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Hypothesis Testing with CNLRM 

Hello students, welcome back to the lecture series on Applied Statistics and Econometrics. 

So, today we are going to revisit the concept of hypothesis testing but we are going to discuss 

hypothesis testing in the context of linear regression analysis. So, before we go back to the 

old friends like t test, f test, et cetera, let us have look at today’s agenda items. 

(Refer Slide Time: 0:38) 

 

So, today we are going to study the hypothesis testing in the context of classical normal linear 

regression model. And of course, hypothesis testing in the context of CNLRM is a vast area 

so we cannot finish the discussion in one lecture. So, in today’s lecture I am going to focus on 

3 major items and they are testing single parameter value using t test and then I am going to 

talk about another use of t test while we want to test hypothesis about a single linear 

combination of the parameters. 

And finally we are going to talk about testing multiple linear restrictions and there we are 

going to see the use of f test. So, here throughout this lecture we are going to consider a 

multiple linear regression model, it implies that we are going to work with k number of 

explanatory variables. So, let us have a look at the general model and then from there we will 

develop hypothesis testing. 
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So, our general model has this equation, Yi equals to beta naught plus beta 1 X1i dot dot dot 

plus epsilon i. So, here we have k number of explanatory variables and the associated 

regression coefficients are beta 1 to beta k, beta naught is my intercept parameter and epsilon 

i is the normal error. Or you can say that this is stochastic disturbance term which follows 

normal distribution. So, that is basically the mother model of CNLRM.  

Now we fit regression equation via OLS method and we get Y hat i, that is the fitted value of 

my dependant variable y. And I get the estimators of the unknown population parameters and 

their b naught, b1 dot dot dot bk. So, now let us discuss different scenarios where hypothesis 

testing could be very handy. Now, one may want to know whether an explanatory variable in 

particular say X1 matters for y. So here I want to say that whether X1 actually helps in 

explaining any bit of variation in y or we can also say that whether X1 determines the values 

of y. 

So, that could be analysed by setting a null hypothesis beta 1 equals to 0, because if beta 1 

that unknown population parameter value is indeed 0, then that implies that there is no linear 

relationship between the explanatory variable X1 and the dependant variable y. Similarly, one 

may want to know if either X2 or X3 affects y. So, here you note that I am talking about a 

simultaneous occurrence of two conditions, beta 2 equal to 0 and beta 3 equal to 0. So, it 

could be the case that beta 2 is equal to 0 but beta 3 is not equal to 0, and beta 3 could be 0 

and beta 2 could not be 0. 

So, there are different combinations possible. So, this is basically the case of the joint 

hypothesis. And one may also want to know if the effect of X2 and X3 is same. So, in that 



case we set a null hypothesis that will say that beta 2 equal to beta 3. Now, apparently it may 

look very silly that why we want to have that kind of hypothesis testing, but that is very 

useful especially when you have a small dataset and you want to save degrees of freedom.  

So, if you indeed can prove that beta 2 is equal to beta 3 or the regression coefficients for two 

explanatory variables are indeed the same, then you can use the sum of these two variable, 

then we can use the sum of two variables X2 and X3 as the explanatory variable and then by 

doing that we save one degrees of freedom. Because there is only one common slope 

coefficient to be estimated in this case.  

Now one can also ask a very interesting question, does the addition of a group of regressors 

of interest add significantly to the prediction of y obtained through the other regressors 

already in the model? So, basically what do I mean to say? If I remind you about the 

discussion from last lecture about adjusted R square and all, then you probably can 

understand what I am trying to say here. 

As you keep on adding more and more explanatory variables in the regression equation, your 

R square will go up but not necessarily adjacent R square will go up. And this is actually 

looking at the same problem from the hypothesis testing point of view. For adjusted R square 

you cannot have a hypothesis testing, it is just a summary measure, it is a model fit measure.  

