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Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. So, 

today we are going to start our discussion on an exciting area of econometrics, where we are 

going to deal with discrete variables. And in this week three consecutive lectures will be there, 

where we will be studying different cases of handling discrete variables in econometric analysis. 

So first lecture in this, three lecture sequence is on Dummy Variables. And we have already seen 

dummy variables little bit in the regression context. In the ANOVA context also I have spoken 

about it briefly. But it is not a bad idea to devote an entire lecture on the dummies because 

dummies can do very interesting jobs for you, which we have not actually studied when we 

talked about the dummies in this course. So, this lecture is totally going to be devoted on dummy 

variables. Let us have a look at today's agenda items. 

(Refer Slide Time: 01:21) 

 

So, here we are going to first introduce the dummy variable once more in front of you with 

formal definition and all. Then I talk about interactions of dummy variables and then I am going 



to show you how our good old friend F test is equally handy here also to deal with dummy 

variables. 
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So, let us start with a formal definition as usual. So, dummy or as it is also called an indicator 

variable is an artificial variable created to represent an attribute with two or more distinct 

categories or levels and it takes only values 0 and 1 to indicate the absence or presence of some 

category. So, basically you can see from this definition we are talking about couple of features of 

dummy variables. First of all it is representing a qualitative variable or attribute. And it is itself a 

binary or dichotomous variable taking two values 0 and 1. 

Now you may ask can I call it, say 3 and 4 or 6 and 7. Yes, you can do it. Absolutely no problem. 

Here what we are doing in terms of dummy variable? We are basically assigning some number, 

some quantitative value to some qualitative features of an attribute variable. So, you can assign 

actually any value for that matter. But for simplicity, for easy handling in terms of interpretation 

of dummy variables generally in econometrics and statistics people prefer 0 and 1 coding. 

So, now if you remember the first time we introduce dummy is in the context of time series 

analysis where we were trying to model seasonality. And therein we talked about something 

called dummy variable trap. So, what is dummy variable trap? So, before I go to the formal 

definition of dummy variable trap let me first set the rule and dummy variable trap can be 

presented as a violation of that rule. So, if the rule is broken by you then what will happen? That 



is what basically the dummy variable trap. That is the consequences of violation of the rule that 

you must follow when you are dealing with dummy variables. 

So, what is that rule? So, the rules says that if there is a qualitative variable which has some 

number of levels then, say the number of levels is m, so basically you cannot have more than m 

minus 1 dummy variables in the linear regression equation if you also want to keep the intercept 

term. So, that is what is mentioned in the second bullet point. But if you are desperate to keep all 

the m levels in regression equation for some matter, then you have to exclude the intercept term 

from the regression equation. So, otherwise you are going to fall in the dummy variable trap. 

Well, what is dummy variable trap? So, here in the third bullet I am giving you formal definition 

kind of thing for dummy variable trap. So, when the number of dummy variables created is equal 

to number of values of categorical variables can take on, so these are basically number of levels 

we are talking about then actually we are caught in a dummy variable trap. What happens exactly 

in this trap? Why it is called a bad thing? 

So, basically if you are in the dummy variable trap, if you are violating this rule that I have said 

in the second bullet point then that leads to multicollinearity. Because one dummy variable can 

be expressed as a linear combination of the other dummy variable. So, there will be 

multicollinearity. And what will happen if there is multicollinearity? So, it will have the impact 

on the estimates of the coefficients, it will also have an impact on the p-values of the estimated 

coefficients. So, in a nutshell if you are caught in a dummy variable trap statistical inference is 

going to be misleading and that is why you should avoid it. 

So, now let us represent dummy variable in linear regression context in terms of equations and 

symbols. So, let us make the story simple as usual. So, we can actually have the same model in 

terms of multiple Xs or explanatory variables, but actually we are not doing that because we 

want to simply present the philosophy and the basic work of a dummy variable. For that one 

continuous regressor X is good enough and one dummy is also good enough. So, we are going to 

have a look at a very simple model. 

So, here is the model. You have explanatory variable Y which is a continuous variable. Then you 

have an intercept term on beta naught and then capital D is the dummy variable and the 

associated regression coefficient is delta naught. So, now we have one explanatory variable X 



and the corresponding regression coefficient is B1. So, of course there is the stochastic 

disturbance or random error term u there. 

