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 Hello students welcome back to the lecture series on Applied Statistics and Economic.  
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So, now let us have look at today’s agenda items. So, I say we are going to first talk about the 

restricted versus unrestricted model and there we going to see an application of f test, our 

good all friend f test. And then we going to move on to an exciting area in econometrics and 

that is known as modal misspecification issues. And there are several types of modal 

misspecification issues in econometrics, but in today's lecture where we are going to talk 

about only one of them and that is called omitted variable bias. And finally we are going to 

propose a solution to this problem as well.  
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So, first we are going to start with formal definition of unrestricted and restricted models. So, 

an unrestricted model is one model without any of the restriction imposed. So, it contains all 

the variables that you may think that they may determine Y, your dependent variable. And 

then here comes the concept of restricted model, this is a kind of model on which the 

restriction have been imposed. So, for example, you can say all regressors whose coefficients 

have been set to 0 they are called the excluded variables. And if you have some excluded 

variables in one regression model, then that leads to restricted model. 

So, now note that restricted model works with fewer number of explanatory variables. So, no 

wonder that for the case of restricted model the sum of square from error residuals is going to 

be a bit higher than the unrestricted model. And we can also make similar observation for R 

square also. So, as this slide is showing you here, the unrestricted regression will always fi at 

least as well as the restricted one. So that means that unrestricted regression will have a 

higher R square value than the restricted regression model because the sum of square errors 

from the restricted model is always greater than or equal to sum of square of errors residuals 

from the unrestricted model. 

So, here as you see, I am using the subscripts R and U for SSE symbol, that you already 

know. So, here the subscript R stands for the restricted model and the subscript U stands for 

the unrestricted model. Now the question is that how many restrictions one can put? So, if 

you are in a multiple regression setup and if you have k number of explanatory variables, 

maximum you can impose k number of restriction. So, here we are going to define a new 



notation and we are going to denote the number of restrictions imposed on a linear regression 

by q. 

Now it is very much possible that each of these q parameters that you are setting equal to 0, 

as you are putting some kind of restriction on the mother regression or the unrestricted model, 

they may be individually insignificant at some level of alpha. But it may be the case that 

these q parameters are jointly significant at the same level of significance. So, we need a 

statistical testing and for that f test is going to be used. And in the next slide we are going to 

see how.  
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So, let us suppose that there are q restrictions imposed and these are exclusion restrictions so 

by that I mean that q parameter values are set equal to 0 and H naught; my null hypothesis 

states that q which is I am assuming here to be strictly less than k have 0 coefficients. And 

my alternative hypothesis says that H naught is not true. So, that means that at least some of 

these exclusion restrictions are wrong. 

Now, as I have shown you in the last slide that I expect a large increase in sum of square 

residuals or errors if I put restrictions on my mother regression or unrestricted model. And if I 

finally end up getting a very large increase in SSE score, then that is evidence against Ho. So, 

the first step here is to propose a test statistic and that I say f observed is my notation for that. 

And as I have shown you in the previous lecture that an f test could be conducted using two 

different matrix or measures, of course, one can make use of the sum of square error from the 

ANOVA table and the other way to do an f test is to make use of R square. 



So, here I am going to propose two formula as they are going to be related to two different 

approaches that we have seen in the last lecture. So, first we are going to talk about the R 

square measures. So, now I am showing you the formula here, so R square U denotes the are 

square obtained from the linear regression model which is unrestricted, so that means there 

we do not have any exclusion restriction. 

And then R square R actually means the R square obtained from the linear regression or OLS 

regression of the restricted model where I have imposed q exclusion restrictions. And the 

difference needs to be divide by the degrees of freedom and that is basically q. And q is what 

here? q is basically the difference in the number of parameters between the unrestricted 

model and the restricted model. 

Now let us concentrate on the denominator of the same formula. So, here 1 minus R square U 

is divided by the degrees of freedom, and that is basically the degrees of freedom for the error 

term. If you remember the ANOVA table, the sources of variation will come from two angles 

and they are regression which is basically your regression model and the error. 

And for regression you have k number of explanatory variables so you set k degrees of 

freedom and for the error source you set capital N minus capital K which is basically the 

difference between number of observations and number of parameters to be estimated from 

the regression model as the degrees of freedom. So, we are going to use the degrees of 

freedom from the error component, from the ANOVA table.  