But you can make use of hypothesis testing procedures to figure out whether you should add 

a couple of more variables in the existing set of regressors. If you do not find that this group 

of additional regressors explain significant amount of extra variation in y, then you should 

not add these extra variables in the model. So, actually hypothesis testing will also help you 

in model selection. 

Now, before we go to the formal t test and f test m all, we have to look at the sampling 

distribution of the estimated coefficients. Now, why we have to look at the sampling 

distribution of the coefficients? 

Note that here, unlike the previous time when we had one single variable and we were 

interested in either comparing the mean or the variance across two groups or two populations, 

here actually we are looking at a different kind of problem. So, here we have a linear 

regression setup where we have multiple regressors, explanatory variables and they are 

supposedly linearly related with the dependant variable y.  



So, once you have one sample, you can apply the OLS technique and you can get one set of b 

naught, b1, b2, et cetera. And when you get another sample from the same population, then 

you can get another set of values b naught, b1, b2, et cetera. So, as you keep on drawing 

sample from the same population again and again, you are going to generate different sets of 

values for b naught, b1, b2, et cetera.  

So, then basically you are going to create a sampling distribution for the regression 

coefficients, estimated regression coefficients. So, that is why the b1, b2, b naught, et cetera, 

they will have distribution of their own. So, of course, if they have the distribution of their 

own, then there will be a mean and a variance, so we can see from the previous lectures, the 

Guss Markov theorem and all that the mean of the sampling distribution is basically equal to 

the unknown population parameter value. So, one can test a particular value of the population 

parameter by looking at the mean of this sampling distribution. 

So, here to explain the situation, let us come down to two variable model where we have one 

single x, it will help us to simplify the situation, otherwise I have to introduce the matrix 

algebra again and it will be very clumsy and probably we will not get any extra mileage by 

introducing that clumsy matrix algebra. So, for that purpose, one single explanatory variable 

is good enough. 

So, we have a simple model and let us now rewrite this simple model equation, say equation 

1. So, what we are going to do, we are going to take the mean of the left hand side variable 

and the right hand side expression. So, here you know we get Y bar equals to beta naught 

plus beta 1 times X bar plus epsilon bar, and that is m equation 2. So, it simple, basically if 

you have n number of observations, you first apply sum on both sides of the equation and 

then you divide by the number of observations in and that is the way you get the sample mean 

for Y and X. 

So, once you have the sample mean, then you take the difference and that will give you a new 

equation 3 and that is Yi minus Y bar equals to beta naught plus beta 1 times Xi minus X bar 

plus epsilon i minus epsilon bar. So, you see here in equation 3, I have expressed my 

variables Y X and epsilon in the deviation form. Now, why have I done so? You will see very 

soon why I have done this. There is a reason behind it.  

So, now I would like to draw your attention to the OLS estimator formula. So, in this simple 

linear regression model, you are going to get two estimator formula, one for your intercept 

parameter and one for the slope parameter. So, now in economics as I told you that we are 



mostly interested in the slope parameters, so here I am only going to show you the case of 

beta 1. So, the OLS estimator for beta 1 is given by b1 and once you know the value of b1, 

you can actually find out the value of b naught also which is the estimator for unknown 

population parameter beta naught.  

But forget about that, let us concentrate on equation number 4. So, here I am showing you the 

OLS estimator formula for b1. Now you concentrate on the numerator and in the 

denominator. So, here in the numerator, you have the multiplication of two variables which 

are in deviation form, right. Now you go back to equation 3 and you figure out that there is 

Yi minus Y bar expression there. So, you can replace that expression for Yi minus Y bar in 

equation 4 by what you see in equation 3.  

So, now you have in equation 4 everything in terms of two variables, so the deviation is for 

two variables, one is the explanatory variable X and one is the random stochastic disturbance 

term epsilon. Now you note that X is fixed, X does not have any distribution of its own, but 

epsilon we are assuming that it is a random variable, so it has its own distribution and we are 

assuming here the case of normality, so we are assuming that epsilon, the stochastic 

disturbance term actually follows normal distribution. 