Now you note that we can take two different values only and we are assuming as per the norm 

that they are going to take either 0 value or 1 value. So, if I now plug these two values in the 

regression equation in place of D, then I am going to get back 2 equations. One is basically for 

the base category. By the way I should also say that in defining dummies when you are 

representing a particular category or level of attribute or qualitative variable by 0 then you are 

calling that attribute level or the value of the qualitative variable as base category. 

So, let us first have a look at the regression equation for the base category. So, for the base 

category dummy will take on value 0. So, you are much simplified equation which you are quite 

familiar with. So, you have made Y equals to beta naught plus beta 1 times X plus u. What if I 

say that it my dummy variable takes value 1 so that means there is presence of one particular 

attribute value or level for the qualitative variable and then actually you plug the value of D 

equals to 1 in the mother equation and then you get beta naught plus delta naught plus beta 1 

times X plus u. Now you note one interesting thing. So, now you have got beta naught plus delta 

naught as the common intercept term in this equation for D equal to 1 case. 

Now with this dummy variable set up, it is not a bad idea to explore the extensions of dummy 

variable applications and we are going to fetch our application from the field of labor economics. 

So, in labor economics scholars are interested in many research questions and one of these 

research questions is discrimination in the labor market with respect to gender. 

So, some labor economists are saying that there is substantial bias against the women or the 

female participants in the labor force and on an average the wage or salary for female worker in 

labor market it is much less compared to the male counterpart. So, this is kind of hypothesis that 

they are framing by looking at observations around them. Now hypothesis of course needs to be 

tested with help of real life data. 

So, basically they conduct regression analysis to find answer to this query whether indeed in 

labor market there is some gender bias or not, whether there is discrimination in terms of wage or 

salary or not. So, we are going to look at this problem and we are going to make use of dummy 

variable to analyze this problem. 
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So, in this particular slide we have a very simple model. So, Y my explanatory variable is now 

salary or wage paid to a labor and X is the sole explanatory variable in this model which is years 

of job experience. So, of course it is a continuous variable. So, X equal to 0 means that the 

candidate or the participant in labor force has zero job experience. So, basically whatever he or 

she will get in terms of salary will be called starting salary, fine. 

So, now we define dummy variable D which will take value 1 for male and it will take value 0 

for female participant. So, now here is the diagram. So, here you see that along the horizontal 

axis I am measuring the years of job experience and along the vertical axis I am measuring the 

salary or wage obtained by the individual. And here you see I have two lines. And now I am 

going to explain these population regression lines one by one. 

So, let us first assume that we are talking about male. So, for that the dummy variable takes 

value 1 and if you plug D equals to 1 into the equation that I have shown you in the previous 

slide then actually I get back the reduced regression equation saying Y equals to beta naught plus 

delta naught plus beta 1 times X. And that regression equation for the male group is shown by 

the red color upward-sloping straight line. 

Now we concentrate on the relationship between years of job experience and the salary for the 

female group of labors. And there we have to then assume that our dummy variable D will take 

on value 0. So, if you plug D equals to 0 in that regression equation that I have shown you in the 



previous slide than you get another reduced equation. And you get to the simplest possible 

regression equation that is Y equals to beta naught plus beta 1 times X. So, that upward-sloping 

straight line is represented by the light blue color, and of course here we are assuming that there 

is positive association between wage and salary and years of job experience. That is pretty 

normal to assume. 

Now note that the way we have drawn these two lines mean something. And what is the gap 

between these two straight lines? So, the gap is basically in terms of the symbol delta naught. So, 

the delta naught is basically the regression parameter associated with the dummy variable D. So, 

here are the way I have drawn this diagram it implies that I am working with the positive delta. 

So, that is why you see that the blue straight line has an intercept of beta naught. And then I add 

delta naught on the top of beta naught and that will now become... So, that beta naught plus delta 

naught will now become the intercept for the regression line for the male group. 

