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Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. So 

today we are going to continue our discussion on descriptive statistics measures. So let us have a 

look at today's agenda items.  
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So in the last lecture we have started with essential characteristics of a frequency distribution. 

Then we will look at the measures of these three features of frequency distributions. So we will 

study mean, median and mode. These are the measures of central tendency. Then we will study 

variance and inter-quartile range. These are the measures of dispersion. And we will finish 

today's discussion with measures of skewness namely Pearson's measure and Bowley's measure.  

Now the descriptive statistics measures are probably not new concepts to you. Probably you have 

seen these concepts while you are studying mathematics and statistics at class 10th or 11th or 

12th. So I am not going to spend a lot of time on these concepts because I will assume that you 

have some basic idea about mean, median, mode and variance.  
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So we will start with mean. What is a mean? Mean is the average or the most common value in a 

set of numbers. And there are three types of Pythagorean means available; arithmetic mean, 

geometric mean and harmonic mean. So naturally a question emerges in mind that, is there any 

relationship between AM, GM and HM? And second pertinent question is that, in which 

situation a particular mean is applicable? So note that it is not always the case that you will apply 

the simple average or the arithmetic mean.  

And there are special types of means like geometric mean and harmonic mean which are applied 

in special cases. So we all know the definition of arithmetic mean but let us, go through it again 

in symbolic manner. So if y is my quantitative variable with observations y1, y2 dot dot dot, yn. 

So there are n number of observations in my dataset. Then the arithmetic mean AM is basically a 

simple average which is given by y bar and that is basically summation of yi where i ranges from 

1 to n, divided by n, the sample size.  
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Now we will move on to geometric mean. So geometric mean GM is defined as nth root. It 

implies one over nth power of the product of n positive numbers. So be very careful here and 

please pay attention to this important point that here you cannot compute geometric mean of any 

set of numbers. You have to deal with positive numbers only. So it is a limitation of the concept. 

But let us proceed with this limitation.  

So despite its limitation this is used for variable whose values are either meant to be multiplied 

together or are exponential in nature or interrelated with each other especially when you are 

dealing with time series data or financial data or spread over a wide range. So let us study an 

example and see how it is measured or computed. So suppose you own an asset that increases in 

value by 50 percent the first year after you bought it. Then at the end of the second year the value 

further increases by 20 percent. And finally at the end of 3rd year the value further increases by 

90 percent.  

One may want to know what is the average rate of change in this case. So here note that we are 

talking about the value being increased by 1.5 times at the end of year 1, 1.2 times by the end of 

year 2 and 1.9 times by the end of year 3. So if you compute the geometric mean then, you have 

to multiply these three numbers and then you have to compute the cube root of that. So that will 

roughly 1.5066. And if you convert that into percentage time, terms then it will be 50.66 percent.  



So let us now calculate the geometric mean in arithmetic mean style. So in this case you take 

natural logarithm for each data point in the sample and then you calculate average for log values. 

And then you convert that arithmetic mean of log values back to the original scale to get the 

geometric mean of the original data points. So how to return it back to the original scale? You 

have to take exponentiation because you have taken natural log here. It is applied in computing 

Human Development Index which is provided by the United Nations.  
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Now let quickly have a look at the harmonic mean. What is it? Harmonic mean is the reciprocal 

of the arithmetic mean of the reciprocals of the positive numbers in the series. Again note that if 

you are interested in computing harmonic mean it has to be positive numbers only. Now there is 

an interesting relation here between AM, GM and HM. And from that relationship we know that 

harmonic mean has the least value among all the three means. We are not interested in proof but, 

remember this result.  

Harmonic mean provides the correct average in many situations involving rates and ratios. So 

you now know where you have to apply harmonic mean compared to the arithmetic mean. So let 

us look at the example and it will be clear how to compute harmonic mean in one of these cases. 

