the 

method of maximum likelihood in this lecture and we are going to look at the least 

squares method in the regression context in the later part of the course.  

So what is likelihood? Likelihood is the probability say that random variable x has some 

value, given that the parameter theta also has some value. Now, maximum likelihood 

sometimes is abbreviated as capital ML. So it is a principle, which says that take the 

estimate of theta, which is theta hat that makes the likelihood of the data maximum.  

And this definition it is looking very bookish, it is going to be much clear to you, if I give 

you this particular example. So this is a very simplified example, but I hope that this will 

make the concept of maximum likelihood a bit more clear. Suppose we have 2 

hypothesized value for the proportion of female students at a college and they are 50 

percent and 40 percent. Now we want to know what is the true value of the population 

parameter? Is it 50 percent or is it 40 percent?  

So from the population of the college students, we randomly draw a sample of 15 

students and we find that in that sample 9 are female. Now, from the sample observation, 



can I make any inference that which of our hypothesized values of proportion of female 

students is correct? Yes, we can. So note that this is basically the case of a binomial 

distribution, we can actually apply the binomial distribution here. So if we now plug the 

values or parameters in the binomial PDF, we can get the probability values.  

So let us assume that the true population parameter value is 50 percent. So the p the 

probability of success in the binomial distribution case is 0.5. So if that is the case, then 

how can I compute the probability? Because likelihood is basically nothing but the 

probability. So if we are looking for likelihood, we have to calculate the binomial 

probability.  

So here, I am showing you the first case where capital L is basically the likelihood, it is 

nothing but the other way to express probability. So X is capital 9 that is the value of the 

binomial random variable and small n is basically one parameter that is 15. And small p 

is also a parameter and we have hypothetically assumed its value to be 0.5. So it gives me 

a probability figure of 0.153.  

Now, I move to the other case, where the values of the X and n are same, but the value of 

p has changed from 0.5 to 0.4 because that is the second hypothesized value for the true 

population parameter. And if we assume that this is indeed the case, then that leads to a 

probability number 0.061. Now, note that, out of these two probabilities, definitely first 

one is higher. So we can draw an inference that our assumption of population parameter 

being 0.5 actually has higher probability from the data.  

So we can make this decision that will my data or my sample that I have, it actually has 

lend more support to the assumption or hypotheses that population, true population 

parameter value is indeed 0.5. So we then infer that, okay, out of these 2 choices, for 

population parameter values, 0.5, and 0.4, I will go with 0.5. So that is basically the 

simple example.  

Now, we want to actually give you the mathematical or statistical expression for the 

maximum likelihood estimator, because finally, maximum likelihood is a principle. But it 

leads to an estimator, which is used to get the estimate for an unknown population 



parameter. So we have to now see how maximum likelihood estimator actually works. So 

MLE, is denoted by a theta hat and that is the value of theta which maximizes the 

likelihood function. So how do I write the likelihood function?  

Note that that is basically a function of the unknown population parameters where the 

data is given. So likelihood function is denoted here by capital L of x given theta. And 

that is basically a product of n number of probabilities. Why? Because, if we have a 

sample of size n, then each of these observations in the sample has a probability of being 

chosen from a particular population. And then, these probabilities are independent, 

because I assume that they are drawn in a simple random sample way.  

So we need to multiply all these individual probabilities. And that is how we get the 

maximum likelihood function. Now, the likelihood function, we need to maximize that 

one and it is a formidable shape, because it is product of many probability numbers. So it 

can be extremely complicated functional form. So sometimes, to make it simple, we have 

to take log on both sides and then make it linear, and then we can actually maximize this 

function.  

But anyway, that is not our focal point. So, we actually stop right here on the maximum 

likelihood estimator case. Later on, in the course, when we are going to cover the case of 

discrete choice models, there I will show you how this MLE is very useful, and you will 

see that how MLE estimators are found by maximizing the likelihood function or log 

likelihood function.  
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So, next, we move on to the case of interval estimation. We have already defined what is 

interval estimation. Now, let me focus on the difference between the interval estimation 

and the point estimation. So, note that, when we get a particular sample and from the 

sample, we calculate a sample statistic value that works as an estimate for the unknown 

population parameter value.  