So, as these two lines are parallel, this gap delta naught is constant for all values of X. So, 

basically looking at this diagram what do we learn? So, we learn that there is some 

discrimination, there is some gender bias. So, it is not only the starting salary for group workers 

is higher than the female workers but this gap maintains for different values of Xs. So, that is 

what we learn from the diagram. 

But this is of course indeed a very simplified picture and there could be many more interesting 

things. The researcher can also be interested to study these questions, I mean, is there is a gender 

gap for salary and is that widening up as X increases. So, when you move up the ladder in 

corporate or any job place so of course you built on X, so that your number of years in job 

increases. So, is there any positive relationship between this gender bias and X. So, in other 

words I want to say is this gap widening up with increase in X? So, how can we study this 

particular research question that is going to be the subject matter for the next slide. 
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So in this slide we are going to talk about slope dummy. So, the previous one we talked about 

intercept dummy. Here we have a new model but with the same old story. So, now look at the 

new model which says Y equal to beta naught plus beta 1 times X. Now note that delta naught 

times D that disappeared. Now we have a new entity in place of that variable and that is delta 1 

D times X. So, D times X is basically the interaction between the continuous variable X and the 

discrete dummy variable D. And delta 1 is basically the associated regression coefficient for the 

new variable that we have just created by interacting a dummy and a continuous regressor. 

So, now as usual we can look at the reduced form equations by placing different values of D. So, 

if D equals to 0 then we get Y equals to beta naught plus beta 1 times X plus u as usual. And if I 

now plug D equals to 1, so D equals to 1 means we are talking about the male group. So, we get 

reduced equation with the same intercept term beta naught but now we have a different slope 

coefficient. Then that is beta 1 plus delta 1. 

So, again to graphically represent what is happening let us assume that delta 1 is positive. So, if 

we now assume delta 1 is positive what does that mean? So, it means that the value of the slope 

coefficient which is measuring the marginal effect of X the continuous regressor is actually 

higher for the male group compared to their female counterparts. 

So, let us first talk about the female group. So, the regression equation, population regression 

line is represented by the light blue color as we did in the last slide also. So, here you see there is 



one intercept beta naught which we are not of course showing here. Now we want move on to 

the male counterpart and the regression equation for them. 

So, there you see the regression, population regression line is a presented by red color and it 

starts on the same intercept beta naught but now as delta 1 is positive the slope coefficient beta 1 

plus delta 1 is greater than beta 1, of course. So, this upward-sloping straight line as it has higher 

slope, this gap between the red straight line and the light blue straight line is increasing with 

increase in X. 

So, you can say that it may be the case that men and women have the same starting wage but 

their wage rates increase different rates. So, as number of years in job increases this gap in wage 

or salary due to this gender effect increases quite a bit. So, this is one way of looking at this 

problem. But there could be other type of interaction cases which could be seen as extension to 

this problem and that is what we are going to study next. 
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Now we are going to talk about the most general model involving one continuous regressor and 

one discrete dummy variable. So, here we are in the same setup. So, we are trying to explain the 

gender gap on wage and salary. So, now you have this mother equation which says that Y is 

equal to, Y of course is salary or wage. So, this is equal to beta naught plus beta 1 times X plus 

delta naught times D plus delta 1 times D times X plus u. 



So, now you see that I brought back that intercept dummy from my model 1 and I have added 

that to the slope dummy model. So, I have both intercept and slope dummies working in same 

regression equation.  

So, now as usual I want to look at the base category equation. So, that is basically for the female. 

And we have as usual the simple straight line beta naught plus beta 1 times X plus u. And then 

basically I have the regression equation, the new regression equation that is actually a reduced 

version of mother regression equation and this is for the male counterpart. So, for that the D will 

take value equals to 1.  

So, you plug D equal to 1 in the mother equation and you get an equation where you see now 

you have two components for the intercept parameter. And they are beta naught and delta naught. 

And there are two components for the slope parameter which are beta 1 and delta 1. 

So, here let us assume that delta naught and delta 1 are both positive numbers and this is for 

graphical illustration of course. So, if I assume these two parameters delta naught and delta 1 will 

take positive values only, then I actually I have this new diagram. So, as usual the light blue 

color straight line is depicting the relation between wage or salary and the number of years in job. 

