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Dummy Dependent Variable Models Part II 

Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. So, 

today we are going to continue our discussion on discrete choice models or qualitative dependent 

dummy variables. So, here in this lecture we are going to talk about logit model.  
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So, let us have today’s agenda items. So, we are going to motivate you why we require logit 

model. So in a nutshell I am going to talk little bit about what we have discussed in the last 

lecture, so it will be kind of a recap. Then we are going to talk about the formation of logit model 

and then parameter estimation of logic model. So in this lecture I am going to introduce a new 

estimation method as against two ols that we have learnt.  

So this one is called Maximum likelihood estimation. Then we are going to revisit the concept of 

odds ratio and see how it is linked to logit model and if we estimate any regression model, we are 

always interested in goodness of fit. So we are going to talk briefly about goodness of fit of a 

logit model and then finally we will wrap up by talking about case study.  



So, last time I have shown you how the linear probability model which is basically the simple 

linear regression model that we have studied earlier, if you apply that to this kind of discrete 

valued dependent variable case, then you are going to get faulty results. So what are the 

solutions? In the last lecture we have discussed very briefly about one solution and that is called 

probit model and in today's lecture we are going to discuss the other case which is the logit 

model. 
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So, a logit model also estimates the probability of outcome or dependent variable as a function of 

continuous ordinal or categorical variables like probit model does. So, likewise logistic model 

always reports fitted probability values which are between 0 and 1 all the times and note that 

unlike OLS, the assumptions of normality, homogeneous error variance and linearity are not 

required for logistic regression and interestingly also note that the problem we are dealing, the 

regression problem we are dealing here is non-linear in nature.  

So, OLS is out of question. So, we have to use you know a new estimation method which can 

handle non-linearity.  
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So, now I am going to talk about the formation of logistic regression model and this time I am 

going to bring the microeconomic perspective of logistic regression. So there is a model called 

Random Utility Model. What is utility? So, those who are from economics background, utility is 

not a new concept to them.   

We all know about utility functions and various functional forms and all but those who are taking 

this course or listening to these lectures but are not from the economics background, for them let 

me give a very simple definition of utility. So utility is basically some kind of pleasure or 

satisfaction out of consumption of any particular good or service or if you know there is an event 

happening around you, then is there any satisfaction from that event that you are drawing. So this 

is basically in a nutshell utility is all about, it is basically psychological state of mind, okay.  

So, with this brief introduction to utility, let us go back to the model. So, now here you see we 

have unobserved utility index and of course this is not at all irrational to assume because utilities 

are basically state of mind, so they are unobserved and let us denote this unobserved utility level 

of I th individual by vi and let us assume that utility depends on some explanatory variables and 

also, we can write a regression equation for that. 

So, here I am assuming that there is only one explanatory variable x which is determining the 

values of utility and that is why you know we have this simple two variable regression model. Of 



course ui is the stochastic random error term. Now we say that if an individual's utility exceeds 

certain threshold limit, say v star i is that threshold value, then the person chooses a particular 

option and observed outcome is coded as yi equal to 1 otherwise it is 0.  

So, let me explain this thing that I have just spoken about, so here let us give an example, 

suppose we are talking about person deciding whether to purchase a health insurance coverage or 

not. So if the person ultimately purchases health insurance coverage, we say that that is a positive 

outcome and we want to code that as y equals to 1 and if the person does not purchase the health 

insurance coverage then we say that we are going to code this outcome negative outcome by 0, y 

will take value 0.  

So y is basically a dichotomous variable, so the explanatory variable takes only two values 0 and 

1 and these two are two different choices to be made by the consumer. So now how will person 

decide whether to go for health insurance or not? So there are several factors which may be 

determining a person's decision making process, it could be his age, his education level, his 

income level, whether he has children at home or not there could be many-many explanatory 

variables but the point is that after every explanatory variable’s role taken care of, there is some 

threshold utility level that consumer is looking at. S 

o, this is called reservation utility. So if buying this health insurance coverage gives him or her a 

utility level which is higher than this reservation utility, then he or she will definitely purchase 

this insurance product. So, that is the way a consumers psyche actually works. So you know this 

reservation utilities actually is denoted by this threshold utility level, v star i.  