So, now I am going to make use of some interesting theoretical properties from normal 

distribution and that will help us in doing hypothesis testing. So, in the next slide we are 

going to see this. So, note down one thing before we leave this particular slide that now my 

b1, the estimator formula actually becomes a linear combination of this random variable 

epsilon i. So, that is very critical point.  
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Now we start from that point, and as the errors are normally distributed as per our normality 

assumption, we can say that the linear combination of errors is also normally distributed. So, 

in the last slide only I have shown you that the OLS estimator b1 actually is a linear 

combination of the random variable epsilon. So, the estimator formula b1 will also be 

normally distributed, because it is a linear combination of normally distributed variables. So, 

focus on this particular result where I am saying that b1 follows a normal distribution with 

mean beta 1 and variance sigma square divided by sum of Xi minus X bar square.  

So, I have shown you in the previous lecture that Guss Markov theorem tells us that the OLS 

estimator are blue, the base linear unbiased estimators. And their unbiasedness means that the 

expected value of the estimator will give me the value of the true population parameter. So, 

expected value of b1 will give me beta 1, that specifically in a nutshell Gauss Markov 

theorem tells us. And here, we are going to make use of that theorem, so now we know that 

as OLS estimators are unbiased so b1 will have a mean of beta 1. 

Now, from where did I get the value of the variance? It requires a lot of complicated 

calculations and we are skipping this because this is not a theoretical course, so I am only 

going to make use of that theoretical result. Now note that the variance of the sampling 

distribution for b1 is basically cannot be computed. Why? Because sigma square is unknown. 

So, instead of sigma square we can make use of the estimate, sample estimate X square, the 

sample variance. 

Do you remember the formula of root mean square errors? So, if you remember when we 

discussed the classical linear regression model in first two lectures, there we said that once 



the regression residuals are obtained by fitting the curve and then getting the fitted values 

from the fitted lines, then you can make use of those residuals to calculate the standard 

deviation of these residual vector and that basically gives the root mean square error. And 

needless to say that you have to take care of the degrees of freedom because you are going to 

estimate the slop and intercept parameters of the fitted lines before you actually start the 

calculations for root mean square errors.  

So, now here that concept, root mean square error that we have learned previously can be 

used here. So, now sigma can be replaced or we can use proxy for sigma by utilizing the 

quantity s that we have calculated from our data set. So, if you have forgotten the formula 

root mean square error, I suggest that you go back to the previous lecture. Now in a nutshell 

that is the square root of the mean of the square of all the error terms or residual terms. 

So, now by making use of the root mean square error, I can actually write the standard 

deviation of the estimated slope coefficient and the standard deviation of the sampling 

distribution of one regression coefficient is called standard error. So, here I am showing you 

the standard error formula for b1 slope coefficient and that is equal to S, that is basically the 

root means square error divided by square root of sum of Xi minus X bar square. 

Now we are going to start our journey with hypothesis testing. So, first we are going to study 

the case of a single parameter. So, once you run a regression you may be interested to know 

that whether a particular variable say Xj is playing good enough role in explaining the 

variation of Y. Or in other words, whether Xj has a determining role to predict the future 

values or out of sample values for Y. So, for that actually we have to contact a t test. 

So, now let us see how we can bring that old friend back in this linear regression context. So, 

here as we have got the standard error or standard deviation of the b1 slope coefficient, now 

we are in a good shape, we can go for the test statistics formation and that is denoted by t obs  

or t observed and that is actually given by b1 divided by standard error of b1. Now why I 

have minus 0 here?  

