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Hello friends. Welcome back to the lecture series on Applied Statistics and econometrics. So, 

today we are going to talk about another advanced topic in applied econometrics and 

econometric theory and that is called Panel data econometrics. So, before we go to formal 

models and all, let us have a look at today's agenda items. 
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So, I will start today's lecture with introduction to panel data, this is a new kind of data that we 

have not dealt with so far in this course. So, it requires some bit of introduction. And in this 

lecture, we are also going to cover regression models, when you have panel data and we are 

going to cover two different techniques for it and they are called least squares dummy variables 

model and the fixed effects model.  

There are many other types of models available for panel data regulation, but we are not going to 

cover in this lecture, because we are dedicating only one lecture in this course and I just want to 

cover the simple concepts in panel data econometrics. But before we go to introduction to panel 

data, let us start by motivating you, why we need to have a new kind of data which is called 

panel data or often in statistics language it is called longitudinal data?  



So, I will take you back to one of the misspecification errors that we have studied in this course, 

and there you will see why availability of these kind of special data will help us. So, we are 

going to take you to the problem of omitted variable bias. 
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So, hopefully, you remember that return to schooling story through which I explained the 

omitted variable bias problem. So, let me remind you again, if you have forgotten. So, some 

researcher is willing to measure the labor market returns to years of education or years of 

schooling. So, we have a very simple linear regression model to start with log of wage or salary 

of ith individual, and we also have data on that particular person's number of years in schools 

and colleges.  

So, basically, it is an education variable and of course, the stochastic term is there. So, now, this 

looks a bit simplified model, because we had earlier in the discussion on omitted variable bias 

and you probably remember that there are many other variables which affect a person's wage or 

salary and some of these variables are observed and some of these variables are unobserved. So, 

if some variable is unobserved you cannot collect data on that, and one of such variables is a 

person's inherent stability and motivation.  

And we had the discussion in omitted variable bias problem, how to take care of this kind of 

problem, but note one interesting thing, these are unobserved variables, if they are not varying 

over time, then can we handle them much easily without looking at instrumental variables and 



all? So, here a very basic assumption is that some of the unobserved or omitted variables are 

actually not varying with time. So, if we now collect data on the same individual units over a 

period of time, then these variables value is not going to change.  

So, let me tell you about that crux of that omitted variable bias problem. So, if we estimate such 

a misspecified model by OLS, then we will obtain inconsistent estimate of the slope coefficient, 

and we are not going to get the true measure of return to schooling. And this is because, there is 

some omitted variable which is embedded in the error term u now and that causes a correlation to 

take place between these explanatory variable education, and random term u. So, the exogenity 

breaks down.  

So, now, we are saying that, if you have any data on the individuals who are in a period of time, 

and ability does not change over time, then you can take difference between two equations, for 

individuals over time and these inherent omitted variable which is unobserved but not varying 

over time will fall off.  

So, suppose you have a data on individuals over a period of time. So, at least two time periods 

and now, we know if you have two different time points data, then you can always take 

difference and these are unobserved variable as it is not changing with respect to time it can 

actually fall-out from the equation and that will help you because you can avoid these omitted 

variable bias problems. So, this thing is going to be clear as we know, move on in this lecture.  
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So, now, it is time that we formally introduce panel data. So, panel data combine time series and 

cross sectional data points such that observations on the same variables from the same cross 

sectional units are followed over 2 or more different time periods. So, you see, so, far we have 

dealt with data sets with one dimension. So, when there is a population and you have drawn a 

sample from it to conduct regression analyses already know correlation analyses then basically 

that is a cross sectional data, because, time is fixed.  

So, there is only one dimension of the data and that is basically the individual units which is 

varying, but when you have one particular variable measured for one particular unit or individual 

or entity like nations or regions, over a period of time, then you have time series data. So, there 

time is varying, but the observation is varying with respect to time only it is not varying from 

unit to unit, there is only one unit on which you have collected data for different time periods. 

Now, panel actually brings both parties together.  

