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Hello, friends. Welcome back to the lecture series on applied statistics and econometrics. Before 

we start formal discussion involving normal distribution and other related topics, let us see what 

we are going to discuss today in terms of our agenda items. So before we discuss the agenda 

items one by one, let me give you a brief 30 seconds or 1 minute introduction. And actually from 

this lecture, we are going to start our discussion on a vast topic called statistical inference.  

Now, statistical inference is basically the heart and soul of the subjects, statistics and 

econometrics. Why is this so important? Why is this heart and soul? Because as a statistician or 

an econometrician you have this challenge that you actually do not know the true values of the 

population parameters of your empirical model.  

And you are out there to collect some data and draw some meaningful inferences from the data 

by following some robust, quantitative tools from statistics and econometrics. So, this entire 

journey, by looking at the data and by applying certain tools to draw some inference on the 

unknown population parameters is called statistical inference. And statistical inference has got 2 

parts, one is called estimation theory and the other one is called hypothesis testing.  

So, in today’s lecture, we are going to cover a little bit of estimation theory and then, we will talk 

a lot about the sample collection and sampling distribution. Then, we are going to come back to 

the estimation theory in greater details in future. And then, of course, we will save a couple of 

lectures to discuss hypothesis testing. So, now, let us look at the agenda items.  
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So, we are going to start our discussion with a very brief introduction to estimation theory, we 

are going to just define point estimation and interval estimation methods. We are going to 

discuss these things in detail later on. Then, we are going to discuss a little bit on sampling 

theory. We are going to talk about how samples are drawn in reality. Then, we are going to talk 

about what is the concept of sampling distribution and standard error. Then, we are going to talk 

about 2 statistical results, namely weak law of large numbers and central limit theorem. And 

finally, we are going to end today’s discussion by having some formula for sample size 

determination.  

Note that, today’s lecture is going to be mostly theoretical in nature. But, I believe that 

discussion of some theory is important, so that you understand why we are doing certain things. 

Other than that, it is going to remain like a cookbook, that I tell you do this, do that, follow steps 

1, 2, 3, 4, and you do that blindly, get some results. But, you will never be able to answer the 

question to someone that why have you done so? So, why have you done certain things?  

Why you have done a particular approach and why you have not followed the other approach? 

What is actually happening under curtain when you have adopted a particular statistical 

approach? To understand all these things, to understand the merits and demerits of a particular 

approach, it is important to understand or have some idea about the theory behind estimation 

theory and sampling theory. And that is what we are going to talk about in today’s lecture.  



I do not want to show you lots of proofs or lemma to bother you. But I will try to tell the story in 

simple layman’s language. Occasionally, I will show you some symbols and some equations. But 

mostly, I will try to tell you what actually is there in the statistical theory textbooks in layman’s 

language. So, we are going to start our discussion by telling you how to draw random samples in 

practice.  

So, there are several methods and some of them are extremely complicated, but we are not going 

to cover all of them, because that is not the focus area for us. We just want to know that what are 

the simplest possible statistical sampling techniques which are available and you can adopt. And 

we are going to cover only 3 of them. But, I am telling you that there are more better or 

sophisticated sampling techniques available. We are going to only cover the tip of the iceberg.  
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So, we start with the first technique that is called simple random sample or it is abbreviated 

popularly as SRS. So, it is basically a sample drawn in such a way that it follows or satisfies 2 

conditions. First of all, every element of the population of size N should have an equal chance of 

being chosen. And number 2, every combination of those N members of the population, should 

have an equal chance of being chosen.  

The next in the list is systematic random sampling. So, it is a method of sampling in which every 

Kth member, where K is obtained by dividing the population size n by the desired sample size 



small n, in the population is chosen for inclusion in the sample. And there is a procedure, first, 

you have to figure out the first K members in the population and then you have to randomly draw 

1 member from the first K members in the population and then, every Kth member from that 

initially chosen member has to be selected.  

So, for an example, suppose this is the sampling strategy that you have devised for your men. So, 

you have decided that you want every tenth household to be surveyed. So, basically, what will 

you do? You have these voter list or address list of that locality and then you choose the first 10 

and then, from these 10 you choose 1. And then, suppose that is the 7th element or the member 

in the first 10 household addresses, and then, from there every 10th house in the list, you will 

choose for your random sample. So that is called a systematic random sample.  