Because note, here when we are conducting t test for a single parameter in a regression 

equation, the null hypothesis says that the particular regression coefficient, unknown 

population parameter takes value 0 and the alternative hypothesis is that no it is not 0. Now 

we are not saying that whether it is alternatively positive or negative, so we are going for a 

two tail test and we are just setting the alternative hypothesis saying that beta j is not equal to 

0 and of course, the null is beta j is equal to 0. 



So, it is taking a particular value of that unknown population parameter. And if you 

remember, we have to deduct that particular parameter value that is given in the null 

hypothesis while we are constructing the t statistic and that is why I am deducting 0 from b1, 

because 0 is the hypothesized value of beta 1. So, we have to deduct the hypothesized value 

of the unknown population parameters from the observed value of the sample statistic. So, 

following that principle from hypothesis testing, we are deriving or defining our t observed 

like this. 

So, now these test statistic follows a t distribution with capital N minus K, capital K degrees 

of freedom if error is normally distributed. And we can see that in the small sample case it is 

better to assume that my test statistic t observed follows a t distribution with degrees of 

freedom and all, but when you have a large sample, say, when number of observation is 

greater than 40 or so, but we can also make use of the normal distribution in conducting this 

kind of t test.  

So, if we have capital N minus capital K value is greater than 30, in that case, we can assume 

normality and go ahead with the standard normal table to find the critical value, but otherwise 

you consult a table to find the critical value. Okay, so one can assume that the t statistic will 

follow a standard normal distribution when N tends to infinity and in that case you feel free 

to consult the standard normal table.  

Now we have to choose one particular level of alpha and let us choose a particular alpha, 

norm is 5 percent, if you remember, and now we have to declare our rejection rules. So, there 

are 2 rejection rules depending on the approach you are taking. So, if you are taking the 

classical or traditional approach, then you have to compared the observed value of test 

statistic with the critical value that you found from the statistical table.  

So, you reject null hypothesis if the absolute value of the observed test statistic is greater than 

the absolute value of the critical value that you find from the statistical table. And if you 

follow the p value method, then basically you reject null hypothesis if p value is less than the 

chosen alpha level. So, generally alpha is 0.05 in maximum of the imperial work, so if p 

value is less than 0.05, then you reject the null hypothesis.  

And in this slide we are going to talk about the confidence interval and confidence interval 

for the regression coefficients can be formed by following the simple formula here and that is 

basically estimated coefficient plus minus the critical t value multiplied by standard error of 

coefficient. 



Now why do we have to bring that concept of confidence interval in these case? It is because 

if you remember our previous lessons from hypothesis testing discussions, there I told you 

that you can also comment on the significance of a particular regression coefficient by 

looking at the confidence interval. 

So, in the context of regression, here suppose you make a confidence interval for one beta 

coefficient and then you see that 0 is included in that confidence interval. Then you cannot 

rule out the 0 value for the population parameter and then you can actually judge that, okay, 

this particular variable may not have any effect in determining variation of Y, so the effect of 

X is insignificant. Or you can say that the coefficient that is associated with the explanatory 

variable is insignificant. So, confidence interval can also be very useful to check your results 

that you are obtaining from the hypothesis testing exercise.  
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Now, I am going to show you an illustration of the t test and we bring an example from 

microeconomic theory. So, in the last lecture only we have spoken about Engel Curves. So, 

now it is a good time to revisit that concept again and discuss case of t test. So, let me now 

remind you again so if you know jog your memory, probably you will remember that Engle 

Curves describe how household expenditure on a particular good or service varies with 

household income. 

And the shape of Engel Curve can be of various form, it could be highly non-linear, it could 

be linear in log plane. So we are not going to comment on a particular shape of Engel Curve, 

although we know we discuss that on particular function for may be very useful in fitting 

Engel curves in real life data, but here we are interested in the hypothesis testing case, so we 



are not going to bother that much about the functional form. We are going to actually make 

use of this Engel curve to prove or disprove some hypothesis that we can check from the real 

life data. 