So now let us come back to the model here, so here you know this is mathematically represented 

as yi equals to 1 if v star i is greater than or equal to 0 and yi is equal to 0 if v star i is less than 0. 

So that I have already explained you, so here i am assuming that this reservation utility level is 0. 

So, you can say that if the net benefit of that health insurance cover to the individual is positive 

then there is positive utility from having one unit of that product and that is above the reservation 

utility which is benchmark zero.  

So the person will go and purchase ah the health insurance product, otherwise he will not 

purchase it. So now we are interested in the probability of this positive outcome that the person 



has chosen to purchase an insurance cover or it can be any other event. So why we are interested 

in probability?  

I have already explained in the last lecture that in the discrete choice model cases when we are 

dealing with dichotomous explanatory variable, we actually aim to model probability and not the 

values 1 and 0, that we observe for the dependent variable or the outcome variable. So now let us 

translate this probability of yi equals to 1 into the unobserved utility term. So this probability is 

equal to this probability that v star i is greater than or equal to 0.  

So, now we have this expression for vi, so we plug that expression here in place of v star i and so 

we can see that if beta 1 plus beta 2 times xi plus ui gives a value which is greater than or equal 

to 0, then the person is going to go for this option, say purchase of health insurance coverage. So 

now note that this can be rewritten in terms of this stochastic random error variable that you have 

because you see ultimately in this expression xi is basically a deterministic variable.  

So the stochasticity or randomness will come from only the u variable here. So that is why the 

probability is given for the specific value of ui. So ultimately, we translate the probability of 

observing that one individual has chosen one particular option into a probability involving the 

stochastic disturbance term ui.  

Now you know of course this probability will come from some probability distribution and we 

have flexibility to choose any probability distribution and last time if you remember, we said that 

in the case of probit, we have chosen for normal distribution. So here you know we are going to 

choose another distribution and that will actually lead us to the logit model. 
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So, we have to make an assumption that the probability distribution is symmetric around 0, so we 

can write the following statement under the bullet point 1 and then from that statement, we can 

write another statement that explains how we are going to calculate theoretically probability of yi 

equals to 1. And now let us assume that my stochastic disturbance term ui follows a logistic 

distribution. So it is a new distribution that we have introduced in the course.  

I am not going to talk a lot about the shape or the moments of the logistic distribution because 

that is not the objective here. The objective is that this logistic distribution is very handy to 



model this kind of dichotomous y. So that is why we are bringing that here and we are going to 

only see that if we assume logistic distribution, then what will happen?  

So here you see that if I am modeling probability of yi equals to 1, as you know logistic 

distribution then I can actually write this expression pi equals to 1 divided by 1 plus e to the 

power minus beta 1 plus beta 2 times xi. So basically here this is pi is basically the probability of 

the positive outcome, that is yi equals to 1 and note that I can assume that beta 1 plus beta 2 

times xi to be a simple variable notation which is zi, so this form becomes a bit simpler and now 

we know of course if we can model probability of yi equal to 1, we can also talk about 

probability of yi equal to 0, the complement of the event that there is a success. 

 So of course there will be a failure, so here we are going to talk about the negative outcome or 

the failure and it is important because you will see later on when we are going to talk about 

interpretation of logistic models. We have to have very clear idea what probability we are 

modeling because you know odds ratio is basically a ratio of probability of two events in a 

success and a failure.  

So it is important to know how we know we can also calculate the probability of a negative 

outcome or a failure. So if I say that yi is equal to 1 actually indicates a success, then yi equals to 

0 will indicate failures, say and that can be computed very easily as we have this number for pi 

from the logistic distribution. So 1 minus pi will give me the probability of the negative outcome 

or probability that yi will take 0 value. 
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So, now with this let me move on and then the estimation, we are going to talk about in this 

particular slide. We will start talking about the estimation but first, let me introduce the odds 

ratio in this context. So note that the estimation of pi becomes very complicated because pi is 

non-linear not only in the explanatory variable but also in the parameters beta.  

