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Hello friends, welcome back to the lecture series on Applied Statistics and Econometrics. So, 

today we are going to continue our discussion on model misspecification related errors. And 

today I am going to talk about new types of model specification errors. So, before we start 

formal lecturing, let us have a look at today’s agenda items. 
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So, I will finish the discussion form last lecture and I am going to show you some examples 

of instrumental variables and how they are handy to tackle the case of omitted variable bias in 

linear regression analysis and then I am going to introduce two types of model 

misspecification problem. So, one is functional form misspecification and for that we are 

going to study something know as Ramsey’s reset test and then the third one in the least we 

are going to talk about heteroskedasticity being a model misspecification issue. 

So, we do not have enough time left in the course to discuss this case of heteroskedasticity in 

great detail, it is a vast area so we are going to only mention some points which are the most 

important. So, in the last lecture I have formally introduced the concept of an instrumental 

variable. So, today I am going to start the discussion again by reminding you about the formal 

definition once again. It is not formal definition, but if you want to propose an instrumental 

variable to solve the omitted variable bias problem, then what things you should keep in 



mind, so that is what we are going to see first and then I am going to talk about two 

examples. 
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So, the first bullet point in this slide actually is talking about two conditions that you should 

keep in mind or the instrumental variable say Z should fulfil these conditions to be used in 

linear regression analysis. So, the first of all says that it must be exogenous so it should not be 

effected by any other variable in the regression equation system. So, in other way we can 

express these condition by statistical concept covariance. So, covariance between the 

proposed IV say a variable Z and the epsilon the error term, should be equal to 0.  

And the second condition tells us that the proposed IV say Z again should be correlated with 

an endogenous explanatory variable X. So, in statistical terms covariance between Z and X 

should not be equal to 0. Now, I am going to talk about two different examples from real life 

and I am not going to show you statistical estimation or regression tables, I am just going to 

discuss these cases as case studies.  

So, the first example I take from the field of education research or education economics and 

there are many scholars who are interested to measure the rate of return to schooling and note 

that it is not only an academic pursuit, there are policy makers and others stake holders in the 

system who also may be interested to know what is the return to schooling because if the 

return is high, then government may also decide to allocate more money in the annual budget 

to spread cheap but quality education to the mass.  



And also think from an individual parent’s perspective or an individual’s student perspective. 

If the return to education is high, then actually the parents and the student of course, himself 

or herself will be much more interested to study for higher degrees and spend more years in 

schools or colleges. So, with this applied motivation, let us have a look at a very simple 

hypocritical case where we are going to discuss the omitted variable bias problem first and 

then we are going to propose some IV. 

So, suppose there is a true model to figure out the rate of return to schooling, so the model 

has 3 explanatory variables and Y is basically a person’s log salary and X1 is the person’s 

years of schooling completed. So, you can say that the coefficient associated with these 

variables X1 which is beta 1 is the measure are rate of return to schoolings.  

So, the marginal effect of variable X1 which is given by this coefficient beta 1 so the beta 1 

coefficient which is associated with these explanatory variable X1 actually gives you a 

measure for return to schooling because it is a marginal effect. So, it tells you that if a student 

spends one more year in school, then how much it is going to increase its log salary. So, in a 

way it is a return to schooling measure.  

Now, there are other two explanatory variables, say X2 measure a person's years of job 

experience because of course, salary of a person depends a lot on the job experience and 

finally we have another explanatory variable X3 and that is measuring the ability or 

motivation of the person in concern. Now, note that although this variable X3 is very 

interesting variable and of course, we know that salary may potentially depend on a person’s 

motivation and efforts that he or she puts in the job place.  

But how to get a measure for this variable X3? No data is available to start wit so although 

you know that from intuition there is a variable that may impact the salary of a person, but 

you do not have any data on that particular variable, so then what to do? You have to find out 

a proxy an instrumental variable to be inserted in place of these unobserved variable X3, but 

it has to follow certain conditions that I have already stated at the very beginning of this slide.  

So, now we are going to talk about what are the potential choices for instrumental variable. 