Now, the last in the list is called a stratified random sample. This is a bit interesting. So, a 

stratified random sample satisfies 2 conditions; first, the population has to be divided or sub-

divided into sub-groups based on our variable central to the empirical project. And then second, 

a simple random sample has to be drawn from each of these sub-groups. So, let me explain this 

idea of stratified random sampling through an example.  

Suppose you are interested to statistically estimate a model or do some econometric research and 

you know a priori that wealth actually plays a big role and as per different wealth groups or 

socio-economic status groups, your population parameter values are actually different. So, when 

you want to test that hypothesis, that whether across the population groups or the socio-economic 

groups, the population parameter varies or not, you may want to estimate different models or 

estimate different values of sample statistics from various classes.  

So, to give you a very simple example, suppose you are interested to figure out some population 

parameter value in a rural setup and you know that in a village you should have proportionate 

samples from the wealthy households and from the poor households and the middle class 

households as well. Because if you somehow draw a random sample where you have lot of 

representation from the poor households or the middle class households, you may not have 

sufficient number of households representing the wealthy group.  



So, you can say that, I will try to make a balanced sample, I will try to get a balanced sample. So, 

you break the or divide the village population into 2 groups and you can call them that, one is 

wealthy group; and the other one is poor group. And how to decide? Because, of course, you do 

not have a priori information on income, so you can actually look at the quality of house that this 

household is residing at.  

So, if it is a pakka house, it is a 2 storey building and they have garage, some car, something like 

that, then you may or may be a tractor standing, they own a tractor. So based on these visual 

observations, you can decide that, maybe this household is a rich one. And then of course, by 

looking at the standard of the house where a particular household is living, you can also decide 

whether this particular household is poor or not.  

So if it is a kaccha house, with mud floors and all, then maybe bricks maximum, then, you can 

say that probably this is not such a well to do household. So, you actually generate 2 different 

strata; one is wealthy households and one is the poor or middle class households and then you 

draw random samples from each strata as per your need. So, that is basically the idea behind 

stratified random sampling.  

So, now, we are going to look at the fundamentals of estimation theory in very simple manner. I 

do not want to spend more than 3 minutes time on these concepts, because, I am going to come 

back to statistical estimation theory in the next lectures to give you details. Because it is such a 

vast item that cannot be covered in 2 - 3 minutes. And as this is not the focal point for today’s 

lecture, I would just like to give you some idea about the estimation problem and then we will 

move on to the other things that are there in the agenda items.  
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So, we start with a population of size capital N and unfortunately, we do not have enough 

resources to collect data from all of these capital N members or elements of the population. So, 

we have to draw a simple sample of size small n, which is very small. Now, the question is that 

suppose there is a population parameter theta whose value is not known to the researcher and a 

statistician or an econometrician is interested to know what could be the value of theta. So, you 

have to make guesses.  

Now, the question is basically how to make guesses? And estimation theory actually gives you or 

provides you certain tools to make good guesses. So, these are the 2 types of estimation methods 

available in the toolkit of a statistician or econometrician and they are called point estimate and 

interval estimate. First, let me talk about the point estimate. Suppose, the statistician is asking 

this question or maybe his or her boss is asking a question that what is the value of theta? And 

then, the statistician replies that my guess is that theta takes value 5.  

So, basically the statistician is reporting 1 number or 1 point from the set of all possible numbers 

for the population parameter and that is why it is called a point estimate. Now, the statistician 

can also reply in a bit probabilistic manner and the statistician can also reply to his or her boss by 

saying that, well, I am 95 percent confident that theta is going to be between 4 and 6. So, note 

that here the statistician is actually reporting a range and not only a range, he or she is also 



reporting a probability associated with that range. And this approach is called an interval 

estimation approach and the confidence interval is basically the interval estimate.  

So, with this story, I think now you are ready to look at the formal definition. So, point 

estimation is an estimation method that calculates a single value theta hat, which is to serve as 

the best guess or estimate of an unknown population parameter theta. Now, an interval 

estimation is an estimation method that provides the range of values based on observations from 

one sample only and gives information about closeness of the sample statistic value to the 

unknown parameter value.  

So, what is a sampling distribution? You may remember that we have already differentiated 

between population and sample. So population is the entire set of objects that you want to study 

or you want to draw some inferences about. But sample is basically a small section of that 

universe. So it is basically some chosen elements from that entire set or universe. So the issue 

emerges, how we are so sure that the sample statistic, like mean and median and variance, etc., 

that we calculate from a chosen sample is going to give us the true picture about the population.  

