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Hello friends, welcome back to the lecture series on Applied Statistics and Econometrics. So, 

today we are going to discuss the last topic in misspecification error and we are also going to 

talk about another problem sometimes which dilutes the results of linear regression analysis. 

So, before we start let us have a look at today's agenda items.  
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So, today we are going to talk about one kind of model misspecification error which is known 

as autocorrelation or serial correlation. So, we are going to talk about the detection of the 

problem, the nature and the consequences of the problem and we are also going to hint about 

one solution.  

Then we are going to talk about a problem called Multicollinearity which cannot be called a 

model misspecification error as such but definitely when you are running regression, this kind 

of problem may arise. So, I decided to warn you about it by educating it to you and we will 

have a very brief discussion on detection and the consequences of multicollinearity problem. 

Finally, we will also talk about the solution of the problem.  

So, if you remember we have assumed some assumptions for the classical linear regression 

model and one of the assumption says that there should not be any serial correlation between 

the error term. So, that means that if there is a data point say number fifth and if there is 



another data point say number sixth or fourth or forty second, there should not be any 

correlation between them or in statistical terms the covariance between these two error terms 

should be equal to 0. So, that is basically the assumption of no serial correlation. And when 

we have time series data, then this problem is called autocorrelation. 
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So, now we are going to look at this autocorrelation problem from the time series data’s 

perspective. So, let us start with that old classical linear regression model which says that 

covariance between epsilon t and epsilon s is equal to 0 where t is not equal to s. So, of 

course, t and s are two different time points on the time scale and in time series what happens 

this successive disturbance terms are correlated with each other. So, in time series regression 

if we observe that the successive disturbance terms are correlated with each other, then this 

problem is called autocorrelation. 

And if I want to talk little bit more about autocorrelation through a formal definition, then we 

can say that autocorrelation is a feature of time series data that shows the degree of similarity 

between the values of the same variable over successive time intervals. So, in this lecture we 

are going to talk about the most common form of autocorrelation which is called the first 

order autocorrelation so that means that epsilon t is correlated with epsilon t plus 1 and 

epsilon t minus 1. So, the lag between the time periods is considered to be 1.  

So, as I already explained in sentences that same thing is represented in bullet number 4, so 

here I am restating the same thing. So, by first order autocorrelation we mean that the current 

value of the error term is a function of the previous value of the error term. So, we can write 



this particular equation that you are seeing here. So, epsilon t can be represented as a linear 

equation as rho times its old value epsilon t minus 1 plus these Ut.  

So, here let me define what are the epsilon of course, we all know so that is the error term of 

the equation that comes from the original classical linear regression model and then rho is the 

first order autocorrelation coefficient. Why it is called autocorrelation coefficient? So, it is a 

special kind of correlation coefficient which is computed on the same variable, for that we 

observe a different values from different time periods. So, that is why it is called 

autocorrelation.  

So, if you remember when we had the concept of correlation introduced in the course, we 

talked about correlation between two distinct variables X and Y. But here we are talking 

about one single variable which is epsilon here, this stochastic disturbance term and we are 

interested in the correlation between the past value the present value of the same variable 

epsilon, that is why it is called autocorrelation.  

Now U is basically now another error term and that is a classical error term. So, that means 

that U is following or obeying all the classical linear regression model assumptions that we 

make on the disturbance term. So, U is not serially correlated or autocorrelated. 

Now this rho parameter in the equation measures the strength of the correlation between the 

past value of epsilon and the present value of the epsilon. And as it is a correlation coefficient 

its value lies between minus 1 and plus 1. So, needless to say that if you figure out rho is 

equal to 0, then basically the linear dependence between the past and the present value of 

same variable epsilon breaks down and you say that there is no correlation between the past 

and present value of the stochastic disturbance term. 

But if you see that rho is a very high positive number, it is almost close to 1, then you say that 

there is a very strong dependence between the past value of the error term and the present 

value of the error term. Seldom we get value of rho being negative, but theoretically this is 

possible.  
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Now, in this slide we are going to talk about the source and nature of autocorrelation. So, 

what could be the sources of autocorrelation? There could be 2 types of sources, one is 

omitted variable and the other one is wrong functional form specification. These are all 

model misspecification issues that we have dealt with before and you are running a time 

series regression. 