Now let us look at the second formula and here we are going to make use of the sum of 

square error directly. So, again, the subscript R stands for the restricted model and subscript 

U stands for the unrestricted model. And the difference between the sum of squares from 

restricted and unrestricted model needs to be divided by the degrees of freedom q and then 

this ratio needs to be further divided by sum of square error from the unrestricted model, and 

that too divided by the degrees of freedom.  

So, now this f observed statistic, either way we have calculated, it does not matter which 

formula we have chosen for. Both formula will lead to this same theoretical result that f 

observed my test statistic is now going to follow f distribution with two degrees of freedom. 

And what are these two degrees of freedom? These are basically q, the number of exclusion 

restrictions you have imposed on the mother regression model and the capital N minus small 

k minus 1. So, the difference between the number of observations and the number of 

parameters to be estimated in the unrestricted model.  



Then you set your alpha and then this is the way you are going to make your decision. It is 

not new to you, so we have done f test previous so you know you have to compare the value 

of the calculated test statistic which is f observed. And if it is greater than the critical value 

that you find from f table for the degrees of freedom and the level of significance, then you 

reject the null hypothesis. And if you want to follow the p value approach, then of course, 

you reject null hypothesis if p is less than alpha, the set level of significance. 

And as I told you previously that a small p value is enough evidence against H naught while a 

large p value is not an evidence against the H naught. Now we are going to look at these 

restricted versus unrestricted model case and how f test is going to help us to resolve this 

fight between restricted and unrestricted model through an example.  
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So, here in this slide I am going to talk about the restricted versus unrestricted model case 

from one demand function story. So, if you remember, a couple of lectures back I have 

introduced the case of butter and margarine as two related goods. I was actually trying to get 

a demand function for butter consumption and then I showed you that margarine also plays a 

role because margarine is a substitute good for butter.  

Now if I want to go back to the same story of butter versus margarine and then how one can 

actually estimate the demand function for butter consumption. So, suppose I am interested to 

free the demand function for butter consumption. And I want to define a log log model for 

my demand function. 



Now, we all know that demand or the purchase by consumers in the market is somewhat 

dependent on the advertisements made by the manufacturing company. And it is nowadays 

quite evident that people go by who is promoting that particular product and who is showing 

as the brand ambassador for a product. So, these things matter. 

So, now suppose there is a company which wants to statistically test whether expenses made 

on these advertisement, be it any media, it can TV, it can be newspaper, it does not matter. 

The total advertisement expenditures made by a company, how it affects the demand for the 

commodity of interest, say butter. So, in our demand function not only we will have the price 

of the main commodity, which is butter; and margarine, the alternative or the substitute 

commodity from the point of the customer. We are also going to add two potentially relevant 

variables, and these are advertising expenses on butter and margarine. 

So, now let us have a look at the final demand functional form that we are going to estimate. 

So, as I said earlier, we are going to estimate a log log form. So you see my main variables 

which are basically the dependent variable and the explanatory variables which are coming 

from economic theory, they are all logged, so logarithmic transformation has been used. And 

now note that I also have a fifth variable, that is time variable, and for that the regression 

coefficient is beta 5.  

Now why do I need these extra variable which is not coming from microeconomic theory? It 

is because of the data. Suppose we have a data which is for several months or several quarters 

and then of course, with time population changes, taste and preferences changes. So, there 

could be some annual change in the overall demand for any particular consumption item. So, 

to capture the role of time, we are adding these time variable in the regression because we 

collect a data on all these variables over a substantially long period of time. 

Now, we say that the model that I am showing you here under the first bullet point, that is my 

full model or that is my unrestricted model. Now as a statistician I have this task at hand, so 

the company, my client wants to know whether the advertising expenses on butter and 

margarine have impacted the demand for butter or not. So, if they have come to me with this 

simple question, how I am going to make use of this restricted versus unrestricted modelling 

framework. 

To answer their question, so here I have to judiciously impose some exclusion criterions, 

some exclusion criterion or restrictions on the mother model or the full model. And what 

could and what could be the exclusion restrictions here? So, to develop the restricted model 



we can start with these presumption that butter and margarine advertising expenditures do not 

change the demand. So, basically if you remember the previous slide when we were 

discussing the definition of restricted model, I said that some parameters in the original 

regression model has to be set equal to 0. And what does that mean?  