So basically, the sample statistic formula is basically the estimator formula and the actual 

value that we get from that estimator formula, actually is the estimate for the unknown 

population parameter say theta. So, there is a difference between the point estimate and 

the true population parameter and that is called the sampling error. So now, let me 

explain what is sampling error in detail.  

So when you get one particular sample and you get one sample statistic value, then that 

sample statistic value will change from one sample to the other. If you get to 2, 3 or 10 

more samples, you are bound to see different numbers for the sample statistic value. And 

of course, the difference between this true value to population parameter theta and the 

sample statistic theta hat that you are obtaining from different samples are going to be 

different and this is called the sampling error, because this actually depends on the 

variations in sample.  



So, of course, there is uncertainty associated with the point estimate, because we cannot 

be sure that if we get one particular value of sample statistic as an estimate for the 

unknown population parameter, whether that is indeed the true parameter value or not, 

whether it is very close to the population parameter or not, we have no clue. So, it is very 

uncertain to use or make use of a point estimate.  

So, that is why statisticians prefer to work with the interval estimates where you actually 

take care of this sampling variation into account and then you try to get more information 

from the sample that you have in your hand. And that is why interval estimation, we are 

going to focus more in this lecture and we are going to study it in more detail.  

So, an interval estimate gives a range of values after taking into consideration of the 

variation in sample statistics from sample to sample. So, there are 3 interesting features 

that I would like to mention about interval estimate. So, these interval estimates are stated 

in terms of level of confidence, and then what is level of confidence that we are going to 

define and describe and explain in detail in the next slide.  

And as there is probability associated, we cannot be 100 percent sure, we cannot be 100 

percent confident about what we get. So, that is the second feature of interval estimates. 

And the third feature is that range of interval estimates are called confidence intervals. 

So, the diagram that I am showing you at the bottom of the slide will probably make 

things a bit clear. So, this diamond sign, the orange colored diamond sign in the middle 

of this thick black line, that is basically my point estimate.  

Now, if I am going by point estimation method, then this is one single value that I have. 

But this number is bound to change from one sample to the other, as I keep on drawing 

samples from the same population of same size. So, lower confidence limit and upper 

confidence limit values are basically defining the range. And we are saying that well, 

within this range any particular value can happen and there is a probability associated 

with that. And this gap between this upper confidence limit value and the lower 

confidence limit value, the difference between these two values is called the width of the 

confidence interval.  



So, if you remember, when we were discussing in the last class about sample size 

determination formula, I talked about width and I had sign w. And then, I said that, it is 

basically twice the margin of error, so I am talking about that w here in this diagram. 

Now, if you divided this by 2, then actually you get the difference between the lower 

confidence limit and the diamond in the middle, which is a point estimate, that is 

basically your margin of error.  
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So it is time to define confidence level formally. So, a confidence level indicates that 

probability with which the estimation of the location of a parameter, may be mean, in a 

sample survey is also true for the population. Well, so to explain the idea of confidence 

level, we assume the value of 95 percent because in the applied statistics work and 

applied econometric work, you will find that more people are using this case of 95 

percent confidence level. So, we have picked 95 percent to explain.  

So, the first point about the features of this confidence level is that that a specific interval 

either will contain or will not contain the true parameter. So I am saying that when you 

have drawn samples repeatedly of same size from the same population, then you 

construct the interval for each of your samples. Now, a specific interval may not contain 

the true parameter and while the others are containing the true parameter. So this feature 

is going to be clear in 1 of the later slides where I am going to show you a diagram.  



The second feature, which is interesting, that tells you that in the long run 95 percent of 

all the confidence intervals that can be constructed will contain the unknown true 

parameter. So, we can derive another conclusion from the second bullet point or 

interpretation and that is the last one here. So, there is 5 percent chance that for many 

times repeated surveys with new samples, one could calculate a sample statistic value, 

which does not fall within the confidence interval of the population.  
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So next, we are going to talk about how to generate the confidence interval for the 

population mean in the large sample case. So it implies that I am considering a case 

where n is greater than 30. So I will start with 2 assumptions. And first assumption says 

that population standard deviation sigma is known, although this is a very hard 

assumption or strict assumption to make, because in reality, many, many times sigma is 

unknown to us.  

