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Regression Involving Dummy Variable in R 

Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. 

And this is the second last lecture in the course. In today's lecture. We are again going to visit 

the use of R software for statistical and econometric computation and model estimation. So, 

before we discuss the use of R, let us have a look at today's agenda items. 
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So, here in today's lecture, we are going to take care of the Dummy variable analysis. So, in 

the last lecture, we have dealt with regression of continuous variables, mostly, but here the 

entire lecture of today is devoted to handling of Dummy or indicator variables in our 

platform. So, the lecture can be thought of half of split between two main concepts. One is 

basically how to make use of Dummy or indicator variable in regression where Y is 

continuous. So, the Dummy variable is basically there as an independent explanatory 

variable. And the second half of the lecture will be devoted to the special case when Dummy 

variable becomes the dependent variable. Yes, we are going to talk about the discrete choice 

models in this part.  

So, let me start by telling this thing again, so the objective of these R lecture sessions is not to 

actually teach you how to handle R in live sessions. So, the objective behind these three 

lectures is very simple. I want to actually give you a very brief recap of the major concepts 



that we have covered in the course. So, towards the end of the course, you get a feel that, 

these are the most important things that we know, we have learned in the course. And then, 

when it comes to statistical computation or estimation of different models and drawing 

statistical inference out of the raw data, how R software can be used.  

So, here in this lecture also, I am not going to take live session on R, rather I will show you 

some pasted screenshots from the actual R environment when you are conducting some data 

analysis in R platform. And, there of course you are going to see the code or command that 

you need to write. And then, I will actually try to help you to interpret the results, what you 

see on screen.  
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So, let us start today's discussion with a Dummy as an independent explanatory variable. So, 

first you have to introduce or define a Dummy variable in the regression model in the R 

platform. And in the last lecture only I have talked about how to create dummy variables in 

the R set up, but it is not a bad idea to repeat the thing again so that you do not have to go 

back to the previous lecture and find out what was the code.  

So, for this exercise, we are going to make use of the datasets that we have used in lecture 

number 40, that was the last lecture where we have used the agricultural data and at district 

level from two States, Maharashtra and Madhya Pradesh. So, if you remember in that dataset, 

we had one variable which was qualitative in nature. And the name of the variable was state. 

And, it has two labels, MP for Madhya Pradesh and MH for Maharashtra.  



Now, I want to create a dummy variable and I want to declare that if the observation is from 

other state, then I am going to assign a value one to the dummy variable or indicator variable. 

And that is what you know I am going to do. So, here you see, I have declared a dummy 

variable here and I have kept MH the label for Maharashtra as the base category. So, 

basically now I have these dummy variable defined as d dot state. So, d here comes for 

dummy. You can give another name. It does not matter, but here at least in this lecture, I am 

introducing dummy variable as d dot operation. 

Now, in step two, you have to introduce the dummy variable as the independent variable in 

the linear regression model. Now, there could be three different ways to make use of an 

indicator or a dummy variable in a linear regression setup. If you remember the discussions 

that we had, the theoretical discussions that we had in the course, a dummy can play three 

types of roles. The simplest possible case is that the dummy will act as a shift pair of the 

intercept term in the regression. The second is that the dummy variable can impact the 

regression coefficient of one of the explanatory variables. So, basically then there we are 

talking about slope change and finally the most complicated and comprehensive category of 

dummy analysis is that it says that the dummy variable can impact both the intercept and the 

slope coefficients of the regression model.  

So, we are going to look at these three categories one by one. So, here, we are going to work 

with three different models. So, first let us focus on the model where we are expecting a 

change only in the intercept term. So, here I am defining model by declaring or calling it a 

model three. And the code, I am showing here and it starts with lm. So, let me remind you 

again. So, lm is basically stands for linear model because we are running a linear regression 

model and here the dependent variable is prodha so that is the monetary value of production 

per hectare of agricultural land. 

And there are three inputs, and they are fertilizer use per hectare of land. Then labor input, 

which is represented by these variable workha. So, this is labor unit used per hectare of land. 