So, if you are now missing out on some statistically relevant variable which impacts Y, then 

that component will be part of the error term and as this particular time series variable is 

evolving with time, it has a trend in it so it will be there in the epsilon, the random error 

component of your regression model.  

So, itself it will make the that random, your component varying with time and there will be 

strong correlation between the past value and the present value of the random error term. And 

this could be the case for wrong functional form specification as well. Suppose there is a 

variable for which you see there is a quadratic trend after you have plotted the data with 

respect to time, but suppose you have not plotted the data, you stared your regression by 

fitting a straight line, so you are basically fitting a linear trend, whereas the correct trend is a 

quadratic one. 

So, as you are not fitting a proper polynomial to take care of the non-linear trend in the 

visible in the data, then that non-linear component of the trend equation will be now part of 

the error term epsilon. So, again you see that different values of epsilon, its past and present 

values of they will be correlated with each other because of this non-linear trend component 



that is part of the epsilon random error now because you have wrongly specified your 

functional form.  

Now, let us talk about this problem of autocorrelation from a simple example. Suppose we 

have this true model where the true relationship between Y and X is a quadratic one so you 

have Xt and Xt square both in the regression equation. But suppose you have forgotten to 

include this Xt square variable, so you are estimating a linear version of the model or 

restricted model which is just linear equation. So, now this term beta 3 times Xt square will 

be part of the error of your estimated model. 

So, here the new model that you are estimating is having this stochastic disturbance term vt. I 

just want to differentiate between these two random errors because they are not the same and 

so expression for vt is given also. So, you see that it is composed of the original random error 

coming from the true model which is epsilon t and the non-linear part of the actual 

relationship between X and Y which is beta 3 times Xt square. 

So, now we are going to talk about the nature of autocorrelation problem. So, I have already 

told you that the measure of autocorrelation which is the rho parameter, it can take value 

between minus 1 and plus 1. So, if rho takes value between 0 and plus 1, then we can say that 

there is positive autocorrelation and if rho takes value between 0 and minus 1, then we can 

call that rho or the autocorrelation is of negative type.  

So, what is positive and what is negative, it is going to be clear from the formal definition and 

I am also going to show you two diagrams which will be the illustration of these two types of 

autocorrelation.  

So, now let us have a look at formal definition for autocorrelation. We have already spoken 

about positive and negative autocorrelation by looking at the value of the rho parameter and 

here in this slide I am showing you the formal definition for both case.  

So, in the case of positive autocorrelation, the error term tends to have the same sign from 

one time period to the next and in the negative autocorrelation case, the error term has a 

tendency to do switch signs from negative to positive and back again in consecutive 

observations. So, these two definitions will be clear from the pictures that I am going to show 

here in the next slide. 
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So, the first picture in the slide is going to talk about the positive autocorrelation. So, here 

along the horizontal axis I am measuring different time points and along the vertical axis I am 

measuring the fitted residuals which is denoted by et. So, what is the fitted residual? So, if 

you have that simple linear regression model based on time series data, say yt equals to beta 1 

plus beta 2 times Xt plus epsilon t, you can adopt the OLS technique and then you will get the 

measures or proxies for the slope and intercept coefficients. 

So, after you get those fitted values of Y hat t, then you can detect that fitted value from the 

original observations yt and that will give you a measure or proxy or fitted value for epsilon t 

these are the realised values of the random variable epsilon t and they can be denoted by this 

symbols et. So, now here you look at the slide, the first diagram here, there is a sine cosine 

type wave that we see in the scatter plot. So, different points that you see here in this diagram 

the red bullets they are corresponding to different time periods.  

And as you see that if suppose I start with a negative epsilon t next epsilon t is also negative 

one, then it crosses that 0 line and then it becomes positive, but you see then next 3 ets are 

also positive, then it again goes down below 0 and then there are consecutive 5 time periods 

for which again I observe epsilon hat t or et to be negative.  