The answer to this question is very difficult to address. In fact, I should tell you that the sample 

statistics like mean, median and variance that we have studied so far is going to change from 1 

sample to the other. Because imagine, you have an universe or a population of people 5,000 

objects and you just have drawn a simple random sample of 500 objects from that population.  
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So, here in this slide, I am showing you that exact scenario where the big box is your population 

where you have some 5,000 or 6,000 objects and it could be any large number. And then, here, I 

have drawn several oval shaped objects, which are basically chosen sample. Now, how these 

sample is being chosen, that we forget at this moment. Suppose, some samples are chosen and 

we are calculating the sample statistic of our interest. Here, in this diagram, I am showing you, if 

we are interested in sample mean.  

So, think about the sample 1, which has sample 1 written inside it and you see that suppose it is a 

sample of 100 objects from that population and based on these 100 objects, you get 1 X1 bar. 

Now, if you change your sample from the same population, then you may land up with getting a 

different sample, sample 2 and none of these objects may be part of the earlier chosen sample 1. 

Based on this sample 2, you can derive a measure of sample statistics a sample mean, which is 

denoted as X2 bar. And similarly, you can draw other samples.  

Now, note that, we can draw infinite number of samples from the same population in this 

manner. And when I said that in the first illustration, I showed you that, I assume there that no 

two samples have the same objects. But it is an assumption, we can also relax this assumption. It 

may be the case that we have two samples where some elements are common. And if this 

happens, then of course, from one sample to the other, your measure of sample mean or sample 

variance is bound to differ. So, if that happens, then actually we can generate a distribution for 



the sample statistic that we are interested in. And that is basically the essence of sampling 

distribution.  

So, in this case, again back to the diagram, so, here we have chosen six samples and we are 

interested in sample mean. So, we generated sample mean X1 bar, X2 bar, up to X6 bar, and 

these basically gives me the sampling distribution. Of course, these sample means will now be 

associated with some probability of actually being observed. So, that is basically the sampling 

distribution is all about.  
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So, let me continue a little bit with sampling distribution on theoretical side. In order to judge the 

performance of our estimators, their behavior in large samples are to be observed. A primary 

goal of asymptotic analysis is to obtain a qualitative understanding of quantitative tools. So, what 

do we mean by the quantitative tools? So, that is basically the same old thing sample mean or 

sample variance, etc., that we calculate from the sample. And what do we mean by the 

qualitative understanding of these tools?  

So, the qualitative understanding implies that we may be interested to see if we draw samples 

many, many times. Is there any pattern in the sample statistic that we calculate from these large 

number of samples? Do they converge to some common number? Something like that. Now, 

why is this important? Now, asymptotics are very important because most empirical problems 



begin with a data set of size n and small sample properties of estimators are difficult to learn as it 

is difficult to define probability density function with a small sample.  

So, here let me explain it again. So, when we draw a small sample size say of 100 from a 

population of say 5,000 or 10,000, generally, we do not have enough money to draw samples 

repeatedly. We just stop after one sample in hand. And then, how can we draw inference based 

on that small sample or just one sample about the properties of the estimators? We want to know 

how these estimators behave if we take repeated samples? And asymptotic theory helps us in this 

matter.  

So, asymptotic theory assumes that it is possible, at least in principle to keep collecting 

additional data. It implies sample size grows infinitely, it implies a n tends to infinity and 

asymptotic properties of an estimator are found as n tends to infinity. So, we can keep on 

drawing samples from the same population and as we keep on the number of samples will tend to 

infinity and then asymptotic properties can be derived about an estimator.  

Now, what is an estimator? Well, estimator is basically the formula that we use to calculate some 

sample statistic like sample mean. Now, if the limiting distribution when n tends to infinity 

approximates the finite sample distribution well when n equal to 50, so suppose we assume that 

our asymptotic properties are holding well enough for n equal to 50 from some simulation study, 

in that case, we can confidently say, that when n is greater than 50, the approximation will be 

more accurate. So, you see, the, when we say asymptotics we actually mean the large sample 

case. 
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Now, we are going to talk about the concept of convergence and probability limit. So, a sequence 

of random variables Zn is said to converge in probability to a constant alpha, if given any 

positive epsilon, however small it is the probability of Zn deviating from that alpha by an amount 

greater than epsilon, tends towards 0, as n tends to infinity. Apparently this definition may look 

very hard. But let me try to explain in layman’s terms.  