Then nia is basically net indicated area. And finally, now we incorporate the dummy variable 

d dot state and here, as you see that this dummy variable is not interacting with any of the 

continuous regressors here in the model, then we are talking about basically an expected 

change in the intercept term only.  



Now, we move on to the second model and that we denote by model four. So, in model four, 

I am going to show you how dummy variable can be useful to model slope changes. So, we 

start with hypothesis where we assume that productivity of fertilizer per hectare of land varies 

across states because of change in agro-climate conditions, soil conditions, etcetera. So, here, 

we expect that the beta coefficient, the regression coefficient for the variable, fertha may vary 

from Madhya Pradesh to Maharashtra.  

Now, this is a hypothesis. In reality, this could be the case or this could not be the case. So, 

we have to statistically test whether these average product of fertilizer indeed varies from one 

state to the other. So, the best way to do that is basically by introducing an interaction term in 

the linear regression model. So, you already have the dummy variable in the linear regression 

model three.  

Now, we talk about model four where, we also incorporate the interaction term between the 

continuous variable fertha and the dummy variable d dot state. So, here I am showing you the 

code or command that you need to write for estimation of model four. So, here you see, I am 

incorporating the interaction term between the dummy variables no d dot state and fertha. 

And then finally we are going to come to model five, where we are going to talk about both 

intercept and slope coefficient changes due to the presence of dummy variable. So, now 

concentrate on the model for code or command that I have shown here. So, note that I have 

taken out the dummy variable, d dot state as it was there in model three. And now I am 

replacing that variable by this interaction variable, d dot state times fartha. So, here we are 

talking about only the change in the slope coefficient, but not in the intercept. 

Now, we come to the most general case. There we have model five and in model five, you 

see that I have both the dummy variable d state and the interaction between the dummy 

variable and the continuous variable fertha. So, model five the most general model that you 

can think in this context. So, basically we are now going to estimate three different models in 

R environment. And of course we know we would like to have a comparative picture.  

Now, we know as I have shown you in the last lecture, when you get the output from our R, it 

is not very much presentable because, you know numbers are not presented in form of a nice 

table but does it mean that you cannot produce a regression table like in other software? Yes, 

you can. But for that, you have to make use of a package and I am showing you now how you 

can make use of one package to produce nice looking regression tables so that you can 



compare more than two models side by side so that you can have a better idea how the 

coefficients are changing from one model to the other, or the model goodness of feed 

statistics is going to change from one model to the other. There are many packages, but in 

this lecture, I am going to show you the use of stargazer package option. So, of course you 

need to download and install this particular package option before you want to execute the 

next step, which is basically preparation of regression tables. 
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So, you see here, I am showing you a screenshot from R and you see the first line shows that 

in library, I have this package downloaded and installed. So, the stargazer is shown within 

parentheses. And then basically you write the command that you see in the second line. It is a 

little bit lengthy, but it shows you how to represent a different model. So, here, you have 

model one, which is basically the initial OLS model that we have estimated during the last 

lecture. 

And I have shown that regression output there also, and now we have three new models with 

dummy variables or dummy plus interaction variables. And these are basically models, three, 

four, and five. And I am going to have a comparative picture of these four models. So, these 

will become now my columns with different levels and you can actually write the labels for 

each of these models. 

So, say for mod one, you want to give a label of initial. So, that is basically our base model to 

start with. And then, you may wish to call model three as intercept model and model four as 

the slope model and model five as both. So, you just need to type these name of the models 



within inverted quotation without inverted quotation, it is not going to work. And then 

basically you finish the quote by mentioning that what are the other things that you want to 

see in the table.  

So, of course you want to show how many observations with which you have worked. So, 

that is given by small n within inverted quotation and then you want to get an idea about the 

R square from these regression so again within inverted quotation, you have to write rsq. So, 

now you run this code or command in R and you get this nice looking table presented to you. 

So, here you see for four columns, you are seeing the regression results for the dependent 

variable prodha and for the initial model you have coefficients for fertha, workha and nia 

only because of course that is the base model, which we talked about in the last lecture. 