So, a good Engel curve reflects its income elasticity and it indicates whether the good is an 

inferior, normal or luxury good. So, if you remember that I have spoken about in the previous 

lecture about the classification of goods and services in these 3 categories by looking at the 

income elasticity measures. So, the income elasticity can be obtained from the Engel curve 

and if the income elasticity is greater than 1 for a particular good or service, then it is called 

luxury.  

If the income elasticity takes value less than 0, then we say that that particular good or service 

is an inferior commodity and if the income elasticity for demand for a particular good or 

service is taking fractional value, then actually we can say that it is a normal good. So, the 

border line between the luxury good and the normal good is basically the value 1. So, here we 

are going to take a case sometimes we see that poor household they do not spend that much 

of money on nutritious fruits and whereas you see the consumption of fruits is more visible 

and common in the upper middle class and the rich class of the society. 

So, we may be interested to answer a particular socioeconomic question; so are fruits luxury 

items for some community? So, we can get some survey data, we can get data on the 

household consumption on different food items and we can get the data on income, if the 

households are not ready to release their income figures then you can ask their total monthly 

expenditure on all sort of consumption items and that will work as a proxy for income. 

And then if you have got that kind of dataset, along with these kind of data you can also ask 

demographic data like size of the household, whether the household has children or not, how 

many children are there, et cetera. And then you have a very nice dataset with some 

explanatory variables and now you can start the journey of estimation of an Engel Curve and 

addressing this question of whether fruit is a luxury community or not. 

So, here let us have a model. So, in my regression model I have log of the expenditure or fruit 

items, that is market dependant variable. Then I have log of income as one of the explanatory 

variables and then I have two other explanatory variables, one is household size and that is 

basically the number of adults in the households and then I have another explanatory variable 

child and that is the number of children in the households. 



And suppose I got some dataset where I have 40 observations, these are all hypothetical 

arbitrary cases, so we do not have to worry why 40, it can be even 400. Anyway, so we have 

estimated the equation from the data and I am showing you the results in the table. So you see 

the coefficients are reported for the intercept term and the log of income variable and the 

household and the child variable as well. Standard errors are reported and then if you divide 

coefficient by the standard error, you are going to get the t statistic value. So, the t statistic 

values are also reported in the fourth column.  

Now you have to conduct the t test and we are interested to know whether the fruits 

consumption is a luxury good or not. So, basically here we have to focus on the coefficient of 

the log income variable. And log income variable’s coefficient, then we are going to test for a 

particular value of that coefficient. So, before we start the hypothesis in this context, let us 

look at the interpretation of these variables. 

So, you see relationship between expenditure on fruits and the income is basically straight 

line in the log log plane, because we have taken log for both the variable. So, the regression 

coefficient associated with the log income variable is actually showing the elasticity value. 

And the value of that regression coefficient actually tells me that if there is 1 percent change 

in my income or household income, then by what percentage expenditure on fruits are going 

to change.  

So, basically if you see that the regression coefficient takes a value 1, then actually it says 

that that is proportional increase. So if there is 1 percent change in income, then the 

household is going to spend exactly 1 percent extra on fruits and so on so forth. So, basically 

if fruits are indeed luxury items, then one could expect that value of the regression coefficient 

to be greater than 1. So, we are going to set the value for the null hypothesis that the 

coefficient will take value 1 and we can go for a right tail test, but here we are going for a two 

tail test.  

So, here we write that null hypothesis is beta 1 is equal to 1 and null hypothesis, there is a 

typo here so it is alternative hypothesis. So, H1 will be the alternative hypothesis says that 

beta 1 is not equal to 1. So, we know the next step, we have to calculate the test statistic. And 

how do I get the test statistic? 

So, the formula if you remember from the previous slide, you have to take the value of the 

observed coefficient which is 2.0045 here, you have to deduct value 1 which is the 



hypothesized value for the unknown population parameter beta 1 and then you have to divide 

that difference by the standard error for that log of income coefficient which is 0.5123 here. 