So we have to somehow find the solution to this highly non-linear model and that is where we 

are going to make use of this odds ratio concept that we have studied in the first part of the 

course. So here we are going to introduce the odds ratio as ratio of two probabilities. So odds 

ratio is defined as the ratio of probability of success over the probability of failure. So it is given 

by pi divided by 1 minus pi.  

So I am showing here that if you do some small algebra you get a very simple expression for that 

and that is e to the power zi. So, but still this is exponent, there is no linear function nothing that 

we can deal with in regression analysis. So we take natural logarithm of the odds ratio and we 

get what is called a logit and this logit is given by  Life insurance.  

So, if you take the natural logarithm both sides, you finally get that logit is equal to zi which is 

equal to beta 1 plus beta 2 times xi. So, now you see these probabilities are not linear functions 

of explanatory variable or the parameters in the regression model but the logic function that we 

have defined just now it is a linear function of the explanatory variable. 



 So this logit function is linear in the explanatory variable and in the parameters also. Note that 

as the probability of success pi goes from 0 to 1, the value of logit function goes from minus 

infinity to plus infinity. So, this implies that only the probability is bounded between 0 and 1 but 

not the logit function.  

So we have an equation which is linear in explanatory variable and linear in parameter. So what 

is stopping us to adopt OLS here? See this is a very interesting case, here you have y which is 

not observed because what is the dependent variable here? It is no longer 0 and 1,the outcomes 

of this qualitative variable that you can actually observe. What is the dependent variable? This is 

the logit and logit involves the probability of success.  

Now we do not know, what is the probability of success? So there is no data on probability of 

success for different individuals in the sample. So you have a dependent variable which is 

unobserved. So you cannot apply the standard OLS technique and we have to apply what is 

known as Maximum likelihood estimation method. 
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So in this slide I am going to give you a brief introduction to Maximum likelihood estimation 

method. So, first of all, what is it? So, it is a probabilistic framework for estimating the 

parameters of a model. So note that when we talked about estimation in statistical inference in 

Part 1 of the course, I have there only spoken about this particular method and I said that I will 



come back later in the course with an example or a case where you know Maximum likelihood 

estimation method is to be applied and today is the day I am going to talk about that method. So 

note this important fact that in statistics and econometrics, when we say estimation, we do not 

mean that we have to always OLS. 

 OLS is not applicable to all possible cases that we see around us. so here we are going to talk 

about this new method that is an alternative estimation procedure and if you remember I have 

also spoken that once you decide to apply Maximum likelihood estimation procedure, you have 

to have an assumption regarding the distributional form of the stochastic random disturbance 

term, which you do not have to assume in the case of OLS. So I hope that you will remember this 

distinction between MLE and OLS.  

Now let us dig deeper and see what MLE actually does for us. So the second bullet point and the 

third bullet point in this slide is going to discuss or show what MLE is doing for us. So MLE is a 

statistical technique of finding estimates for the unknown population parameter values of a 

probability distribution, so that under the assumed statistical model, the observed data is most 

probable. So what do we mean by that?  

So, we mean that when you draw a sample from a population, that population always will have 

an underlying probability distribution for that particular variable for which you are conducting 

statistical data analysis and you do not know a priori which population or probability distribution 

is there from where I am actually observing some realizations of values.  

So of course there you need to make an assumption be it normal, be it logistic, be it gamma 

whatever distribution but once you make that assumption that in most possible cases this variable 

in population follows this particular distribution, then basically the task is to find the parameter 

values of that probability distribution, so that you can compute the probabilities and all.  

So, Maximum likelihood estimation procedure actually helps you to find out the proxies or the 

estimates for those unknown and unobserved population parameter values such that the 

probability that the sample has come from probability distribution with these parameter values is 

the highest. So basically what I am trying to say here, let me explain it in different words. So 

suppose you know that this sample that you have at hand has come from a normal probability 



distribution but you do not know the values of the mean and the variance of this population 

probability distribution.  

So you have to get some proxies or estimates for mu and sigma square the probability 

distribution which is embedded in the population. Now there could be many values of mu and 

sigma square you do not know which one is the true value of the population parameter. So then 

you try with a set of mu and sigma squares and then if you say that okay I have this value mu1 

sigma1 and then I have another set mu2 sigma2, then I have another set mu3 sigma3. These are 

all alternative values of mu sigma combination that can actually take place.  