That means that, that particular explanatory variables for which you have set the parameter 

value equal to 0, then basically you are excluding that variable from the mother regression 

model. So, if you do so, then that means that the variable for which you are imposing these 

parameter value 0 restriction, that is not linearly related with the dependent variable. So, if 

advertising expenditures made by the company does not impact the demand for butter, then 

basically I have to start with by setting the parameters for this advertising expense variables 

equal to 0. And that is what I am going to do here. 

So, if you now concentrate again on the full or unrestricted model, you see the coefficients 

for the advertisements on butter and advertisement expenditure on margarine are b3 and b4 

respectively. So, we are going to set null hypothesis which says that beta 3 equals to beta 4 

equals to 0. So that is mu exclusion restriction. So, note that here I am imposing two 

exclusion restrictions. And what could be my alternative hypothesis? So, alternative says that 

at least one of these beta 3 and beta 4 must be non-zero. 

Now I am going to show you the way how you can make use of ANOVA table or especially 

the information on sum of square error to conduct the f test. But you remember that I have 

also shown you the formula which involves R square formula. So, similar technique or the 

steps that I am going to show you, it can be followed for R square version of the formula or 

test as well.  

 So, now you concentrate on the ANOVA table. Suppose we have data on 51 time points, it 

could be 51 months, it could be 51 quarters, it does not matter. And so here in the main 

regression the time variable actually takes 1, 2, 3, to 51 values. So, that is the way I am going 

to measure my time variable in the regression equation. Now you look at this slice of the 

ANOVA table.  

So, here, I am showing you two blocks of results, the first block talks about the full model or 

the unrestricted model, and the second block talks about the restricted model. And under both 

the models I am showing you the sources and the sum of squares for different components of 

total sum of squares, degrees of freedom and then mean square and then finally the f 

statistics. 



So, if you look at the first block, then I am not showing the total sum of squares because if 

you add the sum of squares for the regression component and the error component, you are 

going to get the total sum of squares or SST. So, I am skipping that. Anyway, now let us look 

at the degrees of freedom column. So, here you note that look at the mother model or the full 

model, the unrestricted model. Here we have 5 explanatory variables excluding the intercept 

term, hence we have degrees of freedom equal to 5. 

And for the error component we have 45 degrees of freedom, how come? Because if you 

remember we have 51 number of observations and including the parameter we have 6 

parameters to be estimated, so 51 minus 6 you have 45. So, now let us be back on the 

ANOVA table computation, so you divide the sum of squares number for each source or 

component by respective degrees of freedom to get the MS values. And if you now divide the 

MS regression by MS error, so MSR divided by MSE, you get the F value. And this is the 

way you are going to get all these numbers that you are seeing here. 

And now note that as I have conducted two different regression experiments, I have got two 

sets of coefficients, two different values of R square and two different ANOVA tables. Now, 

I am going to look at how I am going to combine the information from the restricted 

regression model and the full regression model into one formula which is my f observed test 

statistic and then conclude whether this restrictions are statistically significant or not.  

So, now look at the fourth bullet point in the slide, just right at the bottom of the table. There 

I am going to show you how you calculate the f statistic value. So, here the formula I have 

shown you in the previous slide, you are just going to search for those particular entities in 

these two regression ANOVA tables. And then if you plug those numbers back in the 

formula, you are going to an f statistic value, that is going to be equal to be 1.0838. 

So, once you get your calculated value of f statistic, what to do, you set alpha level of 

significance say 5 percent and then you have to now look at the degrees of freedom that you 

have used in the calculation of the f statistic and then you have to go to the f table to find out 

the critical value. So, what are the degrees of freedom here? So, for the numerator the degrees 

of freedom is q, which is the number of exclusion restrictions you have imposed on the 

mother model or the full model. 

So, here I am putting two restrictions because I am setting 0 value for two population 

parameters, beta 3 and beta 4, so here the degrees of freedom is 2. And for the denominator, I 

have these degrees of freedom capital N minus capital K, and that is going to be 45. So, now 



if you go to the f table, then the critical value for these two degrees of freedom and alpha 

value 0.05, that value is 3.21. And now note that that is much, much higher than the 

calculated f statistic value which is 1.08, so you take a decision that we cannot reject H 

naught.  

So, what do you mean by that you cannot reject H naught. What is H naught? H naught is 

basically talking about the exclusion restrictions, so it is setting 0 value for the population 

parameters beta 3 and beta 4, and that actually tells you that jointly the advertising expenses 

on margarine and the butter commodities do not have any impact on the purchase or demand 

for butter in the market. And if you cannot reject null hypothesis, then you say that your 

hypothesis is true with which you have started. 