So let us assume that somebody is driving in the outskirts of the city. And the person travelled 10 

kilometer at 60 kilometer per hour. Then after entering the city the person drove 10 kilometers 

more in the city but at a reduced speed of 20 kilometers per hour. What is the average speed at 

which he drove or travelled? 



So you have to compute harmonic mean here. So here the formula could look like 2 divided by 1 

over 60 plus 1 over 20 and we get 30 kilometer per hour as the harmonic mean. Now as I 

mentioned that harmonic means are more suitable for numbers which are expressed in rates or 

ratios, hence it finds its applications in financial economics. The square of geometric mean is 

equal to the product of arithmetic mean and harmonic mean.  
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So let me move on to the second measure of central tendency and that is median. So a median is 

the middle value when variables values y1, y2, y3 etc., are ranked in order sorted ascending or 

descending. But most of the times we prefer if the numbers are ranked in increasing order. Now 

there could be two cases; n, the sample size could be an odd number or could be an even number. 

So if it is odd number then the median is basically the n plus 1 divided by 2th observation in the 

ordered data set and if n is even then the median is given by the mean of n divided by 2th and n 

divided by 2 plus 1th observation.  

So here in the even case the situation is a bit complicated. You have to find two middle 

observations in the data set and then you have to take simple average of these two numbers. Now 

when median is preferred over arithmetic mean as a measure of central tendency? There are two 

possible cases that I can say. So if there are extreme values and you are aware of that fact and if 

there are more data points toward one of the tails of the ordered data sheet. So the data is 

concentrated either towards the lower tail or the upper tail of the data set.  



Now where does median find its application? So in development economics, median is used for 

calculation of poverty line. So is there any disadvantage of median? Yes, there are two major 

disadvantages of median. And these are the following. So arithmetic mean takes into account all 

observations while providing you a measure of central tendency or center of the distribution.  

But median, as it does not use all information available in the data it will not alter if there are 

some changes in values towards the tail of the data. And also arithmetic mean is pretty much 

amenable to further mathematical treatment but median is not. Hence median is not very much 

useful in many higher level statistical analysis like hypothesis testing.  
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Now quickly have a look at mode. This is a very simple concept compared to mean or median. 

Mode of a variable is that value that occurs with the highest frequency. Mode is the only measure 

of central tendency for categorical data. So you see when mode is much more preferred then 

median or mean. There is an empirical relationship between mean, median and mode. And that is 

given in the following equation which says that the difference between mean and mode is equal 

to 3 times the difference between mean and median.  

Later we will see that this empirical relationship becomes very handy when we are interested in 

measuring skewness of frequency distribution, or how skewed the data is. Now at this juncture it 

is important note that a distribution is said to be symmetrical when the values of mean, median 

and mode are all equal. We will come back to this point when we will be discussing skewness.  



So far we have discussed these measures of central tendency in the case of ungrouped frequency 

distribution. Now let us have a look how these measures behave when we are dealing with 

grouped frequency distribution. It implies that we are looking at the intervals, class intervals and 

frequencies against these class intervals.  
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So when we are dealing with class intervals we have to compute the mid-point also known as the 

class mark of a class. And that is basically the average of the lower and upper limits of the class. 

That is the first step. So once you have got these midpoints, let us denote them by small x and f 

is the corresponding frequency then mean of a frequency distribution for the sample is to be 

given by x bar equal to summation x times f whole divided by n. And n, note here it is 

summation of f. So basically it is the sample size, sum of all frequencies in all possible classes in 

the table.  

Now the calculation of mean is quite simple in the grouped frequency distribution but median is 

not. For median we have to use complicated formula and that I have shown you here in red as the 

last equation in the slide. And I have given the nomenclature also for the symbols that I have 

used the formula. I hope that this nomenclature and then the formula is quite self-explanatory. So 

with this formula shown let me move to the variance.  
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So what is variance? The variance feature of frequency distribution measures how far a set of 

numbers is spread out from their average value. The variance is the square of the standard 

deviation measure sigma. Now let us look at step-by-step calculations for population standard 

deviation. And then we will look at the step-by-step calculation for the sample standard deviation. 