And if you assume positive values for delta naught and delta 1 you actually get a red straight line 

for the male counterpart in the labor market. And you see that not only the starting salary is 

higher for the male, the salary gap is also widening up as X increases. 

So, this initial gap in the starting salary is measured by this coefficient delta naught and the 

difference in the rate in increase is measured by this parameter delta 1. So, we have studied this 

case of gender bias or wage discrimination in labor market through diagrams. 

But diagram is diagram. So, you are assuming certain values delta naught and delta 1, actually 

not assuming certain values you are assuming that but they are both positive. But that is all 

hypothetical assumption to show you simplified cases in terms of the diagram. But whether in 

reality your data gives you enough sample evidence or not for assuming delta naught and delta 1 

are actually positive numbers, for that your to conduct hypothesis testing. 
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So, now we are back to the slide and let us start with that wage regression equation, the most 

general case that we are studied in the last slide, so where we both have the slope dummy and the 

intercept dummies. So, here as usual X is number of years of job experience and D is the dummy 

variable where D equals to 1 means male and D equals to 0 means female. 

So, now there could be three types of hypothesis testing problem given this setup. So, in the first 

stage we may be interested to go for testing whether there is a difference in intercept term or not. 

So, I am talking about now the first dummy variable diagram that I have shown you in this labor 

market story's context. So, how to set your hypothesis? 

So, you set your null hypothesis as delta naught equals to 0 and that you challenge by placing an 

alternative hypothesis which says that delta naught is actually positive. Note that here I am going 

for one tail test. I am not going for a two tail test. If I have written delta naught is not equal to 0 

then actually that is the regular two tail test. 

But here we are interested in challenging this view that delta naught is actually not 0 and we 

claim that it is positive. So, that is why we are this time going for a one tail test by placing this 

inequality there in the alternative hypothesis. So, we are saying that in our alternative hypothesis 

says that this initial gap in the starting salary is indeed positive. It is not 0. 



What could be the test statistic? As we are dealing with only one single parameter in the 

regression model we can make use of our friend t test. And then the test statistic is defined as D 

naught minus 0. So, what is D naught? So, suppose you run your regression via OLS method so 

the coefficient estimate for delta naught is denoted by D naught. 

So, D naught is basically the OLS estimator for delta naught. And why we are deducting 0? 

Because if the null hypothesis is true then the unknown population parameter value is 0. And you 

remember that while conducting T test when we are framing the T statistic we have to take the 

difference between the sample statistic value and the hypothesized population parameter value. 

So, that is why we are subtracting 0 from D naught. 

So, this difference or D naught has to be divided by the standard error of the estimated regression 

coefficient. So, we are going actually going to divide by standard error of D naught. So, now this 

test statistic will follow a t distribution. Now t distribution comes with degrees of freedom. So, 

how many degrees of freedom we are expecting in this case? 

So, note that here we have 4 parameters to be estimated, one intercept term and one each for the 

slope dummy and the intercept dummy and then there is one for the continuous variable. So, the 

degrees of freedom will be N minus 4 where N is the number of observations of course. And I 

believe that you remember your lessons how to make decision rules and how to conclude a T test. 

So, I am skipping those discussions there. 

And now I move on to the second case where I am interested to conduct a statistical testing 

regarding the difference in slope. So, basically here I set my null hypothesis as delta 1 equals to 0 

and my alternative hypothesis is delta 1 is positive. I have explained in somewhat detail why we 

are not going for a two tail test in the first case. So, I am skipping that discussion and I believe 

that you can understand why I am placing strict inequality here in place of not equal to sign. 

So, the test statistic will be the usual t-statistic, nothing new. So, you can follow it quite easily. 

And now I move on to the third case, where I am going to test for discrimination in starting wage 

and rate of increase. So, in other words I am interested to talk about testing the difference in both 

slope and intercept dummies. So, here the hypotheses are going to be somewhat different 

because here we are talking about two parameters at a time. So, of course this simple hypothesis 

testing will not work. We have to adopt the joint hypothesis testing. 



So, here in this context how to frame a joint hypothesis? So if there is no difference in the slope 

and the intercept then basically we are saying that both delta naught and delta 1 they are equal to 

0. So, you can set that as the null hypothesis. And alternative hypothesis we will say that at least 

one of them is non-zero. So, as this is a joint hypothesis testing we cannot use T test. So, we can 

go for F test. 