So, then you can tell your client that from my statistical data analysis I have enough sample 

evidence to infer that the advertisement expenditures on margarine and butter they are not 

going to impact the demand for butter.  
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Now, we are going to move on to a new topic and that is called model misspecification. 

Although, I am saying that it is a new topic, but it is not very different from the topic which 

we discussed last that is basically the case of hypothesis testing because here also you will 

see we are going to make use of this tool, hypothesis testing, to decide whether we have 

enough sample evidence so that we can infer something or not. 

And inference that I am trying to draw here is not about a particular value of the particular 

population parameter. Here, I am going to talk about drawing inferences about the 



correctness or the validity of the assumptions that I made when I framed my linear regression 

model. So, in this lecture of course, we are not going to talk about the entire span of this 

problem, model misspecification, we are going to only talk about one type. In the next lecture 

we are going to continue about that discussion. 

So, let us first begin with a formal definition for model misspecification. So, a model is said 

to be misspecified if the distribution of the data, here by data I mean the variable under focus 

which is basically your dependant variable Y. So, if the distribution of data implied by the 

regression model under best possible parameterization differs from the distribution of data 

under the true generating process.  

So, what do I mean in a nutshell about this quite bookish definition? So, you remember I said 

that when you start the journey of building a classical linear regression model, you have made 

certain assumptions about the data generation process and what do I mean by data generation 

process? So, data generation process actually says that your Y is a random variable and there 

is a process of generating values of Y. And what is these process, from where it is coming? 

So, when you write the classical linear regression model assumptions, you first of assume that 

your explanatory variables are all fixed in nature. So, you assume that your Xs are not 

random. So, there is no process if there is no randomness in the Xs. Xs are all, exogenously 

given to you. So, in the regression equation what is random for which you can expect that 

there could be a stochastic process?  

So, that is basically the epsilon term, the stochastic disturbance term or the random error term 

whatever you want to call it, that epsilon that is a random variable. And as its random 

variable Y will become a random variable too because your Y now becomes a function of 

realization of these random variable epsilon. So, there is a data generation process for Y as 

well as you see it for epsilon.  

Now, you start model building by making some assumptions about these random error. So, 

remember the assumption of 0 conditional mean, then the assumption of homoskedasticity 

which is basically constant variance, then at last we have also said that one can assume 

normality as a distribution for the error term. So, now these are all assumptions and you may 

be interested to know that in reality how far true these assumptions are? 

Note that a model is basically an abstraction from the reality. You with your dreams and tool 

sets developing models by making assumptions and using these statistical techniques, but real 



life is real life, it works in its own way and the assumptions that you are going to make to 

develop your regression model may not hold in reality. Data is data, you do not know 

whether it is going to obey the assumptions you are making while you are sitting in an air 

conditioned room in front of a computer.  

So, basically there has to be some mechanic to test whether the assumptions you are making 

to develop this classical linear regression models whether they are valid ones or not. And if 

somehow you figure out that the assumptions you made when you are developing your 

classical linear regression model; they are invalid, then actually they will lead to this model 

misspecification error. 

So, why are we so much worried about misspecified models? What is the big deal if some of 

the assumptions that we made are not fulfilled by the data? The model misspecification errors 

can create havoc in your regression analysis and the inferences that you are going to draw out 

of your model can all be wrong, depending on the magnitude of the misspecification error. 

So, mostly they are going to create two types of nuisances, first they are going to create 

biases to the parameter estimates. And what do we mean by bias? 

If you remember the discussions in part 1 of this course, I introduced this term called bias. 

So, bias is basically the difference between the true population parameter value and the mean 

of the estimator that you get from your OLS technique or whatever technique you are 

applying to draw some statistical inference from real life data. And secondly, the 

misspecified models are also going to create inconsistent standard errors.  

So, inconsistent standard error means that if you get one sample, you get one value of 

standard error. And then if you move on to another sample, you are going to get another 

value of standard error. And if you are unlucky, if there is model misspecification issue, then 

they actually may be way apart from each other. So, the dispersion of the coefficients that 

you are going to get from different samples is going to be very high and that is not good 

because that is going to impact your hypothesis testing like t tests and all.  

Now, there are many ways in which a regression model may be misspecified .And here I am 

going to list down 5 of them. So, first let us start with the case which is basically we are 

going to talk about in today’s lecture. So, if a statistically and theoretically relevant variable 

is not included in the regression equation, then we will have the omitted variable problem. 