Now once you assume a particular set of values for mu and sigma square, then you can compute 

the probability that your sample has come from normal distribution with this particular value of 

mean and sigma square and you are then going to compare all these probabilities that you can 

theoretically calculate for all these possible values of mu and sigma square and MLE actually a 

very special type of estimation process which will find out that particular value of mu and sigma 

square which will actually maximize this probability that you are calculating by plugging these 

ah proxy values of mu and sigma square.  

So Maximum likelihood estimation method actually maximizes the likelihood which is basically 

nothing but probability and it maximizes this objective function in parameter space. So the 

solution point actually is called the Maximum likelihood estimate. So now let us come back to 

logit model again and then let us see how MLE is going to be applied to logit model. So for the 

logit model, we write the conditional probability of yi equals to 1.  

So why conditional probability? Because it is conditional upon the values of xs the explanatory 

variables. And the conditional probability can be written as pi and then you see the expression is 

given and then we can write the likelihood function as L of beta and you see I am multiplying all 

these conditional probabilities. Why am I multiplying? Because I am assuming that these 

probabilities are all independent of each other.  

So as they are independent, they could be multiplied together. And then what I am doing? You 

see I get a simpler expression in terms of pi, note that I am skipping some steps in this theoretical 



calculation because ultimately this is not a theory class and we are not going to pay much 

attention to proofs. So you know I am going to skip couple of steps, so that I save time.  
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Now you take natural logarithm of the likelihood function and then we get the log likelihood 

function. So the log likelihood actually turns the products into sums because it is easy to deal 

with sums. So the expression is given, its quite complicated and then you actually maximize the 

log likelihood expression that I have shown there in the slide with respect to the unknown 

parameter values betas like we do in the case of OLS.  

nd I think you as of now, this is good enough of our discussion on Maximum likelihood 

estimation because it is very difficult to do this kind of exercise on a piece of paper for logistic 

regression but fortunately softwares are there, so if you ask a software it will happily do it for 

you within a minute.  

So let us not waste time on this Maximum likelihood estimation aspect of logistic regression 

model. Let us move ahead. So once some estimation is been done, then we are interested in the 

marginal effect. So you remember that in the case of OLS also, we actually attached this 

marginal effect tag with this regression coefficients because the slope coefficient in the OLS 

regression context has this marginal effect interpretation.  



But in the context of logistic regression, marginal effect has a very different kind of 

interpretation. So let us have a look at this thoroughly and the complication arises because now 

you do not have a simple y, so you have a logit as the dependent variable. So if there is a change 

in explanatory variable, it is going to impact the logit and not the original y variable that you 

have observed.   

So what we have to do? We have to create an average observation first by plugging the means of 

all the independent variables into the estimated logit equation. So here we are assuming that the 

logit equation that we have estimated involves only continuous explanatory variables. If there is 

dummy then you have to plug either 0 or 1 because you cannot take mean of that and if you do 

so then, you get a measure of average fitted probability. 

 And then you can increase the independent variable of interest by holding others fixed just by 

one unit and then recalculate the fitted probability again and the difference between these two 

fitted probabilities gives us the marginal effect of that explanatory variable, provided the other 

explanatory variables are all kept constant.  
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Now, before we end our discussion on the theory of logistic regression, we have to keep certain 

points in mind and these are all important points. So here I am going to talk about the first 

important point which is a major departure from the OLS that we have been doing so far. so here 



for hypothesis testing for individual regression coefficients, we are going to look at the z scores 

and not the t scores.  

Why? Because t actually is a small sample case but as MLE assumes that we are dealing with 

large sample and asymptotic properties are holding well for MLE then we have no problem, we 

can straight away make use of the z statistics. So that is why in the software outcome you will 

see that softwares are always reporting the z statistic and you have a look at that z score and the 

corresponding p value and you can take a decision whether this particular coefficient is 

significant or not and remember that I have spoken about this magic value of 1.96.  

That holds here also for the case of z. So if you see the z value is above that number, then you 

can assume that that particular regression coefficient is statistically significant. So the second 

point that we must remember is that the slope coefficient of the logit model gives us the change 

in log of odds ratio in favor of the outcome variable and this is the case when the value of the 

independent variable change just by 1 unit.  