So, in academic literature tests scores like CGPA or CPI are often used as a proxy or 

instrumental variable for these unobserved variable ability or motivation of a person because 

you see the obvious linkage here. So, if the person is motivated and hardworking and has 

higher intelligence or ability than the others, then that should be reflected in the CPGA or the 

CPI or the tests scores from Board Examination.  



At some point of time this ability is going to be reflected through marks or performance in 

the exams. So, if you somehow can access the scores from some kind of an independent test 

for the student, then you can make use of that information in the regression equation as an 

instrumental variable to take care of the unobserved ability factor. Also, in education 

economics scholars have come up with another interesting instrumental variable in this 

context and that is proximity to the educational institute.  

So, here one can say that if a student is deciding close to an educational institute or if the 

distance is not that far, then the student will attend classes more frequently he or she will visit 

the educational institute more frequently and that will help him or her to study well and talk 

with friends or consult teachers or library and that will jack up his or her internal ability. So, 

now we are going to talk about another example and this time we are going to bring the 

example from the field of medical science literature or health economics also you can say. 

So, we all know that the birth weight of the new-born babies are very important because by 

looking at these numbers doctors can actually say whether there is a problem with the new 

born or not and if there is a problem like especially when the babies are born with very low 

weight, then they need special care. So, doctors are very interested to know what are the 

determining factors of low birth weight because low birth weight is not at all a very good 

thing. With this, let us have a look at how we can frame a regression equation to explain 

variation in birth weights of new-born babies.  

Suppose there is a true model where we are using 4 explanatory variables to explain the 

variation in Y which is a child’s log birth weight my explanatory variables are X1 which is 

mother’s years of schooling completed and X2 is basically the age at first pregnancy and X3 

is average number of cigarettes smoked per day and X4 is the sex of the new-born. So, now 

we apparently you may think that I have got 4 explanatory variables to model the variation in 

Y and I know from medical science literature that all these 4 may have some impact on Y so 

they could be very good determining factors. 

And then let us run the regression, but the story is not that simple. Wait a minute, are you 

missing some other variable? It may look that you have 4 variables in the regression equation, 

but there could be a few more which you are not taking care of. So, now let us look at this 

equation again. So, here there could be an omitted variable problem as well like if the mother 

was exposed to passive smoking. Now, how to control for that unobserved explanatory 



variable? So, here we can think about an IV that is used in literature and that is average price 

of cigarette, why? 

Because see ultimately cigarette is a consumption good, you have to go to a shop and 

purchase it from the shopkeeper and of course, your demand or purchase will depend a lot on 

the unit price of the cigarette. So, if we are talking about the sample coming from a large 

country where you have many states, so every state government may have a different tax 

structure for the tobacco products and cigarette may be taxed differently from one state to the 

other. So, there could be a price differential expected and that could actually lead to higher or 

lower demand for cigarette purchase. 

So, the passive smoking factor which you are not observing and do not have data, you can 

replace it by a proxy or instrumental variable say average price of per unit of a cigarette 

because you think that they could be related. So, this is it as of now on instrumental variable, 

now we are going to move on to the next case of misspecification error.  
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So, now we are going to talk about the functional form misspecification problem and that we 

are going to solve by Ramsey’s reset test. Now what do I mean by functional form 

misspecification? Suppose you are extremely lucky in the sense that you have got all the 

statistically relevant variables for your regression equation, so there should not be an omitted 

variable problem. Well, but there could be other types of problem and it is coming from the 

functional form that you are assuming for your regression equation.  



So, suppose you are assuming that all these explanatory variables are linked to the dependent 

variable in linear manner. So, basically you are saying that the statistical dependence between 

the explanatory variable X and dependent variable Y is linear of nature. But who told you a 

priori that there is linear relationship? Real life is real life and data is data. So, without 

actually looking at a plot of Y versus X, you cannot even make this assumption that linear 

relationship exists between X and Y. 

Because in the first part of this econometrics component of the course, we have discussed 

various functional forms, there could be sufficient non-linear relationship between two 

variables which is actually supported by the previous or past literature. So, if you 

oversimplify the model, suppose the relationship is highly non-linear and it requires a 

polynomial curve, but you are over simplifying by fitting a linear line, straight line, then there 

could be functional form misspecification and that will impact the distribution of the errors. 