So, actually if you start with a positive number, then you will see a series of positive 

numbers, then it will fall down close to 0, then eventually it will become negative, then you 

will see a series of negative numbers, then it will cross the 0 line and then it will be again a 

series of positive numbers, so there will be a sine cosine type wave of the fitted residual 



values that is observed over a time period. In that case you can say that there is positive 

autocorrelation in the variable.  

Now, let us look about the negative autocorrelation case. Here, you see the dots are sky blue 

coloured bullets and these bullet points are all corresponding to different time periods. Now 

you see here the pattern is very different from the previous diagram. So, suppose I start with 

negative value of et for time period 1, the next time period 2 I see the next value of et is 

positive and then if I now move on to time period 3, then I see the et value if again gone 

down below 0 and it is a negative one.  

But in the fourth time period, it has again risen and now it is a positive number. In the fifth 

period it is again negative. So, you see it is constantly changing the signs. So, if in one period 

it is positive, the very next period it is negative, then it again becomes positive and this way if 

you see the they are constantly switching their signs, then you are convinced that in your data 

you have a case of negative autocorrelation. So, we have spoken in detail about the detection 

of autocorrelation from graph. 
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Now, let us look at the consequences of autocorrelation. So, why are we so much bothered 

about autocorrelation? If we ignore autocorrelation, then what will go wrong? So, that I am 

going to list here in terms of 3 bullet points in this slide. So, you see the OLS estimators that 

you get that you run OLS and you get this coefficient estimates, they are still going to be 

linear and unbiased, there is no problem with that, but there will be a problem with the 

variance part and that is why the OLS estimators are not going to be of minimum variance 

nature. 



So, the minimum variance property is breaking down and that is why the OLS estimators is 

no longer the most efficient estimator. Now, why we are saying that it is not efficient because 

formulas used to compute the OLS standard errors which are abbreviated as SE are no longer 

the correct one and the confidence intervals and all the hypothesis tests that use them will 

give you wrong inference. So, the typically the bias in the standard error estimate is negative, 

so that means that the OLS underestimates the standard errors of the coefficients and of 

course, the consequence is that it will overestimate the t scores.  

So, basically you will draw wrong conclusion by looking at the t value and the associated 

probability values. When you are judging whether a particular coefficient associated with a 

variable is statistically significant or not, you generally tend to get higher t values. So, then 

there is high chance that you will declare a particular coefficient significant when it is 

actually not.  
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Now, in this slide I am going to talk about the most popular and common case of 

autocorrelation and that is the first order positive autocorrelation. But the theoretical 

framework that I am going to show you it is general enough so that it can also take care of the 

negative autocorrelation if you come across one. So, let us start with that same old regression 

based on time series data that says that Yt equals to beta 1 plus beta 2 times Xt plus epsilon t. 

Now, you propose an autoregressive of order 1 model that is abbreviated as AR(1) model and 

that model says that you can have another model for your stochastic disturbance term epsilon 

t that is there in the original regression equation and now you write that this epsilon t is 

linearly dependent on its past value of the last year. So, the dependence is reflected in the 



equation that I have written here. So, here you see that there is no intercept term, but there is 

this rho which is the autocorrelation coefficient between the past value and the present value 

of the variable epsilon and this rho is multiplied with the past value of the stochastic 

disturbance term which is epsilon t minus 1. 

And the of course, there will be some stochastic disturbance term Ut which is following or 

obeying the classical linear regression model assumptions. So, here you note that I am still 

not imposing any sign restriction on rho, so rho can take any value between minus 1 and plus 

1.  

Now, as I said that this new random error variable Ut obeys the classical linear regression 

model assumptions. Let us have a look at those assumptions explicitly because we are going 

to make use of this assumptions to find out the properties of epsilon t which is serially 

correlated. 

Now, let us first look at the mean, so if the classical linear regression models on the 

distribution of error terms holding, then we can write expected value for Ut is equal to 0, the 

variance will be sigma square U which is constant, it is not varying with respect to time and 

then we have covariance term COV of Ut Us where t is not equal to s equal to 0. So, you see 

for Ut there is no autocorrelation.  

But now let us see how these assumptions on U are reflected in the properties of epsilon. We 

can show by calculations, I am not showing you the calculations because this is not a theory 

course and I have not shown proofs for many things. I have limited time so I am not going to 

derive this thing step by step, I am only going to report the final results.  