So, you see F test comes back again to help us in joint hypothesis testing. So, how you are going 

to conduct an F test? I am going to talk about the steps in a short while but that is too mechanical. 

You have seen F test previously. So, you probably also remember the steps. 

But I am going to spend a minute here by pointing towards the philosophy of this F test. Why are 

we applying F test here? And if you are applying F test, what is actually happening behind the 

curtain? So actually here you note down when I am writing that joint hypothesis testing problem, 

the null hypothesis the way I have written it, that is basically imposing exclusion on the mother 

repression equation.  

And if you are imposing some kind of external exclusion restrictions then actually you are 

talking about the restricted versus unrestricted models. So, we already have seen that how F test 

is useful to resolve the debate between whether to go for a restricted model or whether to adopt 

an unrestricted model. So, that same old philosophy or rationale that we have used earlier that is 

coming back again to help us. So, in the next slide we are going to show you the F test which 

going to help us in this context of dummy variables. But that is going to follow the same 

philosophy of restricted versus unrestricted models.  
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So, now in this slide we are going to talk about the test statistic which is following the case of 

restricted versus unrestricted model F test. So, here SSE of course you remember that is sum of 

square of error residuals. And R subscript stands for the restricted model and the U subscript 

stands for the unrestricted model. So, let me remind you once more about the calculation of this 

SSE metric. How do you calculate the SSE metric? 

So, suppose we are talking about the unrestricted model. So, you estimate the unrestricted model 

with all 4 parameters and then you can actually have one regression equation which is the fitted 

line. Now you can generate the Y hat values, the fitted values for Y by plugging different values 

of Xs, here only one X and only one dummy. So, you can plug the value of the dummy variable 

and the continuous explanatory variable in the fitted regression line to generate the fitted or 

predicted values of Y for all observations in your sample. So, if there are N data points in your 

sample you can generate N number of fitted values. 

Now you take the difference between the actual value of Y and the fitted value of Y for all N 

individuals in the sample. Then you square them and then finally you sum all these squared 

residuals. So, this is the way you get sum of square errors from the unrestricted model. So, you 

can follow the same tactic to calculate the SSE R to calculate the square residuals from the 

restricted model. 



So, now we know this difference between sum of square numbers between restricted and 

unrestricted model has to be divided by the degrees of freedom and here we are placing two 

exclusion criterion. So, that is why the degrees of freedom is 2. And the ratio has to be divided 

by sum of square error of unrestricted model. And that has to be divided by the degrees of 

freedom of the original or mother regression model so that is N minus 4. 

So, of course needless to say if you remember this statistic will follow F distribution with two 

degrees of freedom 2 and N minus 4. So, this is the way basically you can model the effect of 

gender on wage or salary using dummy variable. So, basically I end this slide by reminding you 

about the question, original question with which we started our journey. So, that you can 

understand what have we are been doing for last 5 or 6 slides. 
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But the story is not over. There could be further more complications in the labor market and how 

wages are determined. And we are going to talk about one such case here by introducing a new 

concept which is called interaction dummies. So, now I want you to think about that initial wage 

or salary regression equation with which we have started the discussion. 

So, I said that there is one continuous regressor which is years of job experience and then there is 

one dummy talking about the gender qualitative variable. But that could be host of explanatory 

variables which actually are determining wages and salaries of individuals. So, basically let us 



assume that education is of course one of the most important and relevant variables for wage or 

salary regression equation. 

So, let us now introduce education in the story. And to make it more fitting for the topic of today 

which is dummy variables now I am going to assume that I am going to handle education as a 

qualitative variable. So, if you remember when we talked about education last time we measured 

education continuously by throwing a continuous variable in the regression and it was the years 

of schooling. 

But now we are going to say that we are going to talk about levels of qualitative variable which 

is the degrees completed by an individual. So, now based upon the information we have that 

what degree this person has completed, we can actually talk about three different levels of 

education and they are low, medium and high.  

So, there could be effects of gender and there could be effects of education on wage or salary. 