Why? Because ultimately, if there is functional form misspecification problem like let us take 

the case of polynomial and linear because it is easy to understand.  

So, suppose you actually require a cubic function, so in polynomial of degree 3 for your 

explanatory variable you require not only the X, but you require X square and X cube also as 

explanatory variable in the linear regression equation, but you have only X. So, now the 

impact of this non-linear components like X square and X cube, where will they go? So, they 

will go to the error component of your regression equation. So, you see, you are creating an 

omitted variable problem by choosing the wrong functional form or over simplifying your 

regression equation functional form. So, this is basically in a nutshell model misspecification 

error on functional form.  

So, now we are going to conduct a regression equation specification error test as proposed by 

Ramsey and at this point, I cannot check myself to talk about little history stuff, so it is 

interesting to note that this Ramsey’s reset test was proposed by Ramsey when he was doing 

his PhD. So, sometimes very interesting innovations or findings or developments can happen 

in the PhD thesis itself. So, Ramsey’s reset test is one of the examples of that. So, here we 

start with defining my null hypothesis. So, I assume that the linear relationship actually is the 

true relationship, so I say that expected value of Y given X is a linear function of my 

explanatory variables X. 

And the alternative could be that this assumption is false so you say that the expected value 

of Y given X is not a linear function of X. So, note that here when I am defining my null and 



alternative, I am talking about the expected value of Y given X. So, basically I am talking 

about the population regression function. So, that is very interesting point to be noted here. 

Now in this slide I am going to talk about 4 different steps that must be followed in order to 

conduct Ramsey’s reset.  

So, in step 1 you estimate the model that you think is correct and obtain the fitted values of 

the dependent variable and you can call them Y hat i and then in step 2 you estimate the 

model of step 1 again but this time you include the quadratic and the cubic terms of the fitted 

values of Y. So, you have extra two explanatory variables in the model namely, Y hat i 

square and Y hat i cube. And this concept where you add some artificial variables based on 

the fitted values in addition to the existing regressors in the regression equation is known as 

auxiliary regression. So, basically you have to now run an auxiliary regression but you have 

to apply it via the OLS method only.   

In step 3 what we do? So, the model in step 1 is the restricted model of course, and the model 

2 in step 2 is the unrestricted model so you see the Ramsey, it is a test can also been seen 

from a restricted versus unrestricted model problem. And now we know what to do, we have 

previously used f test, here also we are going to make use of our good old friend f test. So, 

from two regressions; the mother equation regression and the auxiliary regression, you 

calculate the f statistics values and then you come to the step 4 which is also the last step. So, 

there you compare the calculated value of f statistic with the f critical value and if f statistic is 

greater than f critical value, then we reject the null of the correct specification.  

So, let me talk about the degrees of freedom issue here because of course, if you want to 

conduct the f test, you have to know the degrees of freedom and here as I do not have enough 

space left in this slide and I do not want to go to a new slide to finish my Ramsey’s reset, I 

just want to talk about the degrees of freedom verbally. But please be attentive here. It is 

important because you cannot conduct reset without having a proper idea about the degrees of 

freedom for f.  

So, now note that here I am actually introducing two new explanatory variables in the 

auxiliary regression and suppose the coefficients I am naming them as delta 1 and delta 2. So, 

delta 1 is associated with the square term of the fitted value and delta 2 is associated with the 

cubic value of the fitted value. Now you see that the null hypothesis, if it is correctly 

specified, then basically we can say that the null hypothesis can be restated in terms of delta 1 

and delta 2.  



So, for the auxiliary regression model, we can actually have these null hypothesis delta 1 is 

equal to 0 and delta 2 is also equal to 0. So, the distribution of the f statistic here is 

approximately following an f distribution with degrees of freedom 2 and n minus k minus 3. 

Now, we are going to move on to another type of model misspecification error problem and 

that is called heteroskedasticity. 