Now, you see, the models that we spoke about in the last slide involving dummy variables are 

presented in columns two, three, and four. And here you see that, unfortunately, the dummy 

variable is not turning out to be significant in any of these models neither is the interaction 

between the dummy variable and a continuous variable. Now, you cannot say that if you 

introduce a dummy variable and an interaction variable of the dummy with one of the 

existing continuous variables in the regression equation always you are going to get 

significant results. Now, it is experiment. I just wanted to show you that how to handle a 

dummy in R environment.  

So, here in this simplified example, you see that dummy variable is not significant. So, it is 

not impacting the intercept parameter of the regression equation. It is also not impacting the 

slope, parameter of the fertilizer input use variable. So, that is why you see, we throw in a 

new variables, but they are not explaining the variation in Y that much. So, R square is also 

not changing by that much actually. So, you see the difference between the R squared is 

pretty low from one model to the other. So, you can say here that the state factor which is 

basically a fixed factor is not affecting the average productivity of fertilizer use on 

agricultural production. 

Now, we move on to the exciting case of dummy as the dependent variable. So, we have had 

lengthy discussion on the logit models previously. So, we are going to talk about the 

estimation of logit model and interpretation of the results in R platform. So, for that of course 

we need a dataset to start with and we have got a dataset from one existing data source and 



first we are going to explain the dataset to you, and then we are going to take you to R 

environment. 

(Refer Slide Time: 16:45) 

 

So, we went to the website that we are showing here and that is basically housed at university 

of California, Los Angeles. And there are some free datasets available for students. In fact, I 

suggest you to go and visit this particular website and download freely available datasets and 

try your hands on them because now in this course, you are going to have some idea about 

how to handle datasets in R. So, why do not you go there and download datasets and run 

some R codes that you have learned in these lectures just to have a feel. So, from that data 

source, we have downloaded a dataset and let us call it binary.  

And it is basically on student admission into graduate school in the United States. So, in that 

dataset, we have a 400 observations. So, these are basically 400 student application cases. 

And there are four variables for each of the student cases. So, from the dataset we can say 

that there is one outcome variable which we can use for logit estimation and that is called 

admit. And the, there are three other predictor variables.  

So, admit means that whether a student got admission into graduate school or not, and then 

there are three predictor variables or explanatory variables. One is the gre that is basically the 

GRE score. And then the second one is titled gpa. So, that is basically the Grade Point 

Average. So, that is basically, you can say the performance in the last educational program 

that the student was enrolled in. And then finally we have a variable called rank and that 

actually gives me the ranking of the undergraduate institution. 



So, now, among these three predictor variables, gre and gpa are definitely continuous because 

they are dealing with the numbers, but the rank variable actually is qualitative in nature. And 

there are four levels, one to four. And here the institutes of rank one have the highest prestige 

while those with four have the lowest. And now we import the dataset in R environment as 

follows. So, you have to first set your directory as we know, we have spoken about that in the 

last lecture also. So, here I am showing you again how to make use of the state WD 

command, and then you need to input the data and read the data.  

So, as I said that the data is saved in your computer as binary dot CSV. So, you have to use 

the file name you see and you can give it a different file name. It does not matter. The best 

way to start doing data analysis even in the context of discreet Y is to generate and look at the 

summary statistics figures because summary statistics tables actually tell you a lot about the 

variation in these variables. And it is just good to have a feel of the Y variable actually, 

especially which you are going to model.  
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So, we actually get the summary statistics for the whole dataset by writing this simple 

command. And here, I am showing you all these measures that you have seen these measures 

several times in this course, like mean, median, quartiles and all, but we have, two categorical 

variables in our dataset, admit and rank. And it is not a very good idea to look at the discrete 

variables by looking at the values of media and, and quartiles and all because they are not 

continuous. But let us have a look at the admit variable. One that we are going to model.  



So, you see the mean is going to say us something. So, mean says, a value is there 0.3175. So, 

it says that 31.75 percentage of the students in the dataset got enrolled in the graduate school. 