So, here you are observing one particular unit, it can be an individual, it can be a farm, it can be a 

country, it does not matter, you observe that particular unit for a period of time and you are 

observing the values of different variables on these particular unit over a period of time. So, of 

course, now we can ask this question to ourselves that is this the only reason that we want to get 

rid of omitted variable bias and that is why we are interested in panel data?  

The answer is no, not really. Sometimes you just want to have panel data to increase the sample 

size. So, let me give you one example suppose, you are interested to estimate a production 

function for an agricultural crop for India or US and you have data only at the state level, I mean 

at the total production of that agricultural crop and some of the inputs like fertilizer land, 

etcetera. Suppose, you have data on only 4 states.  

So, in the case of India we do not have even 40 such observations, right, if you have data from 

one particular time point. So, it is a good idea to collect the data on the states for as many as 

years, so that you can actually generate a large data set. So, you see that panel data actually helps 

you to increase the sample size that you are going to use for your statistical inference analysis. 

Now, there is another reason why panel data is becoming more and more important and that is 

basically the case of program evaluation.  



So, we are not going to cover these topics in today's lecture, but, next lecture I plan to talk about 

program evaluation at length, but in a nutshell, I can say that if you have pooled data on cross 

sectional units, by pooled data, I mean that you are observing one cross sectional unit for 

multiple time periods. So, if you have pooled cross sectional data, then that helps you to evaluate 

the impact of a particular policy or an event. And, I have dedicated the next lecture to this 

particular issue. There you will see how panel data is going to be very useful.  

Now, when we encounter panel data, then actually, there could be four types of variables in 

there. And here I am going to talk about briefly, about these four types of variables. And first one 

is, of course, the variables that can differ between individuals but do not change over time. And 

the examples could be gender and ethnicity. And the second type of variables could be those 

which change over time, but are the same for all individual units in a given time period and 

examples could be rainfall or consumer price index number.  

And the third type of variables are those which vary both over time and individuals. So, here the 

examples could be income and consumption and finally, we have a fourth type of variable and 

that varies in very predictable manner. And here the example could be time trained and age. 

Now, we are going to talk about a very special form of panel data where we have a set of cross 

sectional units and we have observed the same cross sectional units for only two time periods.  

So, if that is the case, then how we are going to handle these kinds of data and conduct some 

regression analysis, that is what we are going to be studying in the next slide. 
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So, the problem is that we want to estimate a regression model with two time periods data on a 

set of individuals and suppose that there are some unobserved variables in our model. So, let us 

propose a general model with panel data and this is very important, concentrate on this equation 

that I am discussing now because this equation is somewhat different from the regression 

equations that I have shown you previously in this course.  

So, here you see that all the variables have two subscripts i and t and what do they mean? So, 

here the i subscript refers to the cross sectional units and these cross sectional units are taking 

values from 1 to say a capital N. So, there are no capital N number of cross sectional units at one 

time point and then this small t subscript actually talks about the time point. So, basically if there 

are capital T time periods of data available on these cross sectional units, then the t value small t 

value can take values 1 to capital T.  

So, now, let us revisit these equations, so, Yit basically says that this is the value of the 

dependent variable for Ith individual in time period t and similarly Xit means that this is the 

value of the explanatory variable for Ith cross sectional unit for Tth time period and note that 

there is this variable Zi so, which is not varying over time, but it varies over individual. So, that 

is why it has the subscript i.  

Now, this Zi variable could be an unobserved variable on which you don't have the data. So, 

suppose let us go back to that old example of return to schooling and this Z could be these 



inherent motivation factor or the ability of a person for which you have collected data on salary 

and your number of years spent in school. So, let us see how we can actually now take care of 

these unobserved variable Zi. But note that Uit the stochastic random term now, we know it 

actually varies over both the cross sectional units and the time units. So, that is why we are 

writing here it as Uit.  

So, what could be no other examples of these time invariant factors? We have discussed about 

the inherent ability or motivation of a person in the labor economics context, but from 

agricultural context you can say that it could be the nature of the soil, because nature of the soil 

does not change drastically in short run, but when you are estimating agricultural production 

function or you are trying to explain yield of a particular crop then soil type actually plays a role 

and this is generally unobserved because the econometricians many times do not find data on soil 

type.  