So, that is basically the number 1 source of model misspecification.  



Then we are going to talk about the second source of model misspecification and that has to 

do with the functional form of the regression equation. To start with, we have assumed that 

my X; the explanatory variable, is linearly related to my dependent variable Y, and that is 

why we have a linear-in parameter, linear-in variable models. But there could be non-

linearity involved, and if you are simplifying a linear simplification maybe too much of fuzzy 

implication. And then, of course, it will have its own consequences on the model estimates 

and the model fit. And forcefully fit a linear regression equation, then there is a functional 

form misspecification and that will lead to the second type of model misspecification.  

Now we move on to the third case and that is the measurement error in regressors. So, here 

what do we mean by measurement errors in regressors? So far we have assumed that Xs are 

given to you and Xs are perfectly measured, so there is no error in the value of Xs. But there 

could be error involved in the value of Xs if they are not properly measured. Suppose I give 

you an example of say temperature and rainfall, many, many times we use these variables in 

agricultural production function regression equations. 

But in third world countries where the quality of tools and equipments are not very high and 

cutting edge, there may be some inconsistency and errors while the weather stations are 

measuring rainfall and temperature. So, in that case you may have some random noise 

embedded in the data on the temperature and rainfall. 

Now we are going to talk about the fourth source for model misspecification. So, there could 

be unequal variability in Y. So, what do we mean by that? So, remember when we started 

making assumptions of for classical linear regression model, I said that my errors are going to 

be homoscedastic in nature. So, I am talking about constant variance.  

So, if epsilon is not homoscedastic, it implies that for ranges of data the variance for epsilon 

is now going to change, that will have the similar effect on Y as well because the 

distributions for Y and epsilon, they are linked to each other. So, now if the homoskedasticity 

for epsilon breaks down, then for Y also we cannot expect constant variance for the entire 

range of Y data. And homoskedasticity is very important assumption to make and if that 

breaks down, then we will have a problem. Of course, we are not going to discuss what sort 

of problem it can happen in this particular lecture, we save the discussion for the next lecture.  

And finally we come to the last point and that is basically saying that randomness in the 

regression linear model would not be independent from one time period to the next. So, what 

do I mean by that? So, actually I have camouflaged one term that I have already introduced in 



the course. Do you remember that I have introduced a term called serial correlation or 

autocorrelation? So, by that I mean that when two error terms are correlated with each other 

across cross sectional units or across time point units, then actually we say that the 

randomness or the independence between the consecutive values of dependent variable 

breaks down and that is not good for you. And that is what is specifically being told in point 

5.  
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So, now we are going to talk about omitted variable bias through an example. So, let us go 

back to the microeconomic theory of demand function. So, when we estimate a demand 

function, microeconomic theory tells us that the prices of compliments and substitutes of the 

good are explanatory variables and they should be incorporated in the regression equation 

when you are trying to estimate a demand function for the commodity in the question. 

But, I mean theory is theory, it is saying that you need to consider complimentary goods and 

the substitute goods. But does it provide the full list of complimentary goods and substitute 

goods? Answer is no. So, now which are the best complimentary goods and which are the 

best substitute goods and how many of them you are going to keep in your demand equation 

that is not explained by theory. 

And also, even if you make a list of, say, 3 complimentary items and 4 substitute items for 

the commodity in question for which you want the demand equation to be estimated, you may 

not have data on these particular commodities and if you do not have data, then of course, 

you cannot include that variable in the regression.  



So, now we consider that there is a true population regression function which is perfect and 

here I am showing you the expression for that. Of course, it is a simple version of the reality. 

Suppose I have only 3 explanatory variables and somehow for some reason I have omitted 

X3 variable, there could be reasons like I may be ignorant about the effect of that X3 variable 

on Y or even if I know that there is an impact of X3 on Y but I may not have data on it. So, 

whatever be the reason, from the regression equation that I am finally estimating from raw 

data I do not have X3 in the regression equation. 

Now, let us see the consequences. So, now you actually end up estimating a regression 

equation involving two explanatory variables X1 and X2. Now, note that if the X3 variable 

which you have omitted if it is truly a relevant variable which actually has an effect on Y, 

then the portion of Y's variability that it can predict, now that component will be now 

embedded in the random error that you have defined for your model. 