And the second one is a fairly straightforward assumption that we assume that population 

is normally distributed because we are dealing with a large sample. So law of large 

number tells us that normality can be assumed. So now I am going to show you 5 steps, 

following which you can generate the confidence interval for the population mean. So let 

us start with calculating the sample statistic value for the location parameter, which is the 

sample, from sample we get to know the sample mean.  



So that is x bar equal to summation x divided by n, that is quite straightforward. Then if 

sigma is known, then it is fine. But if it is non-known, if it is not known, then we assume 

that it is a large sample, so n is greater than 30. So we find the sample standard deviation 

s and we can use it as an estimate for sigma. So I am showing you the formula for s, the 

sample standard deviation. So note that, we are dividing by the number n minus 1 for the 

degrees of freedom issue that we discussed earlier.  

Now, next step is to find the critical value from the standard normal table and that critical 

value is denoted by a zc. So that should correspond to a given level of confidence. So we 

have to assume a priori what level of confidence we are happy with. So if we are happy 

with the 90 percent confidence level, then you assume that or if you say, no, I am happy 

with 95 percent, you can go with that as well. But it is important to make that assumption 

in step 3, that what is the level of confidence that you are aiming for.  

So after that, you find your corresponding critical value. Then you are in, step 4, where 

you have to find the margin of error. We talked about margin of error, hopefully, you 

remember that. So now I am showing you the formula how to compute it. So margin of 

error is given by capital E, and that is basically zc times sigma over root n. And once you 

get a measure for your margin of error, you need to subtract that number from the sample 

mean, and then you need to add that number to the sample mean.  

So, the first one will give you the lower confidence limit and the second one will give 

you the upper confidence limit. So now you can say that I have generated confidence 

interval which will contain the unknown value or population parameter mu. And if you 

have assumed 95 percent confidence level, then you can say I am 95 percent confident 

that my unknown population parameter value mu will lie between x bar minus e and x bar 

plus e. So, this thing is again going to be talked about in terms of a diagram in the next 

slide.  
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So, now, I am going to show you a diagrammatic representation of what we have 

discussed. This diagram is also going to help you to understand some features of 

confidence level, level that we have discussed. So before we start talking about the 

diagram, I would like to start with 2 notes. It is important to remember two very vital z 

scores. Now, I have shown you the standard normal table, I have also taught you how to 

refer to the standard normal table and pick the z values whenever it is required.  

But sometimes when you are in a hurry, you may not have time to consult the table, you 

may not have the table in hand. So you have to remember these two magic numbers, 

these are very useful magic numbers for the purpose of applied statistics and 

econometrics. So remember that 90 (percent), if you assume confidence level of 90 

percent, then the corresponding z scores are plus minus 1.645. And if you assume the 95 

percent confidence level, then the corresponding z scores are plus minus 1.96. So, if you 

remember these 2 numbers, you do not have to even consult the statistical table.  

Now, let us see, what do we have in the diagram? So the light blue color bell shaped 

curve is the standard normal curve and along the horizontal axis, I am showing you first 

the z units. And as you know that, there is mapping between z axis and the x axis because 

of the standard normal transformation concept. So of course, for each and every value of 



z, that I am showing you here, you can actually find the corresponding x values. So you 

can also say that the x units can also be derived and they are shown in green color here.  

So now, note that, a standard normal curve will have a mean at 0 and that is basically at 

the center of the distribution. And I am telling you that I am assuming here the 95 percent 

confidence level, because that is the most common in applied statistics and applied 

econometrics work.  

So the corresponding critical values are plus and minus 1.96. So on the z axis, I am 

showing you these two values plus 1.96 and minus 1.96. So the minus 1.96 actually, if I 

transform that number into x units, then I actually get a lower confidence limit. And if I 

transform this 1.96 z value into x units, then I get the upper confidence limits. So if I 

now, transform the z value equal to 0 into x, then I get the value of the point estimate.  

So now, note that, I am going to talk about the area under the normal curve and they give 

certain probabilities. So let us start with the mass which is there in the middle of the 

curve. So this area in white, which is below the bell shaped normal curve and bounded by 

two vertical lines placed on minus 1.96 and plus 1.96, that is basically giving me the 

value of 1 minus alpha and that is 0.95. So that is basically my 95 percent confidence 

level.  