So, the mean expected value of epsilon t will be equal to 0, the variance expected value of 

epsilon t square will be sigma square epsilon divide by 1 minus rho square and finally the 

covariance term this COV of epsilon t comma epsilon t minus k shall be equal to rho to the 

power k.  

Now remember this covariance thing which is rho to the power k, I am going to come back to 

this thing later when we will be discussing the case of time series data analysis. The modern 

version of that.  
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So, in this slide again we are going to discuss the detection of autocorrelation via hypothesis 

testing. So, although we have detected the nature of autocorrelation from graphs, but that is a 

summary measure that is a graphical summary of the residuals. You have to be statistically 

sure than indeed there is positive or negative autocorrelation in the residuals.  

So, for that you have to make use of a test called or known as Darwin-Watson test. It is a 

slightly complicated test compared to our old friends like t and f but needless to say whenever 

you are running time series regression in any statistical package, routinely they report 

Darwin-Watson’s statistic value and the corresponding p value. 

So, it is important to understand what the software output actually says, so that is why I am 

introducing this Darwin-Watson test although it is not in the family of t f chi square tests that 

we have discussed in the course. First of all note that there will be assumptions to be made if 

you want to conduct Darwin-Watson test. First assumptions says that the regression model 

should have an intercept term and I am talking about the original regression model of course.  

Then the second assumptions says that the serial correlation is of first order in nature and that 

is also we have discussed and the third assumptions says that the regression does not include 

a lagged dependent variable as an independent variable. So, this is a new thing that we are 

introducing here so let us have a discussion on that. What do we mean by lagged dependent 

variable? Many times we assume that when we are modelling an economic variable, it is 

partially explained by its past values.  



And sometimes when you are running a regression to model Yt, you can add Yt minus 1, Yt 

minus 2 as explanatory variables because you believe that as these are the values coming 

from the past although they are on the same variable, but as they are coming from the past 

periods, they are truly exogenous, so you can throw them in the regression model.  

So, that if you involve this kind of variable in the model which are basically the past values 

of the variable that you are explaining that is your dependent variable that is called the lagged 

dependent variable and the values of the lagged dependent variables are the previous data 

points of the same dependent variable. Now you do not have such scenario if you want to 

conduct a Darwin-Watson test.  

Now, it is time to say hypotheses. So, we will start with the null hypothesis, we want to test 

null hypothesis that rho equals to 0 for obvious reason we want to be sure whether there is 

autocorrelation or not. Autocorrelation if it is there, then it is going to be either negative or 

positive but it will certainly not be 0. So, null will be set at rho equals to 0. And the 

alternative as you say I am showing anything can happen, it could be positive, it could be 

negative so that I why we can write rho not equal to 0. So, actually we are proposing a two 

sided test.  

Now, what is the test statistic? So, test statistic is denoted by Darwin-Watson d, a small d. In 

some textbooks capital D is also used. So, this is the formula, so you see you have to run that 

original regression and that basically regressing Yt on Xt and you obtain the parameter and 

slope coefficient estimates.  

Then you obtain the fitted values of Y and then you take the difference Yt and Yt hat and that 

is basically the proxy measure or estimate of that random error epsilon t you call it et that we 

have discussed also but I am just reminding you again. And this et we are going to make use 

when we are defining our Darwin-Watson d test statistic.  

So, here in the formula, you see we are going to make use of that et that I just explained how 

to construct and then there could be 3 possible cases that you can encounter when you are 

looking at the values of potential values of this d statistic. So, if there is extreme positive 

serial correlation, then you can get d equal to 0, if you find extreme negative serial 

correlation, then you can get d almost equal to 4 and if there is no serial or autocorrelation, 

then you will get a value close to 2. And these are all results coming from econometric 

analysis.  