So, now note that as b3 is not equal to 0, then b3 times X3 is also not going to be 0. So, there 

is some non-zero component in the regression, but there is no variable which is taking care of 

that. So, it will go in the error term. So, it will be part of the error term and you know the 

epsilon error term will be actually beta 3 times X3 plus U where U is basically new random 

error term which is obeying the standard assumptions for error terms that we make in 

classical linear regression model. 

So, now you see how the omitted variable bias is emerging, so you take expectation of both 

hands. So basically now expected value of epsilon will be sum of two components, expected 

value of beta 3 times X3 and expected value of U. Now U, as I said that we can assume that it 

is following the standard assumptions for classical linear regression model, so expected value 

of U will and 0. So, finally you are going to end up getting expected value of b3 times X3 and 

which is a non-zero number. 

So, now you see the consequence is like you do not have the error distribution which has 0 

conditional mean, so the mean now could be positive, it could be negative, but it is certainly 

not 0. So, why this expected value of epsilon not being equal to 0 is a big deal because these 

comes very useful, this property comes very handy when you are trying to establish the 

unbiasedness of the OLS estimators.  

Now we are going to talk about another dimension of the problem. So, if the excluded 

variable X3 happens to be linked with one of the existing regressors, say X2, then epsilon is 

no longer independent of X2. And what does that mean? So, your another assumption of 



classical linear regression model breaks down. So, remember we said one assumption of 

exogenity and there I have set this statistical criterion that covariance between my 

explanatory variables or the vector of explanatory variables should be not related with the 

vector of the error terms, which is epsilon. 

So, cov Xe is not equal to 0. But if now X3, which you are missing, is related with X2, then 

basically higher the root of epsilon now it is going to be impact the coefficient of beta 2 as 

well. So, if that is the case, if there is some correlation between X2 and X3, then what 

happens? Then X2 which is part of your linear regression equation that you are estimating 

will be correlated with the epsilon term or the error term. Why? Because that epsilon term 

now has that impact of that third variable. X3 is hidden there. 

So, in a nutshell, we can say that OLS estimators are biased and inconsistent. Now bias 

exists, unless we are very lucky and when we could be extremely lucky so that although we 

have forgotten to incorporate one relevant variable, but our regression results are not plagued 

by bias. For that we have to see two good things happening to us. So, the first good thing is 

that the true coefficient should be equal to 0 and the included and the omitted variables are 

uncorrelated.   
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Now in this slide we are going to talk about omitted variable bias in a bit more detail. So, the 

direction of the bias depends on the estimators as well as the covariance between the 

regressors and the omitted variables because I told you in the last slide only that suppose we 

are ignoring and omitting X3 and X2 and X3 are somehow correlated and then now your 

epsilon and X2 they are going to be correlated via this route of X3. 



So, you see that the covariance between regressors those which are staying in the final 

regression equation and those which are omitted variables which are now part of your error, 

the covariance between these two are going to play a major role. So, a positive covariance of 

the omitted variable with both an explanatory variables X and the dependent variable Y will 

lead the OLS estimate of the included regressor’s coefficient to be greater than the true value 

of the coefficient. So, basically there is an upward bias in this context.  

Now, in this slide I am going to show you simple table which is going to talk about the nature 

of the bias. But in addition, I should also tell you that it is very difficult to measure the extent 

of the bias. So, let us have this simple table where we are talking about only two explanatory 

variables, so here I am showing you different possible cases. So, let us look at different cells 

where you see this nature of the bias reported in colour red.  

So, let us talk about the cell 1 which is basically the northeast one. So, here we see two 

conditions are given, so the first is saying that included and the omitted variables are 

positively correlated. And not only that, we also have to satisfy one more condition and that 

is given in the first row, so that is saying that omitted variable is positively correlated with 

dependent variable Y. So, only in that case you will get positive bias. 

Let us now you know go in to look at one case of negative bias and then I will stop because 

rest you can follow. So, now let us concentrate on the second column which is saying that 

included and omitted variables are negatively correlated. And now let us assume that my 

omitted variables is positively correlated with depended variables Y which is given in first 

row. 

So, again, in that case you will see that bias will come but the direction will be different and 

this time we are going to get negative bias. Similarity, you can see different combinations are 

going to lead to different types of bias. Now the bad part of omitted variable base is that 

although we know there could be a problem but you there is no hypothesis testing tool to help 

us so that we can detect that in our regression model whether we have a problem of omitted 

variable bias or not. 