Now, heteroskedasticity is not a new concept to you, we have introduced these terms 

homoskedasticity and violation of homoskedasticity in special case. So, heteroskedasticity 

actually is linked with all these concepts that we all already have explored. So, it will not be a 

very difficult thing for you to appreciate what we mean by heteroskedasticity.   
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So, a homoscedastic error is one that has constant variance and of course, heteroskedasticity 

is just opposite of that so a heteroskedastic error is one that has non-constant variance. Now, I 

am going to explain this concept of heteroskedasticity through a simple two variable equation 

model because it does not matter whether I go with k variable or not. The philosophy behind 

this concept or this topic is going to remain the same. So, why clatter our slides with 

unnecessary symbols and all, so let us stick to a simple two variable case. 

So, let me start with the same story that we have discussed at the very beginning of part 2 of 

this course which is econometrics. So, do you remember how I started talking about OLS 

estimation in the context of econometrics? I actually started with a story that consumption of 

households is going to be a linear function of income. So, if there are two uses of income, one 

is of course, consumption and the other one is savings. So, of course, savings is income 

minus consumption so savings will also be a linear function of income, household income.  



So, basically I now want to talk about savings because we have already dealt with the 

consumption, so I now want to tell the story in terms of savings. So, suppose we have this 

task at hand, we want to estimate a savings function and there I assume that household 

savings actually depends on the households total income. So, these are the only two variables 

to start with.  

Now, here I am showing you this simple linear regression model where Y represents savings 

and X represents income and as incomes grow, people have more discretionary income and 

hence there is more scope for allocation or reallocation of their income in the savings and 

consumption baskets. So, basically what I want to say that as you have more income, then 

you have better flexibility, and you can decide more flexibly that how much you are going to 

save and how much you are going to spend because you have enough income.  

So, you can expect a high degree of variability in the savings especially for middle income 

group or rich income group people. So, here we can say that this variance of Y which is 

basically savings, it depends on the level of X at which we are looking. So, for lower values 

of X, the error variance maybe smaller and for higher values of X, the error variance may go 

up.  

Now, how it is going to go up, whether it is going to increase linearly or it is going to 

increase non-linearly that we do not know but what we are saying that sigma square i, the 

error variance for the ith individual is higher than sigma square say j when the jth observation 

or the household is a part of relatively lower income class. 

There could be other sources for heteroskedasticity as well and we are going to talk about 

very briefly about three of such sources. So, one is our omitted variable case. So, quite often 

we get the heteroskedasticity problem because some important variables are omitted from the 

model and if these omitted variables are included back in the model, then this fear of 

heteroskedasticity will go.  

And there could be another second source of heteroskedasticity, and it is the wrong functional 

form to link Y and Xs and third one is the case of skewness. So, if there is one or more 

explanatory variables which are highly skewed, then that will have an impact in the model 

and it will create heteroskedasticity.  

So, we have figured out the sources of heteroskedasticity, now let us look at the 

consequences of heteroskedasticity. What is a big deal if my data is showing presence of 



heteroskedasticity? Well, it is a big deal because the statistical inferences that you are 

drawing from the regression equation may all be faulty.  Now, what do I mean by that? Now, 

statistical inference actually has two different components and we have spoken about them at 

length so you may be right if you are guessing that am I talking about estimation and 

hypothesis testing? Yes.  

So, now let us discuss the consequences of heteroskedasticity problem if it exists on these 

two components of statistical inferences. So, first we are going to talk about the case of 

estimation. Now, it can be shown that even if there is problem of heteroskedasticity in my 

data, but still my OLS estimator are unbiased. So, I am not going to suffer a lot. Infact no 

suffering because I will get a set of unbiased estimates anyway, but the problem emerges 

when we are going to concentrate on the other component of statistical inference which is 

hypothesis testing.  

So, when we are going to conduct hypothesis testing or when we are going to like make 

confidence intervals around the estimated regression coefficients, then actually we will have 

a problem and this problem is emerging because if there is this heteroskedasticity problem, 

then it will impact the standard deviation of the beta coefficient distribution or in other words, 

it will have an impact on the standard error of the regression coefficients. So, in a nutshell we 

can say that the hypothesis tests and confidence intervals may yield wrong inferences because 

the variance of the slope coefficients are wrong.  