I am not going to explain why for d equals to 2, you will see no serial correlation and all. I 

am not going to show you any proof, but later in one of the slides I am going to talk about the 

relationship between the Darwin-Watson test statistic d and the proxy measure of this 

autocorrelation coefficient and from there you will get some idea why this d values are taking 

such values and we are saying that by looking at the value of d we can actually infer whether 

there is positive or negative or 0 autocorrelation.  
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Now, in this slide we are going to continue with that Darwin-Watson test. So, we are going to 

talk about two different cases here and case 1 says that we are going to test for positive serial 

autocorrelation and then you set up your null hypothesis saying that well, rho could be 

negative or 0 and alternative HA you can say that rho is positive and then you translate this 

hypothesis in terms of the decision rules so that you can decide whether to go with the null 

hypothesis or the alternative hypothesis.  

So, you reject null hypothesis if you observe that your calculated value of d is less than the 

tabulated value dL so there is a Darwin-Watson test statistic table and from there you can 

read the critical values. So, if the d value is less than dL, then you reject your null hypothesis 

and you do not reject null hypothesis if you observe your d is greater than dU. But if the 

calculated value lies between dL and dU, then the test result is inconclusive. So, basically 

what happenes, Darwin-Watson test statistic table is fairly complicated one.  

So, for each case they are reporting two numbers dL and dU and upper limit and one lower 

limit. So, if you are conclusively in one of the regions where the calculated value is either 

greater than the dU value or lower than the dL value, then you are safe. So, then you can say 



that I can make a decision, but if you fall in the middle zone, so which is the inconclusive 

zone, so, in that case you cannot make a decision. So, this is very different from what we 

have encounter so far in the course because always we were able to make conclusive 

decisions by conducting t test, f test or chi square test, but that is not the case with Darwin-

Watson. 

So, I do not want to spend more time on Darwin-Watson because this is a very common test 

in econometrics but it is not very straight forward to understand so I skip by showing this 

slide once more to you and talking about the second case, but I am also going to tell you that 

you do not worry about this critical values and so much, there is an easier way out to read the 

software output and take a call whether you will go with null hypothesis or you will not go 

with the null hypothesis.  

So, now let us look at case 2 which says that I am going to go for a two tail test. So, although 

I am saying that my null hypothesis is of no autocorrelation or no serial correlation, but my 

alternative hypothesis says that there could be either positive or negative serial correlation. 

And again I am showing you the value ranges for the regression rule and let us now move on 

to the second slide where I am going to talk about a simpler way to handle the Darwin-

Watson test because this is very difficult to remember.  
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So, in this slide I am going to continue the discussion on the Darwin-Watson test. So, here I 

am now going to show you relationship between the Darwin-Watson test statistic and that 

proxy for autocorrelation coefficient. So, if you can get an estimate for the unknown 

parameter value rho, suppose we call it small r, then it can be written that there is a linear 



relationship between d and r and an equation is shown here. So, small d equals to 2 times 1 

minus r. 

Now, you see from this particular relationship between Darwin-Watson d and proxy measure 

for autocorrelation coefficient we can actually figure out different values of d statistic for 

different cases of autocorrelation. So, let us now first look at the case of 0 autocorrelation. So, 

if there is 0 autocorrelation we expect the r will take on the value 0 so if you plug 0 in that 

equation, you are going to get 2. And if you plug the value of r equals to 1 that means that 

there is prefect positive autocorrelation, then you are going to get a d value of 0. 

So, by looking at the calculated d statistic you can actually infer what is there in the data. So, 

if you get a value of d equal to 2, then you know or if you get a value very close to 2, then 

you know that there is no autocorrelation that exists in the residuals. So, your time series 

regression is autocorrelation free. And if you find d very close to 0, a very small number, then 

you can be sure of the fact that there is very strong positive autocorrelation and in fact, it 

could lead to a value of autocorrelation coefficient equals to 1. 

Now, we are going to talk about an easier way to handle Darwin-Watson. Now Darwin-

Watson is a very important test and it is routinely done by all statistical software when you 

are running a time series regression. So, those softwares are reporting the p value for the test 

statistic and you forget about those critical values like d, u dL because it is difficult to 

remember and not only it is difficult to remember, the Darwin-Watson table is also very 

limited, so if you consult an econometrics textbook, you are not going to get all possible 

cases of dL dU values.  

So, if you get a case which is relevant for your statistical investigation, you may not get a 

particular combination of dL and dU and then take a decision. So, the best way to get around 

this dL dU issue is by looking at the p value and then we all know how you are going to make 

a decision.  