Okay. So, now, if we want to get the exact frequency counts of students who got admission in 

the graduate school and who did not get admission in the graduate, you can actually make use 

of one command call table for the dummy variable. And that is basically I am showing here 

in the box.  

So, you see for zero value, I have 273 observations and for our one value of the dummy 

variable or indicator variable. I have 127 observations. So, now if compute the ratio 127 

divided by 400. So, that should give you the proportion of the students who got admitted into 

the grad school. Right. And if you actually compute the ratio, you will get that number that I 

have talked about a couple of minutes back. And the number is 0.3175. So, that is basically 

the mean that is showing here.  
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So, now, we are going to talk about contingency tables. Now, why do we want to talk about 

contingency tables? So, if you remember, in the first part of the lecture, we spent sufficient 

time on contingency tables because they are the best way to represent the interactions of 

qualitative variables and we can make use of these tables to conduct hypothesis testing so that 

we can see whether there is any association between two qualitative variables or attributes or 

not. And, although our major focus is to conduct a logistic regression in today's lecture, but it 

is not a bad idea to learn how one can conduct degrees of association tests between two 

qualitative variables, because many times in many disciplines, degrees of 



association, Pearson's chi-square test are very useful. So, we are going to show you next how 

we are going to conduct a Pearson's chi-square test in R environment.  

So, note that by default R consider rank variable as the continuous variable. So, we have to 

declare that the variable rank although it is taking a numbers like 1, 2, 3, 4, but it is not a 

continuous variable. It is basically a qualitative variable. So, in order to declare it as a 

categorical variable, you have to make use of a command. And that command, I am showing 

here in this box.  

Now, once you have declared the rank variable as a categorical one, you can generate the 

contingency table by writing a simple command and that command is xtabs. So, basically this 

will produce the cross tabulation of two qualitative variables, admit and rank. And here you 

see in the rows, you have four different levels of the qualitative variable rank. And in the 

columns, you have two labels of the qualitative variable admit. And in the cells, you are 

going to see the frequencies. 
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Now, once the frequencies are opt-in, you can now perform the Pearson's chi-square test to 

check the degree of association between the two variables, admit and rank. Now, why are we 

interested in Pearson's chi-square test in this context? Because we can have a hypothesis that 

the rank of the undergraduate in a institution where from the student got his or her 

undergraduate degree may have an effect on the decision-making while the student case was 

being discussed and a decision has to be taken whether the student shall be permitted in a 

graduate school or not.  



So, the prestige of the educational Institute, the ranking of that educational Institute from 

where you are coming as a student, undergraduate student may have some impact on the 

decision variable which is represented here by admit. So, the best way to look at whether 

there is any association between these two qualitative variables are not is by conducting 

hypothesis testing via Pearson's chi-square test.  

Note that as usual chi-square test in R is not automatically done. So, you require a package 

and you require MASS package. So, you have to download and install that package in your 

machine. And then here you can follow the code. So, again, I am showing you the library 

command that you write to first check whether that MASS package is properly registered in 

R environment or not. And once you have a look at it then you can go for the chi-

square test and chi-square test is conducted by writing the simple chisq command. And here 

is the outcome.  

So, you see the p value is extremely small. And then how do you conclude your test? So, as p 

is very, very low, then you can say that the calculated Chi-square value is greater than the 

critical tabulated Chi-square value at 5 percent significance level. So, we reject the null 

hypothesis with which we started. And the null hypothesis says that there is no degree of 

association. So, finally we conclude that there is a strong association between the qualitative 

variables rank and admit. So, now we are going to finally move on to the discussion of logit 

models and I am going to make use of the same dataset that we used from UCLA data source 

to explain you the working of operational side of the logit model in R environment.  
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So, here, I am showing you the code that you must write in order to estimate a logit model. 

Of course note that admit is the dummy dependent variable so that we are going to model. So, 

that is our Y, and that is discreet. And we are going to make use of two continuous variables, 

gre and gpa and one qualitative variable say rank. 

So, here you see that we have three independent explanatory variables, gre, gpa and rank. 