So it will be bounded by the lower confidence limit, which is x bar minus z times sigma 

divided by root n and x bar plus z times sigma divided by root n. So of course, the 

residual area is 0.05 and you see there are 2 equal parts for the residual probability and 

alpha divided by 2 gives you 0.025. So it is symmetric curve that is why you see the 

equal mass at two different tails of the distribution.  

And we will again come back to this diagram, when we will be starting hypothesis 

testing, because this is very important diagram and it is very useful. So we have to get 

this diagram in our head and in our mind, so that even we know, if we fold our eyes we 

can visualize this and can apply this two; the confidence interval and hypothesis testing 

problems.  



So, now, the explanation for the normal bell shaped curve and the confidence interval is 

over. But let me talk about something more in terms of the diagram that will help you to 

understand about the confidence interval and confidence limit in a better manner. So, we 

can generalize this diagram and we can have 2 bullet points to summarize the main 

results in generalized form. And, these are two red bullets at the corner of the slide. So, 

first one tells you 1 minus alpha multiplied by 100 percent of intervals constructed 

contain mu and alpha times 100 percent do not.  

So what do I mean by these summary points? So these I would try to explain in terms of 

the bottom part of the diagram. So here, you see corresponding to that point estimate in X 

unit or 0 value in terms of the Z units, I have a broken vertical line. And now, I keep on 

drawings samples from the same population, but the samples are of same size small n. 

Now, of course, as there is sampling variation, the sample statistic value, which is 

basically the point estimate obtained from the individual sample is not going to be the 

same, it is going to vary from sample to sample and that is what is shown in the parallel 

straight lines that I have shown here.  

So, all these parallel straight lines are basically giving you the confidence interval that 

you obtain from one particular sample, given that there is a sample mean X bar. So if we 

look at the first line, you see that circle there of purple color in the middle, so that is 

basically X bar 1. So that is basically the sample mean that you calculate from your 

sample 1.  

So, the second line you come down similarly, you see that purple color circle on that line. 

So, that line gives you the confidence interval that you can generate from the obtained 

data in the sample number 2, and if you calculate the sample statistic value X bar 2 say, 

so, this purple circle actually indicates its value. So, you note that, there is a difference 

between X bar 1 and X bar 2. So, now I keep on drawing samples again and again, again 

and again from the population, but all of them are of same size.  

So, now, you see different sample means are generated X 1 bar, X 2 bar, X 3 bar, X 4 bar, 

X 5 bar, now you come to X 6 bar. So, you see that x 6 bar actually is far away from the 

point estimate or the Z value equal to 0, and this is kind of not falling in the interval. And 



we can say that well, this particular confidence interval that we generated from sample 

number 6 may not contain the true population parameter value, because it is in very much 

away from the center of the distribution. So, next, we are going to talk about the other 

cases of confidence interval generation.  

So, we are done with the discussion on how to find confidence interval for the population 

mean in the case of large sample. But, the diagram that I have shown you in the last slide, 

the entire slide, actually can be made a bit better, so, that it is even more informative for 

you and it will be easier for you to consult as a note. So, I have made certain changes to 

the previous slide that I have shown and let us have a look at it and hopefully, we like it 

better, because it contains more information after the changes I made. 
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So, here, in the slide, you can see that I have replaced what was there as X unit; and here, 

I have replaced the lower confidence limit and the upper confidence limits, those were in 

green by the statistical symbol. So actually this formula, actually gives you the value of 

the lower confidence limit in this particular case and that is why it is very easy for you to 

remember because now, you can associate the formula with the diagram itself.  

Similarly, for the upper confidence limit case, I am again showing you the formula X bar 

plus Z of alpha divided by 2 times sigma over root n. So, this particular formula gives 



you the value of the upper confidence limit. So, now, I think with this revised diagram, it 

will be even more clear to you how to find the confidence interval. I will end the 

discussion by saying that, please do not be under the impression that when we talk about 

this 95 percent confidence interval or 90 percent confidence interval, we are actually 

trying to have any probability interpretation from there.  

We know the probability concept is associated with confidence interval finding, but that 

actually is embedded in the Z value or the critical value that we have to consult statistical 

table and then find the value. But this 90 percent and 95 percent confidence level that I 

spoke about, there actually it is better if you look at this number only in terms of 

percentage. So, we are done with today’s lecture, we could not cover the case of small 

sample case in today’s lecture. So, in the next lecture we will begin the discussion by 

looking at the small sample case. Thank you.  