So, if you do all this, then you get the calculated value of test statistic as 1.9607 and let us 

assume alpha to be 5 percent level and then as I said that we have 40 observations 

hypothetically, so here the degrees of freedom will be 36 and then you have to consult the t 

table to find the critical value. And the critical value from the t table is 2.0315. So, you see 

the critical value is higher than the test statistic value and hence you cannot reject the null 

hypothesis. So, as you cannot reject null hypothesis, you can say that well, the fruits are 

actually the luxury item.   

Now, we are going to discuss another case of t test and so far we have delt with one since 

parameter in the linear regression equation and we were interested in testing a particular 

value for that unknown population parameter. But what if we are interested in testing some 

relation between two or more unknown population parameters, can we do that via t test? So, 

here I am going to show you that yes, you can handle two regression coefficients in one linear 

combination setup and we are going to explain this by an example. 

And for example again I am going back to the previous lecture. So, if you remember we have 

discussed the case of production function, and we discussed the case of a short term 

production function where we have one variable input and there could be many fixed inputs 

which are not varying. And now here in this case we are talking about a long run production 

function where 2 or more variable inputs are there, there is no fixed input and we have to 

assume specific form, a mathematical function to represent my production function so that for 

different levels of input I get the maximum value from that function, so that would give me 

the maximum amount of output which is possible to produce from that input bundle. 

By input bundle I mean specific values of inputs that are there in the technology set or in the 

production function. So, here I am going to talk about the simplest possible two variable 

input production function case and I am going to assume the most popular production 

function form in empirical microeconomic research or in developmental research and that is 

known as the Cobb Douglas production function.  

So, associated with this Cobb Douglas production function, and why Cobb Douglas? With all 

sort of production functions there is a concept called constant return to scale and we are going 

to test whether we observe constant return to scale from the sample data or not. So, in the 



next slide I am going to show you what is CRS and how we can test for CRS in the context of 

Cobb Douglas production function. 
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So, the Cobb Douglas production function has this specific form that says Y equals to A 

times L to be power beta 1 times K to the power beta 2. And L is basically labour input, K is 

my capital input and beta 1 and beta 2 are the output elasticities with respect to labour input 

and capital input. And this parameter A, that is basically the technology parameter, so it says 

that the state of technology is fixed, you cannot change, that A is a parameter value it is given 

to you.  

Now, what does constant return to scale implies in general? So, when you have a production 

function and you have variable inputs, so let me tell here that this constant return to scale is 

basically a long run concept where you know all factor inputs can be changed, there is no 

fixed input. So, in long run, you can change factor inputs proportionately. So, constant return 

to scale implies that if my factor inputs in production function are increased at a certain rate, 

then output will also increase at the same rate.  

And if the output is increasing at a higher rate, then at the rate you are increasing your inputs 

then we call that there is increasing return to scale. And if you see that output is increasing at 

a lesser proportion, so at a lesser rate, then you can say that you are observing decreasing 

return to scale for your production function, based on the sample evidence that you have. So, 

now we have to test whether we can observe constant return to scale for Cobb Douglas 

production function fitted to a sample. 



Now for that we have to first write down the linear regression model. So, if you note the 

mathematical form of Cobb Douglas production function, it is a non-linear function. So, we 

have to make this non-linear function a linear one. So, for that we have to take log both sides, 

and if we do so then we get a linear in parameter and linear in variable equation in terms of 

log Y log L and log K. Then you add the stochastic noise term epsilon and then you have a 

perfect linear regression model.  

Now, in this linear regression model what situation actually indicates that the production 

function is displaying constant return to scale? So, if we look at the microeconomic theory, it 

tells us that if we add these two elasticity measures, output elasticity of labour and output 

elasticity of capital, if they sum to 1, then actually we have the case of constant return to scale 

in a two input Cobb Douglas production function. So we are going to test whether the sum of 

the exponents of the Cobb Douglas production function actually is 1 or not.  