So here, what is the sequence of random variables Zn that is there in the definition, so, if we 

collect a lot of samples from the population at least theoretically, then suppose, you know we get 

10 samples from the population. So, if we are interested in sample mean then from these 10 

samples, we get to see 10 different values of the sample mean. And as realization of one 

particular sample is random, it is uncertain, there is a probability associated with that. So, the 

sample mean from each and every sample that we have collected from the data actually is a 

random variable.  

So here, the Zn the sequence of random variables could be seen as a sequence of sample means, 

so if we are interested in sample mean to study. So, here you can ignore that complicated 

mathematical form, because I have already explained you the Zn variable, what is that. Alpha is 

basically a constant and what is that constant it will be clear to you soon. And this epsilon is just 

some arbitrary positive number, it could be very small number like 0.00001 or 0.0005, something 

like that.  



So, what actually is the essence of this expression in the blue box, the first box in the slide that 

you are seeing. So, it basically shows that number of samples increases towards infinity, then, 

actually this Zn, this sequence of random variables, you can assume that sequence of sample 

means coming from different samples is going to converge toward some number, alpha and as it 

converges towards that constant alpha, the gap between that constant number and the sample 

mean in each case is going to decrease and decrease and decrease.  

Ultimately, statistically, it is going to be 0, that is basically the essence of the expression. Now, 

let us take an example, the mean of a sample of observations generated from the random variable 

X with population mean mu x and variance sigma square x. So, sample mean is the estimator of 

the population mean, I talked about that thing. And now, you try to link the x mathematical 

expression that I have shown you in the first box to the second box.  

Here, you see, as I was talking about, that Zn is replaced by x bar the sample mean, now it is the 

random variable, very specific random variable we are talking about. And this alpha, the constant 

I was talking about in the definition of convergence is replaced by a mu of x. So, that is basically 

the population mean that we want to actually infer about or we want to know. And then, this 

difference between the sample mean from different samples and the true population mean is 

getting smaller and smaller and smaller as n tends to infinity and when n is extremely large, then 

actually the difference boils down to almost 0.  

Now, we are going to talk about an interesting property of sampling and that is called the weak 

law of large numbers. And why this law is very important, because this law actually is the 

fundamental basis for running of certain risky industries, like insurance. So, what does a weak 

law of large numbers say?  

So, it says that sample average convergence in probability. So, what does weak law of large 

numbers say? It says that the sample average converges in probability towards the expected 

value of the true population parameter and estimation error will get smaller and smaller as n 

tends to infinity. Basically nothing but the statement of the previous mathematical expression 

that we have came across.  
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Now, we are going to talk about two interesting properties about the estimators and they are 

consistency and unbiasedness. Note that, we will not make use of consistency and unbiasedness 

properties here in the first part of the course. But, when we will be doing econometrics, the 

second part of the course, there this consistency and unbiasedness properties play a big role. And 

we will just inform you about these 2 properties in layman’s language at this moment. Later, 

when we will do econometrics in the second part, you will find more meaningful use of these 

concepts in econometric theory.  

So let me start by defining a statistic. Well, statistic we have all seen. So I do not think that I at 

this moment, I should define statistic. Let me start with the definition of a consistent estimator. 

So, a statistic is a consistent estimator of a population parameter, if 2 conditions are satisfied. 

Number 1, the estimator possesses a probability limit, I have already explained what is a 

probability limit. And number 2, the limit is the true value of the population characteristic.  

Now, there is a sufficiency condition for consistency as well and it says that the sufficient 

condition for consistency is that the estimator should be unbiased and that its variance should 

tend to 0 as n becomes pretty large. So, in mathematical terms, n tends to infinity. Now, we are 

going to provide a simple definition for unbiased estimator. A statistic used to estimate a 

parameter is called an unbiased estimator, if the mean of its sampling distribution is equal to the 

true value of the, or population parameter being estimated.  



So here, in this case, the bias is 0. So bias actually is the difference between the true value of the 

population parameter that is unknown to us, and the estimated value of the population parameter 

by applying a particular formula of estimator. So why are we so worried about consistency? 

There are 2 reasons and both are theoretical reasons, but if you do econometrics at an advanced 

level or if you want to study statistics at a higher level, then you will see that these issues are 

very important issues. And that is why he actually I just have highlighted these 2 points here.  

I do not want to get into deeper details of this, but at least I thought that it is good to inform you 

that there are certain problems. It is often not possible to determine the expectation of an 

estimator, but still, possible to evaluate the probability limits. So, why we are talking about this, 

because I just said that when you want to prove that a particular statistic or estimator formula is 

unbiased estimator or not, then basically we have to focus on the mean of the sampling 

distribution.  