Now, you look at the code and then you see some jargons are there, which probably you have 

not seen before, like, this thing glm. So, there is a big difference between the code that we ran 

for the Willis case and what we are going to run now. Note that in the case of ordinary least 

squares estimation in R environment, we start the code by writing lm. So, that is basically a 

linear model, but now we are writing glm. So, we are adding an extra g in front of l and what 

does that mean? 

So, here glm stands for Generalized Linear Model or General Linear Model. So, it is basically 

general regression set up, which can also handle non-linearities. So, you can say that the glm 

is a unification of both linear and non-linear regression models that also allows the 

incorporation of non-normal response distributions. So, if you remember in the context of 

logit model, I said that our response variable does not have a normal distribution. So, the 

response variable under a glm must be a member of the exponential family.  

So, that is the only requirement. So, it can be normal, it can be Poiser, or it can be binomial or 

exponential or gamma distributions. So, here in this context, you see here, this word family 

that actually talks about the family of distributions from which you need to choose one to run 

your general linear model. And here, I am choosing binomial as the distribution from the 

exponential family of distributions. And I am actually using the logit link function to run the 

logit model. So, what is the logit link function?  

I hope that you remember that discussion how we know made a logit transformation for the 

discreet dependent variable in the logit regression model lecture. Now, we know we save our 

glm function as logit, and then we can use the summary logit option to get the summary of 

the logistic model and you can get all the estimates.  
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Now, we know this slide is showing you the screenshot of the R environment here, as we are 

estimating only one model. I am not showing you how to construct the regression table, but 

you can also make use of that stargazer command or package that I have discussed this 

lecture only. So, let us have a look at the regression outcome.  

So, the first component of the regression outcome is basically the model specification. So, R 

actually tells you what model you have estimated then in the second block of results, you see 

the residual summary is given and median and quartile values are reported. And then in the 

third block of the regression results, you see the coefficients are reported. 

So, the coefficient estimates are reported here. And standard error for the regression 

coefficients are reported. The Z values are reported and the p-values are also reported. So, 

here you see that we are so lucky that we have all the explanatory variables turning out to be 

significant although at different levels, but at least three of them are significant at one percent 

level. 

Now, the last block of the regression outcome shows you the fit indices. So, here you see, we 

are getting a measure of AIC, the Akaike information criterion. And finally, you are getting 

the number of Fisher Scoring Iterations four. Now, what do we actually mean by these 

number of iterations and these Akaike information criterion? Why are not we getting the 

familiar measure R square?  



Note here, we are not running a wireless regression, so you shall not expect R square to be 

derived here. Here, if you remember the discussion on the logistic regression models, we 

have to add up the maximum likelihood estimation procedure to estimate these non-linear 

models. And generally, for non-linear models, R squares are not reported when (())(33:09) is 

the method to estimate. And for that the way one can choose between models is basically by 

looking at the Akaike information criterion or the Bayesian Information Criteria. So, here R 

reports the AIC criteria. 

Now, as it involves the estimation of logit models, involves maximum likelihood estimations. 

So, there is an objective function which is basically the likelihood function which needs to be 

maximized in order to derive the regression coefficients. So, there has to be like iterations. 

So, numerically the software actually does iteration to find the maximize value of the log-

likelihood function. So, here you see that after four iterations only the software claims that it 

has found a global maxima for the log-likelihood function. So, it is optimized after four 

iterations. 
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So, now we are going to spend a couple of minutes on the interpretation of the coefficients. 

Now, the coefficient interpretation is a bit tricky in the context of logit model, because we are 

not talking about a linear link function. So, how do we actually interpret the coefficients 

coming out of our logit model? So, before we get into the interpretation of the Obtain 

regression coefficients in the last slide. Let us look at a simplest possible case where the logit 

model has only one regressor and there is no other explanatory variable involved.  

So, basically the fitted value of the logit model at a particular value or X, say Xi would be 

obtained as B naught plus B 1 times Xi. Now, the fitted value at another value of X, say Xi 

plus one then will be B naught plus B one times Xi plus one. So, the difference in the two 

predicted values will be now B one only.  