So you have to find the mean of the population data first and we have discuss the formula, that is 

basically the simple arithmetic mean.  

Then you have to find the deviation for each data point or entry in the sample, that is to be 

computed by subtracting the population mean that you have just computed in the first step from 

each data point, of course. And then you square each deviation. Then you get the sum of squares 

and then finally you divide that sum of squares by capital N which is the population size to get 

the population variance sigma square. And if you take a positive square root of that then you get 

population standard deviation.  
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Now we are going to look at the step-by-step calculation for the sample standard deviation. Note 

here as we are dealing with sample we have to find the mean of the sample. So in the previous 

formula we just replaced capital N by small n which small n is the sample size here. So next 

three steps, step number 2, step number 3 and step number 4 are the same from the previous 

discussion. The difference emerges in step 5 where we need to divide by small n minus 1 to get 

the sample variance.  

Now one may ask why small n minus 1, why not small n? Because there is a concept called 

degrees of freedom associated with it. So I am not going to discuss this right now. This thing I 

will discuss later in the course. But remember there is this no distinction between the sample 

variance and the population variance when you are dividing with the size of the data at hand. For 

the sample size do not forget to deduct 1 from the sample size.  

Then, of course, when you take the square root of the sample variance you get the sample 

standard deviation. And that is equivalent of step 6 in the population standard deviation case also. 

So when we are dealing with grouped data how does my formula change? So in the second or the 

bottom box of the slide I am showing you the revised formula. It is simple.  

So you have to first calculate the weighted mean or the grouped mean from the data set. So now 

this x bar that, I am showing here in the second box, that is basically a weighted mean. So 

weights are being the frequencies here. And then once this deviation for each entry is computed 



then you square it and then you multiply that squared deviation with the frequency. And then you 

sum them. And then, you divide by n minus 1 and then take a square root and you are done. So 

that is the way you get the sample standard deviation for grouped data.  
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So next we are going to look at another measure of variance and that is interquartile range. But to 

understand the measure we have to introduce two more concepts which are percentiles and 

quartiles. So let us have a look at them one by one. So percentiles divide an ordered set in 100 

parts. Remember that I have been discussing this. So when a data set is given and you are 

interested in median computation you have to order the data in increasing, arrange the data in the 

increasing order.  

So you do that thing and then you actually go for the percentile and quartiles computation. So the 

pth percentile for the frequency distribution is p times n divided by 100th observation in an 

ordered data set provided that it is arranged in increasing order. So next comes quartiles. So 

quartiles split the ranked data into 4 segments with an equal number of values per segment. Now 

note from the previous diagram that there is interesting relationship between percentile, quartile 

and median. So what is median?  

Median actually is the number that is splits your data equally half and half. So 50 percent of the 

observations are below that median value and 50 percent observations in the sample are above 

the median value. So median is basically a 50th percentile point. And quartile splits the data in 4 



segments. So when we are talking about second quartile, so the values which are less than second 

quartile are actually 50 percent of the sample and the values which are above the second quartile 

that constitutes the rest 50 percent of the sample.  

So the second quartile value is actually the median value. Now the interquartile range concept is 

based on the quartiles. So interquartile range IQR is also called mid-spread of a data set and this 

is a difference between third and the first quartile, so Q3 minus Q1. Now IQR eliminates some 

high and low valued observations and this could be potential outliers in the data. What is outliers?  

We will discuss this later. And calculate the range from the remaining values. So it is interesting 

to note that when you have extreme values in the data set and these extreme values I can say that, 

they could be outliers. Outlier means that these are way apart from the centre of the data point. 

And these outliers can emerge from various sources. There could be, data entry issue.  
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So now let us look at an example. And this example is based on hypothetical data. Let us assume 

that we entered an educational institution and we have a survey to conduct among the students. 