So the next point we are going to discuss is the goodness of fit case. So if you remember in the 

context of OLS regression, we have introduced two goodness of fit measures and they are r 

square and adjusted r squares. So here in this context you may be interested to know how do I 

know that I have good model fit. Now this is a fairly complicated model, so if you are thinking 

of having some simple measure, it is not difficult to propose one and that is why here you will 

not get r square or adjusted r square like we were used to get in the case of OLS.  

So here luckily some econometricians have come up with some measure and they say that this is 

a pseudo measure of r square, the coefficient of determination and now we are going to talk 

about one such measure, there are many pseudo measures available for r square and here in this 

lecture I am going to talk about only one of them and that is proposed by a Nobel laureate 

econometrician Daniel McFadden.  

So there is a typo here, so there has to be a square term, please make a note of that. So 

McFadden’s pseudo r square is defined as 1 minus ratio and the ratio is basically of two log 

likelihood numbers and what are these two log likelihood numbers? LL model is the log 



likelihood value for the fully fitted model and LL0 is the log likelihood for the model under null 

hypothesis, so that means that no explanatory variables are affecting or determining y.  

So it is basically an intercept only model. So basically you have to run the logit model twice, 

once with all possible explanatory variables that you have in your regression equation and you 

get one log likelihood number and that is your LL model and then you run another logit model 

but this is an intercept-only model and you will definitely get another log likelihood value for it.  

So you take a ratio of that and deduct this ratio number from 1 and you are going to get 

McFadden r square. So once we have the estimated coefficients, we can always find out the odds 

ratio from the logit function and from there we can easily compute the predicted probability. So-- 

but odds ratio number itself gives us a signal about the probability of the positive outcome, so 

odds ratio less than 1 means that there is less than 50 percent probability and if odds ratio is 

greater than 1 then that indicates greater than 50 percent probability. 

So here by odds ratio I am always meaning that you know we are talking about ratio of 

probabilities, probability of success divided by probability of failure.  Now at the bottom of the 

slide, I have reported two important formula that you must remember and they are given inside 

this red box. So they are basically summarizing what we have discussed in bullet point 4 only.  

Let us stop discussing the theory of logistic regression right here only because the extensions are 

quite difficult to appreciate and I have to introduce many-many new concepts, if I want to 

explore other things like hypothesis testing, confidence interval etc. So at this point I have 

decided to stop talking about the theory of logistic regression.  

I hope that although the Maximum likelihood estimation part was a bit difficult one to appreciate 

but you will at least get a fair idea why we require logistic regression models and how to execute 

that model, especially if you are using a software then what is actually happening behind the 

curtain and once the software throws a set of numbers at you, how to interpret them.  

What use you can make of them, so that if you understand from this lecture that is good enough 

and I believe that from my perspective objective is made that I just wanted to give you an idea 

about a model which is practical but it is somewhat different from what we usually do in this 

typical linear regression model setup.  



So now it is time to talk about case studies because this logistic regression has been applied in 

empirical research a lot and in different fields. So I am going to talk very briefly maybe two 

three minutes on two case studies, so that you get a feel that how in India this logistic regression 

model has been applied by researchers to you deal with different problems.  
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So the first case study is going to come from the field health economics, you can also say that 

medical science literature because there are so many intersections and overlaps between these 

two fields. So here I am going to talk about a paper which got published in an international 

journal. So, now let us talk about the paper that I mentioned, so it is a paper published by Metgud 

Naik and Mallapur in the year 2012 and it got published in an international journal PloS one.  

So in this paper, the authors have identified the factors affecting birth weight of a newborn child 

and this case study has come from rural Karnataka. So the authors start with this objective in the 

paper that they want to identify the factors affecting the birth weight of a newborn. So they have 

collected data on the weights of newborn babies in one region of rural Karnataka and they have 

got a very large sample and then they actually defined the dummy variable and they used code 1 

for babies where they observed that the birth weight of the newborn baby is less than the average 

or what should be called weight of a good healthy newborn baby.  