So, the fitted value, when you are using the specific value Xi talks about the log odds  and 

when you use the value Xi plus one and you get a fitted value that fitted value talks about the 

log odds of the regressor for specific value of Xi plus 1. So, now you can take anti logs and 

then you get the odds ratio back and we have discussed the case of odds ratio in the 

theoretical lecture. So, you have odds ratio defined as the odds of the number Xi plus 1 

divided by odds of the number Xi and these ratio actually is given by exponential of the B 1 

slope coefficient. 

So, now we are going to look at the case that we have. So, here, let us look at the case of the 

gre variable. So, let us see what coefficient value it has. So, it has a 0.002 as the coefficient 

value. So, we can say that for one unit change in continuous variables gre score, the log of 



odds of admission into the graduate program versus non-admission in the program increases 

by 0.002 units. 

So, now we are going to look at the gpa variable. So, let us have a look at the coefficient 

value and that is 0.8040. So, how can I interpret this number? So, for one unit change in the 

gpa score, the log of odds of admission versus non-admission increases by 0.804 units. Now, 

the rank variable is a bit tricky because you know, it is not a continuous variable.  

So, it only changes by one unit. So, first, let us look at what are the rank variables we have 

used. So, here in the regression you see, I have actually use the dummy variables for the 

ranks and I have three dummy variables. Rank one is basically the base category. So, I have 

three dummy variables, rank two, rank three, and rank four. Each of them are actually 

indicating the level or rank of the institution. 

So, rank two is a dummy variable, which takes value one, when the institution's rank is found 

to be two. And similarly, you can interpret rank three and rank four variables. So, now let us 

focus on the case of rank two. And if we can interpret the coefficient for a rank 2, then it can 

be followed for rank 3 and rank 4 variables also. 

So, now note that the rank variable rank 2 has a coefficient of minus 0.675. So, what does 

that mean? That means attending an undergraduate Institute with rank 2 versus and 

undergraduate institution of rank 1 changes the log of odds ratio of admission by this many 

units, minus 0.675 units. So, you can see that as the student is graduating from a lower rank 

institution then the chance of getting admission into the graduate program is actually lower. 

And we get a magnitude of the log odds ratio by looking at the coefficient for this variable 

rank 2.  
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Now, in this slide, we are going to talk about the goodness-of-fit of our logistic regression 

model. So, if you remember, we have discussed the case of McFadden's R square in our 

theoretical discussion for logistic regression. So, here, I am going to show you how in R 

environment you can get the value of that Pseudo R squared. So, here note that, R does not 

provide the McFadden's R square automatically. So, for that again, you have to download and 

install a package and the name of the packages, pscl. So, I am showing you here, the code and 

the outcome. Once you run this pscl command to obtain the McFadden's R square.  

So, here you see that you have this McFadden's R square number reported, and that is marked 

with this red box. And it is quite low, but as I told you in the theoretical discussion that 

generally in discrete choice models, you do not expect you a very high Pseudo R square 

value, 0.08. I do not know whether it is good or bad, but as the regression coefficients are all 

significant, significant, you can say that these variables have explained some degree of 

variation in the discrete Y variable.  

Now, note that, if this pscl package is not available or you have some problem with these pscl 

package how can you get a measure for McFadden's R square. Now, if you jog your memory 

probably you will remember that we have spoken about that formula of McFadden's Pseudo 

R square. And that is basically a comparison of two log-likelihood numbers actually. And 

these two log-likelihood numbers are coming from two different models. One is basically the 

full model, and one is basically the intercept only model.  



So, in the full model, you have all the explanatory variables, explaining the variation of Y 

and in the intercept only model you just do not have any explanatory variable in the model. 

So, basically you put exclusion restrictions on the coefficients for the explanatory variables. 

So, if you now run these two logit models then you are going to get two different log-

likelihood values, and then you can actually compare them and then you can 

derive McFadden's R square by computing a few things in R environment. So, you do not 

need actually that pscl package to help you.  

So, in the second box of this slide, I am showing you how you can actually compute 

the McFadden's R square. So, first you define a logit model and that you can call logit one. 