So, now, let us focus on that regression equation for time period 1. So, you see, the first 

expression is now replaced by putting a value for t there and that is why you see all these 

symbols like Yi1 and Xi1. And now suppose the classical linear regression assumptions are 

holding, so, how do you estimate this model? So, here is a problem, although that this is the true 

model but you do not have any data on Z. So, Z is basically an unobserved variable, it is just 

sitting there in the regression equation.  

So, then what to do? So, you write down the same regression equation for time period 2, and so, 

the first equation that I showed you the mother regression equation, the panel regression 

equation, now, we there you see I put the value of t equals to 2 and I get a new equation. So, that 

equation is at the bottom of the slide.  
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So, now, we know what to do, because Z does not vary over time. If we take the difference of 

these two regression equations for periods 1 and 2, then actually we get a new model. So, here let 

us take the difference between Yi2 and Yi1. So, here I am showing you the calculations and you 

see I get a revised equation in forms of the delta operator.  

So, if you remember our time series discussion, I hope that you remember that delta operator. 

delta operator actually talks about time difference. So, here you look at the equation 1 which is 

expressed in the time difference manner. So, basically, delta yi means that for ith individual, 

what is the difference between the value of the dependent variable in time period 2 and time 

period 1. Similar explanation can be provided for delta Xi as well. 

 Note that error is also going to change and that is why we are denoting it by delta Ui, but very 

interestingly you will see that that Zi variable which was unobserved and not varying with time, 

that has dropped out from this revised or redefined equation, because when you take the time 

difference as these particular variables Z is not reading with respect to time, it will fall off. So, 

this is a very good news, because, we have just eliminated the unobserved heterogeneity that was 

present in your regression model.  

Now, you can run OLS on this equation 1 and this equation one note can be called a difference 

model or first difference model and if you run OLS on this particular equation, then that will give 

you the unbiased and consistent estimate of the parameter beta 1. So, this is the way you can 



actually handle the problem of omitted variable say a person's inherent ability or motivation, 

when you were trying to get a measure for return for schooling on the salary or wage whatever in 

the labor market.  

So, if the first difference equation number 1 satisfies all the classical linear regression model 

assumptions, and if we actually apply OLS, then this OLS estimator of beta 1 is known as the 

first difference estimator. So, there is a new jargon that I am introducing here and this is also 

sometimes called before-after estimator. But note that there is a problem, this particular estimator 

will only work when you have data for 2 periods only. If you have data for 3 periods or more 

number of time periods, then you cannot apply this particular estimator that I just have shown 

you, although it has some merit.  

So, we have to now learn some more sophisticated regression models and techniques so that we 

can handle the situation where we are lucky to have multiple time points observation for the 

same set of individuals. 
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So, in this slide, I am going to talk about the basic fixed effects model as proposed by 

statisticians and economic pressures. So, this model is given by the following equation and this is 

not new to you but the only difference here you see that I have changed the values for t. So, here 

the T can take any values from 1, 2 to capital T. capital T is definitely greater than 2.  



So, now as my Zi these unobserved individual heterogeneity are the entity specific or individual 

specific variables, but they are time invariant variables, then the above equation can be seen, as 

one regression equation having a intercept terms, one for each entity. So, if I buy these 

arguments, then the above regression equation can be written as Yit equals to alpha i plus beta 1 

Xit at plus Uit where alpha i is defined as beta not, the intercept term in that original regression 

equation plus beta 2 times Zi.  

So, these alpha is are called the entity or individual specific fixed effects and they capture the 

entity specific idiosyncratic characteristics that are constant over time. Now, note that the slope 

coefficient is the same for all the individuals, but intercepts are now differing from one 

individual to the other and that is basically the source of variation in these variables Zi.  

So, the regression equation that I have shown here at the top of the slide if you now insert these 

alpha i variable there in place of beta not and beta 2 Zi, then that regression equation is called the 

fixed effects regression model and there these alphas are treated as unknown intercepts to be 

estimated along with the slope coefficient beta 1.  