And we ask the various questions and we also collected some basic data like their age, their 

gender, their height, etc. And now we are interested to summarize and represent the data on the 

age of the students who responded to our survey.  



So suppose we surveyed 121 students and we have prepared a frequency distribution. And let us 

have a look at the frequency distribution and see how this percentiles, etc., could be found from 

that frequency table. So here the age starts from 18. So of course we do not expect student in 

higher educational institute aged below 18. So from 18, we see the progressive numbers and then, 

we say that if there is a student we came across who is aged more than 30 years we do not report 

their individual numbers.  

We club everything together in one category 30 plus. That is basically aged more than 30 years. 

So for corresponding age groups we have frequencies and then of course we have computed the 

cumulative frequencies. Now cumulative frequency or the ogive that I have discussed in the 

previous lecture is going to be very handy to find out different percentile values. So let us start 

with the first quartile or the 25th percentile. So in the last slide I have shown you the formula. So 

you plug the values in the formula.  

So then if you do that then you get the 31st observation falls in this group where age is 20. So 

you see that we do not observe a number 31 in the cumulative frequency table, we observe 33. 

So, we have to refer to this particular class or group and then the corresponding is 20. So hence 

25th percentile or the Q1 or Quartile 1 for the age distribution is number 20.  

Similar approach could be taken to find out the median or the second quartile or the 50th 

percentile number. And we plug the values of n and p there in the formula that I have shown in 

the last slide. And we come up with the number 61. The 61st observation falls in a group where I 

see accumulator frequency is reported as 72. So the corresponding age is 23 and that is the value 

of my median or 50th percentile. Similarly, we can find the 75th percentile from the table.  
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Now we are going to have a discussion on outlier detection. And outlier detection process is 

related to the concept interquartile range that we have discussed just sometime back. So let us 

have a look at how interquartile range could be used to find outliers. For that we have to consult 

a special type of diagram called Box Plot. So there is a mathematical or statistical result which 

tells us that outliers are the values below Q1 minus 1.5 times IQR or above Q3 plus 1.5 times 

IQR. So Q1 and Q3 are the first quartile values and the third quartile values respectively.  

So Box Plot is a graphic tool that highlights the important features of a data set and show 

potential outliers. Note that along the y axis I am going to measure the variable values. It can be 

in any units. Now note that in the diagram or in the quadrant there is a large rectangular box. 

And the lower bottom line of that rectangle actually gives me the 25th percentile or the first 

quartile value for the variable.  

The uppermost line or the border for this rectangular box shows the 75th percentile. It basically 

marks 75th percentile or the third quartile of my variable. And inside the rectangular box you see 

a dashed line parallel to x axis. That basically gives me the median or it actually tells me where 

my 50th percentile value lies.  

Now note that two extremes along that vertical line again there are no, two parallel lines to x axis. 

Now if you look at the upper half or above that rectangular box, the parallel line, line parallel to 

x axis denotes the upper limit of this outlier detection formula which is 75th percentile or Q3 



plus 1.5 times IQR. And the line parallel to x axis which is below the rectangular box gives me 

the lower limit which is Q1 or 25th percentile minus 1.5 times IQR.  

So if there are some observations in the data set which are not in this range that is marked by this 

Q1 minus 1.5 times IQR and Q3 plus 1.5 times IQR formula then they are declared as suspected 

or potential outliers. And many softwares use asterix to demarcate these kind of observations. So 

here I am showing you 2 asterix. These two are the potential outliers as they lie way far from the 

centre of the data.  
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Next we move on to the last feature of the frequency distribution and that is skewness. So there 

are two types of skewness measures. One is moment-based measure and the other one is non-

moment based measures. So I am going to cover only the non-moment type measures of 

skewness because, I have not introduced the concept of moment. So let us not get into that. So 

again we see Professor Karl Pearson, the father figure in the field of mathematical statistics have 

offered two measures.  