Now, let us have a look at a simple graph which is showing the presence of heteroskedasticity 

in the data. And I am going to only show you a simple case and this simple case is based on 

the savings and income story with which I started the discussion on heteroskedasticity.  
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So, here, I am measuring my income level as X variables and then I am also measuring 

savings as the Y variable and there is also one extra axis Z axis and on that I am going to 

measure the conditional probabilities of Y given X. Now, you see the gold colour or the 

orange colour straight line that upward stopping straight line that you are observing in this 

two dimensional plain X and Y that is basically my equation or population regression 

function, it does not have any stochastic component. 

But note that this population regression equation or population regression function will pass 

through the mean point of the expected value of Y for a given value of X. So, here I am 

showing you 3 different possible values of X, so for each of these values, I have erected 

vertical lines in the X and Y plane. So, all my values of Y for a particular value of X variable 

will now lie on any one of these lines. So, if I say X equal to x1, then all my Ys for the 

household which is sharing its income value being x1 for that the savings Y values will lie on 

this vertical line which you here is drawn at the value of X equal to x1. 

And of course, we have collected a sample, so there will be sampling distribution of the Y. 

So, there will be a distribution of the savings values. So, what you see here in terms of the 

shape of the distribution that it is becoming flatter and flatter. So, what does that mean? So, it 

means that the variance of the distribution is increasing that is why it is becoming flatter and 

flatter and there is more mass or density towards the tail. So, that tells you that the lower 

income households are actually reposting savings numbers for which you are observing lower 

variance but the high class or the rich group households they are basically reporting the 

savings numbers that are quite different from one each other. 



So, the savings numbers reported by the households who belong to the rich class of the 

society, there is enough dispersion in the savings numbers and see that is why the variance is 

increasing. So, you see in this diagram that the variance of Y or the variance of epsilon is not 

constant for different values of X, in fact, it is increasing. So, there are 2 different approaches 

to detect heteroskedasticity after conducting the regression and one is graphical method and 

the other one is by conducting a formal hypothesis testing. 

So, after plotting the squared residual values, you had i squared against the fitted values like 

Y hat i if you see that there is a pattern like it is showing a kind of a funnel shape or there is a 

positive correlation between the fitted values of Y and the squared residual values, then you 

can say that there is a problem a heteroskedasticity. 

(Refer Slide Time: 32:34) 

 

So, there could be other patterns of heteroskedasticity also. So, suppose you see a kind of 

parabolic pattern in the scatter diagram and so there could be a highly non-linear relationship 

between the fitted values of Y and the squares residual terms, then also you can suspect that 

there could be heteroskedasticity problem. Now, we are going to discuss what is called the 

White’s test for heteroskedasticity. So, here I am going to talk about steps very quickly. So, 

you set a null hypothesis which is saying that the statusco is correct. So, the status co is 

homoscedastic. 

So, the status co says that the error term is homoscedastic and here I just want to mention a 

very pity thing that in different textbooks you are going to see different spellings for 

heteroskedasticity, so someone may use letter ‘k’ someone may use letter ‘c' when they are 

trying to write this kcedastic part of the expression. So, do not get confused there. So, the 



alternative hypothesis says that all variances sigma square i are not equal for the observations 

like i equal 1 to N. 

So, in first step now you must regress the squared residual terms as the dependent variable on 

all of the X variables and their cross products and the squared values of the X variables. So, 

basically it will now give you lot of new explanatory variables in the regression. So, to 

understand this auxiliary regression in the case of heteroskedasticity checking let us talk 

about a simple model where we have two explanatory variables.  

So, then you will have two square terms coming from these two explanatory variables and 

there will be one interaction term between these two explanatory variables. You are going to 

add 3 new explanatory variables in the auxiliary regression. And then you calculate the 

Lagrange multiplier test statistic which is given by the formula LM equals to N times R 

square and this R square will come from the auxiliary regression. Then what to do? 

Statisticians have shown that these LM test statistics follows the Chi square distribution with 

degrees of freedom equals to number of independent variables.  

So, here you can say that if I am talking about the same model where we have only two 

explanatory variables, then basically we have this LM statistic following Chi square 

distribution with 5 degrees of freedom because there are 5 regressors in the auxiliary 

regression. 2 original variables, 2 square terms and 1 interaction. I hope this is clear to you 

now. And then what we need to do? We need to get the tabulated critical value for a specific 

alpha and then you reject your null hypothesis if the test statistic value is higher than the 

tabulated critical value.  