Now, note that here in this regression equation, I am keeping only one explanatory variable. So, 

does it mean that our fixed effects regression model cannot have more than one continuous 

explanatory variable or some explanatory variable for which you have data? No, do not have that 

impression. Just for simplicity's sake, I am keeping one explanatory variable here.  
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So, now, we are going to talk about the estimation of fixed effects model. So, here at this 

moment, before we start talking about fixed effects model estimation, I should tell you that there 

are 3 different types of fixed effects modeling estimation procedures and one we have already 

seen that is basically the firstly for approach, now, we are going to talk about the second output, 

which is known as the least squares dummy variable.  

So, we have to estimate the fixed effects model, but there are these parameters which are coming 

from the individual specific intercept terms. So, how do we model? So, we have to quantify these 

individual specific idiosyncratic factors, which are shown as alpha I, these are the terms which 

are going to change my grand intercept or overall intercept of the model. So, basically the way to 

deal with this problem is to make use of the dummy variable technique.  

So, if you have n number of cross sectional units for which you have data, for our t time periods, 

then you can throw capital N number of dummies for, one for each of the cross sectional units, 

but note that do not fall in the trap called dummy variable trap, I have spoken about it couple of 

lectures back. So, you must remember it, so, to avoid the dummy variable trap, you can actually 

now exclude the overall or grand intercept term from the regression equation, and just keep N 

number of dummies in regression.  

So, that is what we are doing here. So, here you see, I am showing you this complicated linear 

regression model Yit equals to gamma 1 times D1i plus gamma 2 times D2i dot gamma1 times 

DNi, so, here D1, D2, Dn are basically the individual specific dummy variables. So, D1 denotes 

the dummy variable indicating the individual 1 and then this takes value 1 for Y equal to 1 

otherwise it takes value 0. So, other dummy variables will have similar interpretations. So, this is 

basically our model.  

Now, note that a dummy is included for each entity because we do not have an intercept 

included. So, I have already spoken about this issue, but what if you decide that no-no, I want to 

keep my grand intercept or the overall intercept for the model. Then to avoid the dummy variable 

trap you have to introduce capital N1 number of dummy variables. So, basically you can say that 

the individual 1 is my base and keeping him or her or that particular unit as base you define other 

N minus 1 dummy variables for the rest N minus 1 observational units.  
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So, we can estimate our least squares dummy variables regression easily and we can get r square 

and all the regression summary statistics, but, you can still be a bit worried by this question that, 

what if there is no difference in these individual dummy variables that I have thrown in the 

regression equation? So, by that, I mean to say that you could be a bit suspicious and you can 

actually suspect whether there is such statistical difference between these individual specific 

dummy variables or individual specific intercept terms.  

So, in a nutshell, you may want to test whether jointly these terms, these individual intercept 

terms are different from each other or not. So, in other words, you can say that I am going to test 

for equality of these fixed effects. So, if I want to test whether these individual specific fixed 

effects are same or not, then basically the way to do it by setting a null hypothesis, we says that 

gamma 1 equals to gamma 2 equals to gamma 3 and alternative should say that H not is not true, 

okay.  

Now, note that this particular test is very similar to one test that we have studied couple of 

lectures before and that was the case of our model selection and selection has to be made 

between a restricted model and an unrestricted model. So, here you can say that the regression 

model that you have used to estimate our least squares dummy variable regression equation, that 

is basically your full or unrestricted model and when you are imposing these restriction that my 



individual specific dummies or the intercepts are actually equal, then you are putting a restriction 

and then that becomes a restricted model.  

So, we are going to make use of the F test. So, as I said, we are going to use F test, as this is a 

kind of restricted versus unrestricted model problem. So, here we define our test statistic as F 

observed and that is defined as typically how we define these you know F statistics, we have to 

take the difference between the sum of squares error from the restricted model and the 

unrestricted model. 

So, sum of squares of error from the restricted model is denoted by SSEr and sum of squared 

errors from the unrestricted model is denoted by SSEu and then that needs to be divided by the 

degrees of freedom and that is basically the number of restrictions that you are imposing on your 

model and this entire ratio has to be now divided by another ratio, and that is basically the sum of 

squared error from the unrestricted model divided by its degrees of freedom and that degrees of 

freedom is equal to Nt minus k.  