And his first measure is given by difference between mean and mode divided by the standard 

deviation of the data. He also has offered a second measure which is 3 times difference between 

mean and median divided by the standard deviation of the data. Now note that these measures 

actually have come from that empirical relationship between mean, median and mode that I have 

shown you earlier.  



So if there is a difference between mean, median and mode in your data set, that actually tells 

you that your data is not symmetric, symmetrically distributed. So there will be some skewness. 

Now how to measure the skewness? You can use that empirical relationship to find out some 

formula as Professor Pearson suggested. Then there is also one measure proposed by Bowley and 

that measure is derived from the concepts of quartiles.  

And you can see that there is a formula there, a bit complicated. Q3 minus 2 Q2 plus Q1 divided 

by Q3 minus Q1. And this is the famous Bowley's measure. Now is there any range for these 

measures? Yes, of course. So the Bowley's measure lies between minus 1 and plus 1. But there 

are no theoretical limits to the Pearson's measure, both first and second. But in practice the value 

is rarely very high. The measure of skewness, so when we come to the limit of measures 

proposed by Pearson there are two sets of results.  

If we look at the first measure which is dependent on mean and mode there are no theoretical 

limits to that measure. But in practice the values is rarely very high. And if we focus on the 

second measure of skewness proposed by Pearson then that lies between minus 3 and plus 3. So 

note that in reality we can get three types of shapes for the skewed or non-skewed distributions. 

So of course, one is symmetric when, there is no skewness. So skewness takes value 0. And then 

there is positive skewed distribution. And then there is negative skewed distribution. 

So now let us have look at the graph to get these concepts clear. So first we are going to talk 

about the negatively skewed distribution which is also called a left skewed distribution. So note 

that in the case of left skewed distribution, the mean is less than median and median is less than 

the mode. Now let us look at the symmetry distribution which is the middle diagram.  

And here, of course, mean, median, mode take the same value. And then the third diagram is 

showing us the right skewed distribution or it is the positively skewed distribution. That means 

the skewness measured is positive. And here we note that there is this empirical relation where 

we find what the mode is higher than the median value and the median is higher than the mean 

value.  

Now also note that these skewed distribution diagrams can be linked through the Box Whisker 

plot that we had discussed in the last slide also. So these red arrows, for each diagram are 

actually linking the first quartiles, second quartiles, third quartiles of the distribution to the Box 



Whisker Plot. And I think you can see what for the symmetric distribution case, the quartiles are 

equidistant.  

So the portions in the rectangle of the Box Whisker diagram, they are of equal size. But that is 

not the case when you are talking about a skewed distribution. So we are done with our 

discussion on basic descriptive statistics measures. But let us end the lecture with a bit of 

digression. But it is not a very large digression because the result I am going to show you is very 

much related to the concepts like, variance and mean that we have discussed in today's lecture.  
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So let us, discuss Chebychev's theorem. I am not going to discuss it in full rigor. I am not also 

going to show you any proof for the theorem. But I am just going to discuss the main result or 

the main statement of the theorem. And then I will show you illustrations how one can make use 

of this theorem or the result. So first bullet point gives you the statement of the Chebychev's 

theorem.  

So Chebychev's theorem says that the portion of any data set lying within k standard deviations 

of the mean is at least 1 minus 1 over k square where k is definitely greater than 1. So if I now 

put the values for k equal to 2 or 3 then for k equal to 2 case we see that at least 75 percent of the 

data lie within 2 standard deviations of the arithmetic mean. And for k equal to 3, for any data set, 

at least 88.9 percent of the data lie within 3 standard deviations of the arithmetic mean.  



Now interestingly I will comment on another point here and then I will conclude today's lecture. 

And that is that this Chebychev's result does not depend on the symmetry of the distribution. So 

that holds for any data set, any kind of distribution shape that we have in the data. So we are 

done with our basic measures of descriptive statistics. In the next lecture we are going to start the 

discussion on random variables. Thank you. 