So, that we have learnt in the case of hypothesis testing and we have applied the same rule for 

t test, chi square test, f test everything that we have done, so it is not new. So, we are going to 

reject the null hypothesis if you observe a p value which is less than the chosen level of 

significance alpha. 
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So, suppose your Darwin-Watson and the graph tells you that there is autocorrelation what 

will you do? So, will you not run any regression involving time series data? Absolutely, not. 

There are some solutions of you come across this autocorrelation problem and we are going 

to talk about one type of solution because we do not have time. I have only one lecture 

devoted to this particular problem, so I will not cover the other solution that one can use. But 

here the solution I am going to show you is a very popular one and it is called generalized 

least squares method. 

So, you start with the original regression model and that is Yt equals to beta 1 plus beta 2 

times Xt plus epsilon t. Now, you rewrite the original model by using that assumption that we 

made that AR(1) assumptions. So, that says that the random error term, epsilon t that is there 

in the regression model that follows an AR(1) process. So, we plug that expression for or in 

place of epsilon t and we get this rewritten original model.  

Now you lag the original model by one period. So, by lagging means that we have to go to 

the past. So, you see the t subscript is now changed to t minus 1 as we are going 1 period 

back in the past. So, similarly, we have to make that adjustment for the variables, but not for 

the coefficients, so you see Xt becomes Xt minus 1 and epsilon t will become epsilon t minus 

1. Now you get an expression for the lagged error term epsilon t minus 1 and that is simple 

you have to just switch expression from one side to the other. 

Now you plug these lagged error epsilon term that you obtained in fourth bullet point, you 

take that expression and place that in the expression or equation that you see in the second 

bullet point. So, you see after rho there is epsilon t minus 1 and epsilon t minus 1 is not 



known to us so we are finding a proxy for epsilon t minus 1 and we are replacing epsilon t 

minus 1 by that proxy expression. So, now you rewrite the original model and it becomes 

somewhat complicated looking. So, now you see Yt equals to beta 1 plus beta 2 times Xt plus 

rho times Yt minus 1 minus beta 1 minus beta 2 times Xt minus 1.  

And then finally you have this new random error which is Ut which obeys the classical linear 

regression model assumptions. Now, you rewrite it further, what you do, you take the y 

values in one side. So, now you have Yt minus rho times Yt minus 1 equals to beta 1 times 1 

minus rho plus beta 2 times Xt minus rho X t minus 1. Of course plus epsilon. Now you see 

what it is happening, the intercept has changed to a new thing, the dependent variable y is in 

some kind of a difference form and the explanatory variable X is also in some kind of a 

difference form.  

So, now if we want to run OLS with these data, can we do it? Although we have done all 

these algebra, but still we cannot apply OLS on this particular equation. There are two 

different reasons why we cannot do OLS here. So, one is the observation is used up the first 

one is a pity problem so you lose out on one observation that is eaten up in creating the 

transformed or lagged variables leaving only T minus 1 observations to run your OLS model, 

but it is a pity problem, if you have say 40 years of data or 40 months of data, then you have a 

large enough sample because the sample size is greater than 30 and you can sacrifice one 

observation and then conduct OLS that is not a big problem. 

But well, it is a big problem when you have only 10-12 years of data because then losing out 

on one observation, on observation means that you are sacrificing a lot of information from 

the data. But the more serious problem is that the value of rho is not known because rho is an 

unknown population parameter. We do not have much idea about rho so without knowing the 

value of rho, how can I calculate these variables, these transformed variables like Yt minus 

rho times Yt minus 1 and Xt minus rho times Xt minus 1. 

So, we have to get a proxy measure for rho and there are ways to get proxy measure for rho 

and we are going to discuss one such measure. So, we have to go back to that original model 

and you have to run the linear regression via OLS method, you have to generate the residuals 

and these residuals are et, so these are Yt minus Y hat t. And now you lag these residual by 1 

period so you get et minus 1 and then you regress these residuals et on its one period previous 

value that is et minus 1.  