So, what to do? Well, here you have to use your grey scale. So, to do lots of thinking, you 

have to consult the previous literature, you have to figure out what Wiseman have talked 

about in your particular regression problem that we are dealing with, whether someone has 

suspected a presence of omitted variable bias which is very relevant for the regression 

problem that we currently handling.  



So, from the literature you have to guess and also you have to use your intuition to figure out 

whether there is omitted variable bias or not in the regression equation that you are 

specifying. But suppose your intuition says that, well there could be one variable which I am 

omitting or may be the literature is suggesting you that the model specification that you 

currently have maybe suffering from omitted variable bias, then how do you solve for it? So, 

in the last slide of today’s lecture we are doing to discuss about it.  

(Refer Slide Time: 45:16) 

 

So, here as a potential solution, econometricians have come up with a novel idea called 

instrumental variable. And an instrumental variable is used in regression when you have 

endogenous variables. Now what do we mean by endogenous variables? Remember when we 

made the assumptions, we said all our X variables are given so they are exogenous in nature. 

So, basically a change in Y will not have any impact on Xs. And if that breaks down, we can 

say that our explanatory variables are endogenous in nature. So, their values are actually 

determined within the model, not outside the model.  

So, the endogenous variables are basically the regressors which are influenced by our 

variables in the model. So, as you see the values of some of the explanatory variables may be 

determined within the model by other variables. Now, suppose we have one regression 

model, we are specifying a 3 explanatory variable linear regression model, but there could be 

literature which is suggesting that well there could be another fourth variable which may have 

played a role in explaining the variation of Y and it could have determined values of Y but 

you are not incorporating it, let that variable be denoted by X4. 



So, now X4 is an omitted variable, we are not taking care of that variable in the linear 

regression model to start with. Now you consider an alternative model where you have the 

first 3 explanatory variables but now you have one variable, X star 4, for which you do not 

have any observations. So, this X star 4 you can say that this is basically the omitted variable, 

it is omitted that is why I am putting an asterisk on the top of X so that I can differentiate it 

from the other explanatory variables that actually are being used to get the coefficient 

estimates from raw data. So, X star is basically the hidden impact of that omitted variable X4. 

Now we are going to make use of one trick, suppose we do not have data on X star 4, even if 

we know that we are missing out on that variable but we just cannot get data on that 

particular variable, so what do you do? So, you have to figure out some additional variable 

which is pretty much linked with the variable that you are missing. So, basically you have to 

get a proxy variable for X star 4. 

And now let us assume that there is some variable X4 which is basically the proxy variable 

for X star 4. So, basically X4 you can say it is an instrumental variable which is used as an 

instrument for the true omitted variable X4. And as they are doing the same job by explaining 

the variation of Y, they are denoted by the same symbol X4. So now you see we have two 

equations 1 and 2, now we are going to write the final model equation that we are going to 

estimate. 

So, we write the mother regression model and now we are going to make use of this equation 

2, so we are going to replace X star 4 from 1 by the expression in equation 2. So, if we do so, 

then you finally get an equation that is equation 3. Now note that we land up getting a 

completely new intercept term. So, here if you look at the second line for the expression for 

Y, the new intercept term has become beta naught plus beta 4 times delta 1. And I am 

introducing a new symbol to represent that in simple manner and that is alpha 1. 

And now also note that the coefficient for the instrumental variable or the proxy variable X4 

is now product of two different coefficients, the coefficient of original omitted variable, that 

is beta 4, and it is multiplied delta 2 which is establishing the linkage between the true 

omitted variable X star 4 and the proxy variable or instrumental variable X4. So, that product 

is also being denoted by a new symbol alpha 4. 

So, by estimating these model equation number 3, I mean, we do not get the unbiased 

estimates for beta naught and beta 4, but we get unbiased estimators for alpha 1, beta 2, beta 

3 and alpha 4. Why are we so sure about that? Because now you see a new error term has 



been introduced in this model and that is w here if you can look at the equation number 3 

again and note what is w? W is beta 4 times e plus epsilon. 

Now note that if you take expectation of Y, then beta 4 times e, that is going to be 0 because 

from equation 2 we can see that the e random error term is going to obey all the classical 

linear regression model properties. And epsilon is anyway obeying the classical linear 

regression properties. So, if you take expected value of W it is going to be 0.  

So, we end our discussion on instrumental variables here. Next time we are going to come 

back with very nice case study on instrumental variables. Thank you, see you then, bye.  