And that is basically an intercept only model and you get the log-likelihood value as minus 

249.98, and the degrees of freedom is 1 because you have only the intercept in the regression 

model. 

And now you run your full model where you bring in those three explanatory variables in the 

regression equation. And then if you run the model, then you actually have 6 degrees of 

freedom because you are estimating 6 parameter values. One intercept and 5 explanatory 

variables. Two of them are continuous in nature, gre and gpa. And then you have three 

dummy variables, rank 2, rank 3, and rank 4.  

So, if you run that model, then you get a log-likelihood value minus 229.25. So, now you can 

actually make use of these two log-likelihood numbers and here, I am showing you the last 

command, which is actually computing the McFadden's R square formula's value for you. So, 

the software computer value 0.0829. And you note that you get back the exact same number 

in the first step when you actually implemented the pscl package to compute the McFadden's 

R square. 
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Now, in this slide, we're going to talk about odds ratio. Odds ratios play a big role in 

interpreting the logistic regression models and estimated coefficients actually provide us the 

log odds ratio. Right? So, it is somewhat difficult to understand. So, we exponentiate these 

estimated coefficients and then we get the odds ratio.  

So, this is the way generally in empirical researchers discuss the interpretation of the 

coefficients in the context of logistic regression model. So, here I am showing you how you 

can get the odds ratio by taking the exponentiation of the estimated regression coefficients. 

The code is given and you see for each of my variables, continuous and discreet, now I have 

odds ratio.  

So, if we concentrate on say the first variable in the list, the gre continuous variable, then we 

see the value of odds ratio is 1.0022. So, one can say that for an unit increase in the gre score, 

the odds of being admitted to a graduate school versus not being admitted in the graduate 

school increases by a factor of 1.002. 
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In some empirical applications or projects, the scholars and the analysts may be interested to 

find out the exact probabilities associated with success and failure for a particular 

observational unit. So, here, if student is the observational unit and we are talking about 

success being measured by getting an admission in the graduate or not.  

We  maybe interested to actually calculate what probability a student has of getting admission 

into the graduate school. If we observe certain values for the covariates or the explanatory 

variables for that particular student. So, for that, we have to now compute the probability of 

success from the estimated regression equation. So, in the next slide, I am going to show you 

how we are going to compute such probabilities from logistic regression equation. 

So, here you see, I am showing you the codes in the box. So, note that to create the predicted 

probabilities, we have to create a new dataset and that dataset should have the values we want 

independent variables to take on to make the prediction. So, here in this slide, I am going to 

show you how you can predict the probability of one fictional unit. 

And for that fictional student, let me assume that I set my data at the mean. So, basically for 

the gre explanatory variable, the score is the mean gre score. For the gpa variable, I am 

assuming that the student has the mean gpa score. And then I am going to run this particular 

command to generate the predicted probabilities. And note that here, there is a problem 

because the rank variable is qualitative in nature, and we have defined different dummy 

variables for it in the logistics regression model.  



So, now actually here, when you are predicting probability, you can actually use four 

different levels because when the numbers are limited, only 1, 2, 3, 4, four cases are there, it 

is not wise to calculate a mean, because mean of these, these grades 1, 2, 3, 4 does not make 

any sense. So, you compute the predicted probability for different values of rank. So, that is 

what we know we have done. And the result is seen in the box.  

So, here you see that for the same student. Now, we know I have this different combination 

of variable values and the first row tells me that the mean gre score is 587.7 and mean gpa is 

3.3899. And now we are assuming that the rank variable is taking value one. So, the 

estimated logistic regression actually now offers me an estimated probability value for these 

values of the explanatory variable. And the calculated number is 0.5166. So, similarly, you 

can now change the value for rank. From 1 to 2, 2 to 3, 3 to 4, and you can generate the 

probability scores.  

So, we are done with our discussion on how to conduct a discrete variable data analysis in R 

environment. So, in the last lecture of the course, I am going to now talk about the time series 

data analysis. So, please join me for one more last time. See you then. Thank you. 

  

  

 