So, you will get a coefficient from that linear regression and that is going to be rho and if you 

estimate this regression equation via OLS method, you are going to get rho hat, a proxy 

measure and estimate for the unknown population parameter rho and that we have already 

called r and you can now make use of this coefficient estimate and you can transform the 

variables and then you are all set to run your OLS on the transformed model.  
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So, now in the last slide of today’s lecture I am going to focus on multicollinearity. Now, 

multicollinearity is not a misspecification issue as I have already told you when we began 

todays lecture. It is basically a data issue. So, sometimes you may have a regression model 

specified where you have some explanatory variables which are related to each other.  

In socioeconomic context it, many explanatory variables are somewhat related to each other, 

but the problem is that the mild relationship is okay but if the relationship is very strong and 

if you keep both, then that becomes a problem and that actually leads to the multicollinearity 

problem. 

So, here we are going to talk about the formal definition of multicollinearity, we are going to 

talk about how to detect multicollinearity and the consequences of the multicollinearity 

finally I am going to end the discussion by pointing out some solutions. So, multicollinearity 

can be formally defined: it is also sometimes called collinearity in some textbooks. So, it is a 

phenomenon in which one explanatory variable in a multiple linear regression model can be 

linearly predicted from the others with a substantial degree of accuracy.  



So, what does it say? So, it says that suppose you have 1 explanatory variable X1 and there is 

another explanatory variable C3 and you suspect that X1 could be modelled through X3 

because there is strong association between these two variables. So, if you run X1 on X1, so 

if you run OLS regression of X1 on X3, then you are going to see a very significant f value, a 

very significant t statistic value and a very good r square value and if that happens, then you 

have a multicollinearity problem.  

So, here I have already told you how to detect multicollinearity problem, so let us have a look 

at the slide and then continue the discussion. So, coming back to the detection issue, there is 

another way to detect multicollinearity problem and this time you do not have to run a 

regression, you can compute the Pearson correlation coefficients between different 

explanatory variables and if you notice high pair wise correlation between two explanatory 

variables, then you can suspect that there could and multicollinearity there in your regression 

model. 

Now, what are the consequences of multicollinearity? Well, I am going to report some of the 

theoretical findings, I am not going to provide much justification or any proof, but I think you 

should remember this. So, here under the third bullet point, I am showing you these 4 sub 

bullet points which are talking about the consequences of multicollinearity if it exists at all. 

So, first of all you are expected to get large standard errors and wide confidence intervals. So, 

related consequences is that you will get insignificant t values even with high R Square 

values and significant f value. 

And thirdly, coefficient estimates are sensitive to deletion or addition of a few observation. 

And last but not the least, the if multicollinearity exists, then my OLS estimators are good in 

prediction when you are doing that in in the sample. So, basically you are talking about the 

within-in sample prediction, but generally they do a very poor job when you are going for out 

of sample prediction.  

So, now let us talk about the solution for these multicollinearity problem. now, it is not a kind 

of model misspecification issue that will require a serious bit of adjustment in the model and 

you do not have to change the model’s functional form or you maximum you can do you can 

drop one particular collinear variable that is strongly related with another explanatory 

variable, but sometimes you may not have to even drop the explanatory variable because if 

you think that that variable is important and you should keep it inside the regression, then 

what you need to do?  



You need to get more data because sometimes when you increase the sample size and you get 

more data, this association between this two potential collinear variables they become diluted. 

So, in that case you will not have a multicollinearity issue. So, actually what happens, you 

should look at the correlation matrix first before you run your regression and then you look at 

the values of the Pearson correlation coefficient, if the absolute value of the Pearson 

correlation coefficient is less than 0.775, then I think you do not have to worry about 

multicollinearity problem.  

It becomes a serious problem when this absolute value of Pearson correlation coefficient is 

above say 0.75 or 0.8. So, that is at, that is what we have observed in empirical research. So, 

this is it for the time being. So, I end today’s discussion by giving hint what we are going to 

discuss in the next two lectures for this week.  

So, next two lectures are going to be devoted to modern time series data analysis. We are 

going to talk about method which is very widely known when dealing with time series data 

that is called Box and Jenkins method. So, in relation to that we are going to also talk about 

some regression models. So, see you then, thank you.  