So, we start with hypothesis framing. So, our null hypothesis says that beta 1 plus beta 2 is 

equal to 1 and alternative hypothesis says that beta 1 plus beta 2 is not equal to 1. And then 

how to actually go about a t test in this case? There could be 2 different approachs and I am 

going to only talk about one particular approach and that is called the approach of re-

parameterization.  

So, here if you see that your hypothesis involves two parameters, beta 1 and beta 2, so you 

have to now do some re-parameterization of your original model or the mother model such 

that in the null hypothesis you get only one particular parameter and then you can conduct 

your t test. So, that is what we are going to do now. 

So, next we re-parameterize and now let me introduce a new parameter theta, that is equal to 

beta 1 plus beta 2 minus 1. And if I now make use of this new parameter, then I can rewrite 

my regression model and that you see the first red diamond bullet in the slide, so I am writing 

log of Y equals to beta 1 plus theta minus beta 3 plus 1 times log L plus beta 3 log K. 

So, you see, I have actually got rid of the beta 2 parameter altogether from my linear 

regression equation and now I can rewrite it further. So, basically I can also write log of Y 

divide by L, so for that actually I have to divide this by log of L and then basically I have 

what, beta 1 plus theta times log of L plus beta 3 times log of K divided by L plus epsilon. 

So, that is basically my right hand side. 



So, this is my new linear regression model. And note that I am going to run my OLS 

technique on this re-parameterized model. So, based in the data I am now going to get the 

estimates for theta and beta 1 and beta 3 but not for beta 2.    

So, now you conduct your t test with hypothesis and it is a re-parameterized hypothesis of 

course. So, theta we are testing for theta’s value of 0 against the alternative hypothesis of 

theta is not equal to 0. And here, I am showing you simple regression table. All numbers are 

fictitious, so basically you have the intercept or constant term and log of L and log of K by 

L’s coefficients are also reported. Now you are going to make a decision, so you have to now 

look at the theta parameter and the corresponding t statistic value and the corresponding p 

value.  

So, let us now look at the table, so here the theta parameters estimated value is minus 0.0213 

and the t statistic value is very small, it is minus 0.3402 and you see the associated 

probability value is very high, 0.7366. So, now if you choose standard level of significance 

alpha equal to 0.05, so here you can see that the probability value if much, much higher than 

the generally accepted level of significance. So, you cannot reject the null hypothesis.  
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So, what does the joint hypothesis tells us? So, it imposes restrictions on multiple regression 

coefficient. And individual t tests are not going to be of any help here because they do not 

account for the effects of the interactions among the independent variables. So, here is an 

interesting point. So, I have a multiple regression equation model now where I have K 

number of explanatory variables. And in reality there could be some linear correlation 



between these explanatory variables. So, there could be positive or negative covariance value 

between these variables.  

So, what I actually want to say that the beta coefficients that I am computing via OLS method 

may not be independent of each other. There could be some connection, there could be some 

covariance or correlation between the estimated beta coefficients. Because do not forget that 

beta coefficients themselves are random variables because they are linear combinations of 

normally distributed error variables.  

So, we cannot just conduct individual t test. Suppose we have a regression model where we 

have 5 explanatory variables, can I conduct 5 separate t tests for different slope coefficients 

and then say I got 3 significant, 2 insignificant and hence, I say that overall some variables 

are helping me to model the variation in Y. No, you should not actually do that, actually you 

have to go for a overall or joint test and that is what we are going to see how f test is going to 

help us to conduct the same.  

So, here what do we mean by overall test? So, we pose this question, does the entire set of 

regressors contribute significantly to the variation or prediction of y. So, when we are going 

to address these question or concern, we are going to make use of joint hypothesis testing or 

that is also called overall testing. So, we start with hypothesis, our null hypothesis says that 

jointly beta 1 beta 2 dot dot dot beta k are all equal to 0 and alternative hypothesis says that 

beta j is not equal to 0 for at least one j, where j is anything from 1 to k. 