So, this F observe test statistic will now follow an F distribution and what would be the degrees 

of freedom for these F distribution. So, these F statistic will follow F distribution with 2 degrees 

of freedom, which is the number of restrictions that is say J and the other one is NT minus K. So, 

here in this particular regression equation, which is very specific as illustration or as our case 

here you see that the capital N takes value 3 why?  

Because, that is why we are throwing three individual dummy variables  and then, we have K 

takes value 4 here, because, we are going to estimate four parameters in the unrestricted model 

and then T is the number of time periods, now, T can take any value here we are not specifying a 

particular value of t and we all know by now probably you remember how to conduct a 

hypothesis testing, so, I am not no repeating those steps again, but still for your here, I am 

putting the decision rule at the bottom of this slide.  

Now, note that although the least squares dummy variables technique is pretty useful in panel 

data regression, when you have more than two time periods of data, but it has big limitation and 

this limitation actually in terms of degrees of freedom. So, if you have data set where you have a 

large number of cross sectional unit say 100 plus and you have data on only three time periods 

then actually you have a data set of 300 observations.  



But, suppose you have a 5 explanatory variables that you are interested in but now if you are 

going to follow these squares dummy variables regression technique, then you have to throw 100 

dummies in the regression equation, so, it will eat up a lot of degrees of freedom and that is not 

good, because, if you lose out on degrees of freedom for hypothesis testing purpose, that is very 

bad news. So, we are still not done, we have to find out a more sophisticated estimation 

technique, when we have panel data for more than three time periods.  

So, basically, now we come to the last technique that we are going to visit and that is probably 

the most popular panel data fixed effects estimator and that is known as within estimator. So, for 

that actually we have to first understand what is within transformation. So, the next slide is going 

to talk about that first and then we are going to propose within estimator.  
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So, let us first explain, what do we mean by within transformation. So, by within transformation, 

we mean that we need to demean the dependent variable y and explanatory variable x and how 

this is done? That I am going to show you here in the second bullet point. So, start with the fixed 

effects model and that is given by this equation A. So, now what you do, you take the mean of 

this equation, on both sides, so that is why I am taking the mean and I am placing these bars on 

the top of these variables Y, X and U.  

Now, note that alpha is not changing, because I am taking the mean over time periods and 

actually alpha is not changing with respect to time that is why the there is no mean because it is 



just a constant over time. So, here as I am taking the average over different time periods, you see 

the formula for Y bar, x bar and U bar, they are shown here at the bottom of equation B and this 

is quite self-explanatory, I believe.  

Now, you subtract the equation B from equation A and you have this demeaned model. So, in the 

demeaned model you see what we are doing basically, we are basically subtracting that 

individual specific mean from the individual specific observations. So, for the dependent variable 

y that is given as Yit minus Y bar i. Now, let us introduce some new notations for these 

demeaned variables. So, the new variables are defined by placing a tilda sign on the top of the 

variable.  

So, now, the demeaned variables are Y tilda It, X tilda It and U tilda It. Note that by virtue of we 

these are demeaning exercise or within transformation, we have a got rid off this nuisance 

variable which is basically this unobserved individual specific heterogeneity. So, that fixed effect 

is gone. So, now, you can actually apply your good old friend OLS on these redefined or 

demeaned or within transformed regression equation. 

Now, if you apply OLS technique to these fixed effects model, which is after within 

transformation, then you have to OLS on these within transform variables Y tilda it and X tilda it 

and as theoretically it can be shown that if you are dealing with this within transformed 

regression equation, the classical linear regression models assumptions they are holding and the 

coefficient estimate that you derive from this exercise is going to be unbiased and consistent. So, 

this technique is called within estimation technique.  

So, we stop here. Next lecture, I am going to come back with discussion on program evaluation 

which is going to be an application of these panel data models that we have discussed here. So, 

join me for that. See you then. Thank you. 