And primarily the way we have set up our research problem both of these explanatory variables 

are qualitative in nature. So, now as usual I assume that the gender qualitative variable has two 

levels, male or female. And to make it little bit easy-looking let us present the gender attribute by 

the dummy variable female. 

So, basically male is the base category. So, dummy variable female will take value 1 if the 

worker is a female. Now I have already explained you couple of minutes before that we are 

dealing with education as a qualitative information and that qualitative variable is represented by 

three categories. And here I am showing you what do I mean by low, medium and high. 

So, low is basically representing a person who has just passed the high school or maybe attended 

somewhat high school but high school dropout. And then medium says that there is a person with 

bachelor's degree. And then finally the high level denotes the person with master degree. So, 

here note that the qualitative variable education has 3 different categories or levels. 

So, if we want to avoid the dummy variable trap then we have to define two dummy variables by 

keeping one base. So, here we can keep low as the base and throw two dummy variables medium 

and high. If we are interested to see whether with increase in educational qualification there is a 

positive impact on wage or salary or not, so then it is better to keep low as the base category 



because then interpretation of the corresponding coefficients of these two dummy variables 

medium and high will be easy to handle. 

So, now we have this regression model with all possible variables. So, Y equals to the overall 

intercept beta naught plus beta 1 times female plus beta 2 times middle plus beta 3 times high 

plus beta 4 times female cross middle. So, here is the interaction and beta 5 finally is associated 

with another interaction variable female cross high. And finally of course there is this stochastic 

disturbance or end of error term u. 

So, now as usual we are going first talk about the regression equation which is the simplest 

possible. So, basically we are going to talk about what is the regression equation for the base. So, 

as I said we are going to first look at the equation for the base. So, here is the equation for the 

male. 

So, here you see that if we are talking about male worker then this female dummy will take value 

0. So, beta 1 times female will drop out from the equation. Beta 4 times female times middle that 

expression will also drop out from the equation. So, finally also beta 5 times female times high 

will also drop out. So, we have a very simple equation which says that Y equals to beta naught 

plus beta 2 middle plus beta 3 high plus u. 

So, now let us talk about low educated males versus low educated females. So, we are basically 

now fixing the level of education and we are going to see how gender is going to play a role in 

salary difference. So, I want you to be back to that equation again. And now let us assume that 

you have got data. 

So, you have actually estimated this regression model involving all 5 explanatory variables. So, 

in total you have estimated 6 parameters from the regression model via OLS method. And let us 

assume that the estimated coefficients are denoted by English alphabet B. So, for beta naught the 

corresponding OLS estimate is B naught. 

So, with this now let us look at the story. So, here for low educated males what is the estimated 

salary. So, we have to plug the values for dummy variables. So, as we are talking about males we 

have to place the value equal to 0 for female and we are also talking about low education, so the 

values of these two dummy variables middle and high will also take 0 value. So, basically we 



land up getting only the intercept term. So, for low educated males the estimated salary is 

basically the estimated value of the slope coefficient which is b naught. 

Now let us assume that we are talking about female. So, if we are talking about female then this 

female dummy will take value 1, but as this female worker is low educated the middle and high 

dummies in the regression equation will take value 0. So, even the interactions will be 0. So, 

everything will fall out of the regression equation and we will now have only 1 additional item 

that is basically the regression coefficient corresponding to the female dummy. 

So, let us assume that OLS estimator for corresponding regression coefficient is b1. So, we are 

going to get this estimated salary for low educated female b naught plus b1. So, b1 is the 

difference in the mean salary between the low educated females and the low educated males. So, 

this is the first salary gender gap. 

Now note that our regression model is pretty general in the sense that you can also talk about 

other types of gender gaps. So, now you can move on to a different level of education. So, you 

can move up to, say medium and then you can find the gender gap.  

Then you can move on to, concentrate on the high education class only and then there also you 

can talk about the gender gap. So, you can talk about several gender gap numbers and this is in 

contrast to the first story where we had only one delta naught which is basically the case of only 

intercept change in terms of gender. So, this model that I presented here, it is pretty general in 

nature and I leave this up to you to explore the other possible gender gap cases. So, wait for the 

next lecture. See you then, thank you. 