So, what does my alternative hypothesis is saying? So, alternative hypothesis is saying that 

out of 5, 6, 7 whatever number of explanatory variables that you have in your model, at least 

one, I don’t know which one, but I can say that at least one is helping me to explain some bit 

of variation in y and hence, the associated regression coefficient is not equal to 0. So, there is 

some linear relationship between that particular explanatory variable and the dependant 

variable.  

Now we are going to make use of our good old friend of ANOVA table and anova table I 

already have shown to you before, so it is nothing new so I am not going to describe, I am 

just only going to say that there is one concept called ANOVA identity which helps us to 

partition the variation in Y in two components, component number 1 is basically the variation 

which is explained by my regression model and then there is another component which 

remains unexplained. So, the part of the variation in Y which is not explained by my 

regression model. 



So, here in the ANOVA table you see there are 3 rows under the column source, so the total 

is basically talking about the total variation in my dependant variable and there are two 

components, one is basically regression and the other one is error. So, regression component 

is basically saying that how my fitted regression line is helping me to explain some bit of 

variation in my dependant variable y.  

So, for that the formula I am showing here at the bottom of the slide, if you have forgotten it, 

and this will probably remind you about the calculation for SSR that we know we have done 

previously. And here we get basically the difference of the fitted value and the mean of the 

fitted value and it can be shown theoretically that the mean of the fitted value Y hat i is Y bar 

itself. So, basically you take the difference of fitted values from it means and then from its 

mean and then you square the difference and then sum and that is the way you get the SSR. 

And SSE is also not unknown to you. This is the entity that we actually minimise in order to 

get my OLS coefficient estimates. And I have explained previously that they are at degrees of 

freedom associated with this sources and of course, if you divide the sum of squares that 

comes from each of these components regression and error, you can divide them by the 

corresponding degrees of freedom and that is the way you get the mean square and that is 

basically MSR and MSE for the regression component and the error component respectively.  

So, here in the column I am also showing he MSR and MSE must be calculated and then 

finally once the mean square numbers are with you, you take the ratio of MRR and MSE and 

that is your f statistic and then basically from that f statistic you can conduct f test.  
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So, this f statistic which is denoted by f observed here follows an f distribution with two 

degrees of freedom k and n minus k minus 1. And note that although all statistical software 

reports ANOVA table, when they are reporting regression coefficients, but if we know you 

are not given ANOVA table, can you still conduct the f test by looking at something else? 

Yes, you can.  

Actually there is a very nice relationship between SSE and the R squares. And by making use 

of the relationship between ANOVA identity and the R square formula we can alternatively 

propose formula to calculate the test statistic value f observed, and that is given by R square 

divided by k and that the entire thing is divided by 1 minus R square divided by N minus K 

minus 1. It is little bit complicated, but you should make use of the ANOAVA table as the 

similar alternative.  

Now, how do you, to accept or reject your null hypothesis? So it simple, you reject your null 

hypothesis if the observed test statistic value is higher than the critical value with alpha 

significance level and degrees of freedom K and N minus K minus 1. So, if you want to make 

use of the p value in order to take your decision, then you have these following decision rule. 

You reject null hypothesis if the p value, which is basically the area in the f distribution to the 

right tail of observed value of f statistic. If it is less than alpha, the chosen level of 

significance, then you reject your null hypothesis.  

Now, this f test can be used to deal with many other types of hypothesis testing problems and 

one of the most important hypothesis testing problem is the context of restricted versus 

unrestricted models. But today, I do not have enough time to go through it. So, in the next 

lecture I am going to start the discussion with the restricted versus unrestricted model case 

and how f test can dissolve this issue. So, come back for the next lecture. Thank you, see you 

then, bye.  

                                                    