But mean, means what? It means the expected value. So that is what this first bullet point is 

saying, sometimes expected value of the sampling distribution may not be possible to obtain. 

And what is the second point? Why we should be interested at least in theoretical statistics? So, 

if no unbiased estimator exists, because of the first fact or even if he, you find that there are some 

estimators, but none of them are unbiased, you need to choose one estimator.  

So that you can provide an estimate of the unknown population parameter. Then which one to 

pick? So in that case, you will go with a consistent estimator, because consistent estimator, at 

least you know has a probability limit and it is the true value of the population characteristic. So, 

an estimator, which is consistent may be preferred to an inconsistent estimate, even if all the 

available estimators are kind of biased or the mathematical form for estimated is not available.  
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In the last lecture only we have spoken about central limit theorem, but very briefly. So, in 

today’s lecture, I want to actually link that central limit theorem to the sampling theory, so that, 

we find how central limit theorem plays a very big role in Applied Statistics and Applied 

Econometrics. So, let me formally state the central limit theorem, we have already defined the 

central limit theorem in last lecture. But let us provide a somewhat different looking definition or 

statement for the theorem.  

So, here we go, regardless of the underlying distribution of the sample observations, if the 

sample X1 to Xn so, there are n samples we are talking about are iid, what do we mean by iid? 

Its, it means, the abbreviation means independently and identically distributed, and if the sample 

is sufficiently large, so, by large sample we mean that n is greater than 30, then the sample mean 

X bar will be approximately normally distributed with mean mu and standard deviation sigma 

divided by root n.  

We can also say that inferences about probabilities of events based on the sample mean can use a 

normal approximation even if the data themselves are not drawn from a normal population. The 

second point will be very clear from the diagram below. Look at the distributions that I am 

showing here. So, the distribution that you are seeing at the right hand side of the slide you, that 

is basically a bimodal distribution. Now, we know that normal is an unimodal distribution, 



normal is never bimodal. So, this distribution is not normal distribution, although it has some 

mean mu.  

Now, the distribution that I am showing you towards the left hand side of the slide, there you see 

that we have a positively skewed distribution. We know that normal distribution is symmetric, 

but here, we are not showing an asymmetric or positively skewed right skewed distribution, 

although, it has mean mu. So, we are telling that even we have abnormal probability shapes, like 

no symmetry, multiple modes, even in that case the central limit theorem actually holds.  

So, basically if we apply the central limit theorem in this case of sampling statistics distribution 

and all then what do we get? That is basically the last curve is talking about. So here, along the x 

axis I am measuring X bar, note the difference. In the previous 2 cases, I have measured a 

normal X not X bar. So here, I am interested about the estimator of the population mean, which 

is the sample mean denoted by X bar. So, I told you before that X bar is basically a random 

variable. So, I expect a sampling distribution for this random variable, because if I change my 

sample, I am expecting to see a different value of X bar.  

Now, what I am saying is that the sampling distribution will look like more or less normal 

distribution. So, note that these values of these distribution are all x bars from different samples. 

But the mean of the sampling distribution will be mu of X bar and that is going to be equal to mu 

that is the true population parameter. And we have the variance of X bar or the sample mean or 

the estimator of population mean. And that is given by sigma divided by root of n.  

So, you can now link the central limit theorem that I have stated at the very beginning and the 

way I ended this slide with showing you the sampling distribution for sample mean. Well note 

that, when we talk about sample statistic, it is not only sample mean or sample variance all the 

times, there could be sample proportion as well. So, if we are interested in sample proportion in 

some particular problems, then how do we go about the sample sampling distribution of sample 

proportions? That is the thing that we are going to study next.  



(Refer Slide Time: 35:06) 

 

So, often sampling is done in order to estimate the proportion of a population that has a specific 

characteristic. For example, you can say, proportion of all items coming off an assembly lines 

that are defective. So, here we are interested in the percentage defect being produced by an 

assembly line in the production process. 

Now, for any SRS, here by SRS, I mean simple random sampling of size n, the sample 

proportion of an event can be defined as count of event in the sample divided by the sample size. 

And that can be denoted by the symbol p hat or p caret. Assume that the sample proportion of 

successes in a sample of n trial is p hat.  