So if it is less than that then they have called that the dummy variable LBW, no LWB will take 

value 1. So here the dependent variable is dummy variable, so this indicator variable LBW will 

take value 1, if the newborn baby has a birth weight which is less than or lower than the standard 

weight that doctors consider to be good weight of a healthy newborn and otherwise this dummy 

variable takes 0 value.  

Now the authors have introduced a set of independent variables to model this LBW variable and 

here we have shown you the list of those variables, note that only one variable here is continuous 

that is the previous number of low birth weight babies other than that they are all qualitative 

variables. So of course there are different categories and for different categories dummy 

variables were used to take care of these factors.  

So as we see there are many-many dummy variables in the regression model and that is why it is 

not possible for us to talk about the effects of all these dummy variables or to show you the 

regression result for all those dummy variables, so we have decided that we will talk about two 

important qualitative factors which have affected this particular variable LBW pretty much. So in 

the next slide, I am going to show you results regarding those two qualitative or attribute 

variables only.  
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Now here I am going to talk about the odds ratio numbers. So here you see that first column of 

the table shows the variable names, so if maternal education is one qualitative variable you see 

that here the authors have used different dummy variables to take care of that. So pre-university 

has been declared the reference category or the base category.  

So there were three dummy variables after excluding that category and they are illiterate, 

primary education and the secondary education. So secondary education variable means that the 

mother has attended secondary education and then the second qualitative or attribute variable 

which we are interested in is exposure to passive smoking and this has three categories or labels 

associated with it and if the mother was not exposed to passive smoking during the pregnancy 

period or the pre-pregnancy period then we call that as the reference category or the base 

category, so that no category will be excluded, there will be no dummy for it but there are two 

dummy variables namely husband and in-laws and others.  

So what do they mean? So husband dummy means that this pregnant woman's husband, he used 

to smoke and she was exposed to passive smoking from the husband and similar interpretation 

can be given to the in-laws and others dummy variable as well. Now you see we have the second 

column and third column, there we are seeing odds ratio and the confidence intervals, we are not 

going to talk about the confidence intervals because we have not studied it in this logistic 

regression context but let us talk about what do we mean by univariate odds ratio and the 

multivariate odds ratio.  

So in the paper the authors have calculated univariate odds ratio by the following approach. 

Suppose, we are interested about one particular variable, say husband dummy. So then they have 

run a model with that husband dummy and the intercept only to get the odds ratio for the 

husbands and if suppose they are interested in the illiterate dummy to see the impact of the 

illiterate dummy, then they have run the logistic regression with intercept and this illiterate 

dummy in the regression equation to note down the odds ratio of that particular dummy variable 

illiterate.  

So they have then run series of logistic regressions each time including just one explanatory 

variable and intercept of course was there and that is the way they have computed this univariate 

odds ratio. Now what is the multivariate odds ratio? So basically now this is just one single piece 



of regression where all variables were thrown to the software together and there is one regression 

output from which you can now look at the effect of a particular individual explanatory variable 

while all others are sitting there. So now let us have a look at the table again.  

So you see one interesting thing here, so if we compare the univariate odds ratio and the multi 

weight odds ratio for all the variables you see that the multivariate order ratio are higher 

compared to the univariate odds ratios. Now let us concentrate on one particular number and then 

let us see know whether we can provide a good interpretation for that number or not.  

So suppose we concentrate on the husband case, okay so if we are interested in the case of 

husband, say let us you know consider the final model which is the multivariate odds ratio 

column. So from there we see that the odds ratio is 2.3 and it is highly significant. So what do we 

mean by this number 2.3? So remember that when we talked about odds ratio I said that think of 

ratio of probabilities, so probability of yi equals to 1 divided by probability of yi equals to 0.  

So here y is what? That is your LBW or LWB that low birth weight babies delivery, so that is 

basically the event that you are modeling. So basically here the odds ratio is talking about 

probability that the newborn baby’s low weight compared to the probability of the newborn baby 

above the standard weight.  

So you see that if a pregnant woman's husband is a smoker, then it is very risky because the 

probability that the women will deliver baby with low birth weight that is 2.3 times higher than 

women whose husband does not smoke and she is not exposed to passive smoking from husband. 

Now let us look at the role of education because education plays a very big role in socio-

demographic research.  