So, now we are going to end our discussion on White's test by noting down some advantages 

of this testing procedure. So, White's test does not assume that there is a monotonic 

relationship between any one X and the variance of the error terms. So, the inclusion of the 

interactions allows some non-linearity in that relationship. Now, in my humble opinion the 

best part of White's test is that it does not require the normality assumption to check 

heteroskedasticity. So, that way it is very, pretty general even if the errors are non-normal, 

White test is going to give you correct result. 

And finally, we can also say that White test actually is useful for checking heteroskedasticity 

in the entire model as you do not have to choose a particular X to examine. Now, we are 

going to end today’s discussion by talking very briefly about solution to the 

heteroskedasticity problem. Suppose you have conducted some kind of detecting exercise for 



heteroskedasticity, and you are now sure that you have the problem, so if you have conducted 

a White's test actually you have rejected the null hypothesis of homoskedasticity, then what 

to do? I am going to now talk about two different solutions proposed by statisticians and 

econometricians from two different perspectives.  
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So, in the first perspective, let us assume that we somehow know the form of the 

heteroskedasticity and the solution that is connected to this approach is called the weighted 

least squares approach. So, suppose if we can assume that this error variance sigma square i is 

proportional to the square of the explanatory variable Xj in a multiple regression setup, then 

we can correct for this heteroskedasticity by dividing every term of this regression equation 

by Xji. So, we are going to know re-estimate the mode using this transformed model. 

Now, let us have a very simple illustration of this method. So, here I am going to go back to 

this two-variable case. So, suppose I have only one explanatory variable and now I know that 

my sigma square i is some constant proportion of X square i. So, if that is the case, then what 

I am going to do, I am going to divide my original or mother regression by Xi all 

observations will be now divided by values of X for that particular observation and now we 

have a new regression model to work with.  

So, the dependent variable becomes Yi divided by Xi and the intercept term is also now 

going change to beta naught divided by Xi and note that the coefficient that was there 

associated with the explanatory variable X now it has become the intercept coefficient b1 or 

beta 1 in the revised model and then finally you see that the error term also has changed Ui 



divided by Xi and if you take the variance of this revised or redefined regression model, then 

concentrate on the newly defined error term. 

So, variance of Ui is going to be sigma square i. Now suppose we define a new variable Vi 

which is defined as Ui divided by Xi. So, now we are interested to take the variance of that, 

so for that we have to take the expectation of Vi square. So, expectation of Vi square will be 

1 over X square i times expected value of Ui square. Now we note from our assumption that 

expected value of Ui square is equal to sigma square times Xi because that is the assumption. 

So, now X square i will cancel out from numerator and denominator and we are left with 

sigma square.  

So, if we follow the similar kind of adjustment, then we can also assume that error variance is 

proportional to X only and in that case now we have to divide each variables by square root 

of now the variable X. So, in that case the new variable, error variable Vi will be defined as 

Ui divided by square root of Xi, but note that there is a restriction, so your X should be 

positive here in this case because you are going to take square root of the values. 

Now, we are going to briefly talk about the White’s procedure and there we do not assume 

any specific form of heteroskedasticity so we will start with with a multiple linear regression 

model with k explanatory variables and then in step 1 we estimate the initial model by the 

OLS and let the U hat i denote the OLS residuals from the initial regression. And then you 

run OLS regression of Xj, so basically for each explanatory variable you have to run separate 

regressions on all other independent variables. And then basically let W hat ij denotes the ith 

residual form regressing the jth explanatory variable on the other independent explanatory 

variables.  

So, in step 3, now you calculate the residuals sum of squares from this regression. So, for the 

jth explanatory variable the residual sum of squares is denoted is RSSj and finally in step 4 

you have the heteroskedasticity robust variance, variance of bj and that can be calculated by 

the formula that I am showing at the bottom of the slide. So, we are done with our discussion 

on heteroskedasticity and next time when I will be back with more cases of model 

misspecification issues and in the next lecture I am going to start talking about 

autocorrelation. So, join me for the next class. Thank you.  