Now, the center of this distribution of sample proportions is the center of the population and is 

given by the mu of p hat equal to 1 over n times np. np is coming from the binomial distribution, 

it is the mean of binomial distribution, if you remember. And as we are taking the sample, then 

we are dividing this by 1 over n and that basically ultimately gives me p. Now, the standard 

deviation of the distribution of sample proportions or the standard error can be given as sigma of 

p hat and I am showing you how to get that expression in the box.  
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So, we are not going to deeper in the sampling distribution of sample proportions, but we will 

end with 3 major points. So, the sampling distribution of p hat is never exactly normal. But as the 

n increases, the sampling distribution of p hat becomes approximately normal. So, you can see 

that, we are making use of these weak law of large numbers and central limit theorem. Now, the 

normal approximation is the most accurate for any fixed n when p is close to 0.5 and the least 

accurate when p is near 0 or near 1.  

So, probably you can find similarity of the second point with the normal approximation to the 

binomial case, what we discussed earlier. Now, in practice use this normal approximation, when 

np is greater than 10 and n times 1 minus p is also greater than 10. So here, I am showing you the 

final form of normal distribution. So, p hat the sample proportion follows a normal distribution 

with mean p and the variance p times 1 minus p divided by n.  
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Now, we come to the last topic of today’s discussion and that is sample size determination. Now, 

sample size determination is very important, because, of course, we do not have enough 

resources to collect data from the entire population or universe. So, we have to remain happy 

with a small sample.  

Now, how much small is going to do the work for you? That is the question. So, if you are if you 

know that the population size is say 10,000 is 50 data points or a sample size of 50 is good 

enough or it is better if you get 100. Of course, it is far better if you get say 1000, but, of course, 

you may not have enough resources to collect such a large sample.  

So, where to stop? Because look that there is a trade off, the trade off is between the resources to 

collect a large sample size and it is basically the trade off between the money and the precision, 

because as you increase your sample size, you get higher precision from your estimates. And as 

you decrease the sample size, you save on resources, but then you also lose out on the accuracy 

of your estimate.  

So here, a confidence interval is denoted by CI and that proposes a range of plausible values for 

the unknown parameter that we all know. So, in the previous slide, I say that the statistician is 

saying that, well, I am 95 percent confident about this, this. So what does you know this 95 

percent confidence interval means? So it means that there is a 95 percent probability that the 



calculated confidence interval will encompass the true value of the population parameter say 

theta.  

So, one may also wish to have a very small error margins, say the 95 percent confidence interval 

being less than 0.02 units wide. So 0.01 on each side of the sample mean. Why this is important? 

Because confidence interval ultimately it is a range. So, you want to have a thinner gap between 

these extreme points in the range or the limiting values of this range. So thinner or the narrower 

the interval it is, the more accurate your estimate is. So, of course, you want to have smaller error 

margin.  
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So, now, we are going to discuss 2 different cases; one is going to be the case of sample 

proportion, because that is one kind of sample statistics. And next, we are going to talk about the 

case of sample mean that is another popular sample statistic. So, first we are going to talk about 

the estimation of proportion which is denoted by p.  

So, for a sufficiently large small n or sample size, the distribution of p hat, the sample statistic 

will be closely approximated by a normal distribution. So, this comes from statistical theories 

that we have covered so far. This leads to an equation Z times square root of p times 1 minus p 

divided by n and that is equal to W over 2.  



So here, the Z is the standardized Z score for the desired level of confidence and generally 1.96 

is the Z score for a 95 percent confidence interval. Please remember this number, this is a magic 

figure in statistics. And you will see more use of this number 1.96 for 95 percent confidence 

interval later in this course as well. And W over 2 is the margin of error, say plus minus 1 

percent.  

So, if we assume that plus minus 1 percent, then W will take value 0.02. So then, we are talking 

about that around the sample mean there will be width of 0.01 units or 1 percentage point, that is 

plus minus 1 percent margin of error. And, of course, a priori we do not know the value of p, but 

a reasonable choice for p could be 0.25. And if is there some prior from previous research, then 

you can use that prior information to replace p as well.  

Now, we are going to quickly look at the estimation of the sample mean case. So here, we use 

CLT, we approximate the sample mean with a normal distribution and that statistical steps lead 

us to an equation Z times sigma divided by root n and that is equal to W over 2. So here, the only 

new term well, it is not new, we all know that sigma is the standard error of statistic. So here, we 

are talking about sample mean as a statistic.  

So, this is will be the standard deviation of the sampling distribution of sample mean. So, of 

course, sigma you have to first get an idea and I have shown how to get a proxy measure and 

estimate for sigma. So, you can use that and then from this formula the only unknown is n and 

that can be calculated. So, we are done with today’s lecture. In the next lecture, I am going to 

give you details about statistical estimation theory. Thank you. 