So let us have a look at the what education is telling us here. So here you see that from illiterate 

to primary education that means that the mother is little bit educated, then primary to education 

to second education means that mother is more educated.  

So here you note down the odds ratio for this consecutive dummy variables. So as one can expect 

that more education is beneficial for not only the mother but also the baby because then mother  

knows about best practices to follow and probably take care of the baby inside during the 



pregnancy period, so as the education level of the mother goes up, we can expect that the risk of 

delivering a low weight baby will fall.  

So that is what is reflected in the declining numbers of the odds ratio as well. So you see here for 

an illiterate women the multi-weight odds ratio number is 3.2. So that means that the chance is 

3.2 times higher that particular illiterate women will give birth to a low weight baby but note that 

if I now consider the multiwight odds issue 1.9 and that is for secondary education, so that means 

that for a mother who has attended secondary education, this risk has come down drastically. 

 So here there is 1.9 times chance that this mother will give birth to a low weight baby. So what 

we learnt from this discussion on education? That proper education of women it reduces the risk 

of giving birth to a low weight baby.  
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Now we move on to the second case study and this one I have picked from the field of  

environmental and climate change economics because nowadays there is lot of talk regarding 

environmental pollution and global warming and this that this is a study that was published in a 

book which got published in 2020 and this is a chapter from that book written by Sengupta 

Kumar and Saha and the title of the chapter reads as Indian youth’s willingness to pay for 

climate change policies.  



Now willingness to pay is a very popular and well known concept in the field of public 

economics and environmental economics but if you are not coming from that background let me 

educate you with couple of sentences. So basically suppose we are talking about creation of a 

public good which is not to be consumed by one particular individual, so this good is basically a 

common good.  

So suppose if we go for afforestation on a vast piece of barren land, that land is basically with the 

government so that land is not owned by anyone. So actually people will not derive any private 

benefit out of that afforestation project but that does not mean that society as a whole will not 

gain some positive benefits from that project.  

So, if you now go to the community and conduct a survey and ask people that okay there is 

something good happening and are you willing to pay something for this positive activity say 

afforestation? Then the person may say yes may say no and there are many-many factors why a 

particular person is saying yes or no. So you in a nutshell without getting into the theoretical 

complications, this is willingness to pay all about.  

So now we are going to visit what the authors have done in this particular chapter. So the 

objective was that they wanted to identify the factors that affect the youth's willingness to pay for 

climate change mitigation policy. So of course government of India if it wants to take drastic 

measures to protect us from the future global warming scenarios. So we have to take mitigation 

policies but these mitigation policies are all costly, nothing comes for free right.  

So now the issue is that whether the society is ready to sacrifice some bit of their current 

resources to future to protect their future generations that is the question. So here the paper or the 

chapter actually wanted to address this particular question by conducting a survey amongst the 

students of various engineering colleges in the Kanpur region and the dependent variable here y 

takes a value 1, if the respondent is willing to pay and 0 otherwise. So now what are the 

independent variables?  

So that chapter has actually used three four explanatory variables but due to shortage of time I 

just wanted to talk about one particular variable which is the bid the the amount of money that 



the respondent was asked to sacrifice in order to help the governments in targets to protect global 

protect us from global warming and roll out climate change mitigation policies.  

So here we are talking about only one explanatory variable and now let us look at the question 

that was asked. So here I have shown you this question here so you see that the respondent was 

asked to sacrifice or part with S percent of first year's salary and there were different eight 

different values of S or this percentage of salary sacrifice that was asked to respondent.  

So one respondent got to see one particular value of S only and based on that he or she said yes 

or no. So suppose I have chosen a value one for one particular respondent, so basically the 

respondent was asked whether he or she is ready to part with 1 percent of the first year salary and 

the respondent has this option to say yes or no. So this is basically the model setup.  
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So here I am showing you the results but note that here as this is a continuous variable you can 

measure the marginal effects and I have explained already how to calculate marginal effects odds 

ratio is also given so here I end this discussion because we are running out of time. So we are 

done with our discussion on discrete choice models and in the next week, I am going to come 

back with some new topics so see you then. Thank you. Bye. 

 


