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Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. So, 

today we are going to start the discussion on part 2 of the course which is econometrics. So, here 

in this course the focus is going to be the linear regression models and we are going to start from 

the very beginning although we have done a little bit of least squares methods in the part 1 

applied statistics but I will provide you a brief recap.  

And then gradually we will continue with the linear regression models and develop higher level 

models. So, before we start again with linear regression models in the context of econometrics, 

let us have a look at the agenda items for today.  
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So, in today’s lecture I am going to introduce what do we mean by classical linear regression 

model and abbreviation is also very popular in the field and that is known as CLRM.  And here 

in today's lecture I am going to show you how the CLRM is actually developed and then I will 

talk about the assumptions and then finally I will end by having us brief discussion on least 

squares estimators.  



So, in econometrics what we would like to do? So, here everything starts from an economic 

behavior or phenomenon that we see around us and then economic theorists have developed 

certain models. And these are all philosophical models mostly expressed in words and then later 

these models are also converted in mathematical symbols, So, we get robust mathematical 

models. 

But then from these mathematical models we cannot guess how a particular variable is going to 

behave if there is a change in one particular variable. Well let me correct myself here, of course 

economic theory gives indication to some variables, how that variable is going to behave if there 

is a change in a related variable but if you quantify how much is the change then economic 

theory is silent about that.  

So, for that you have to collect real life data and then you have to quantify certain relationships 

between these economic variables on which you are interested. And then an equation finally will 

come up from econometric estimations and that equation will be able to help you to tell that okay 

if there is a change in one variable X then how a related variable Y is going to change and not 

only that but by how much it is going to change.  
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So, here in this slide we are going to discuss the role of regression in econometrics but already I 

have spoken about the 1st bullet point. So, let me start with the 2nd bullet point and that is 



basically the demand function. So, here in this example I borrowed this concept from 

microeconomic theory and that is called demand function.  

We all know about the basic idea of a demand function it says that if price of a commodity 

increases then quantity demanded of that commodity decreases or vice versa. But when you state 

this law of demand then there are many other variables or factors for which you are assuming 

that they are not changing.  

So, at a time only price of that commodity will change and then you will see some particular 

behavior of the quantity demanded but what about the other factors which you are keeping fixed 

when you are describing the law of demand. So, there are many other factors which can also 

impact demand. What are these factors?  

One could be income of the consumer, 2nd could be the price of a complementary good and then 

3rd could be price of a substitute good. So, let me give you an example So, suppose I am 

interested to figure out the demand for tea. Now of course demand for tea will definitely depend 

primarily on the price of tea.  

But what about the income of the consumer? So, if income increases then you expect the 

quantity demanded for tea to go up and then what about the price of sugar? Sugar is a 

complementary commodity to tea So, if price of sugar increases then what do you expect? Will 

the demand for tea increase or will it fall?  

So, our economic theory says that if the price of complementary goods increase then there is a 

fall in the quantity of the main community. So, here if the price of sugar increases then we expect 

that quantity demanded for tea shall go down. Now what about a change in the price of a 

substitute commodity? So, what could be a substitute for tea? It could be coffee So, if say price 

of coffee increases then what will be the impact on the demand for tea?  

So, if substitute goods price increase So, the coffee price increases then you expect that quantity 

demanded of tea shall go up because now the alternative item has become costlier. So, here you 

see that economic theory tells you if there is 1 unit change in the So, called explanatory or 

independent variables in an economic model then how my dependent variable quantity 

demanded for tea is going to change.  



So, basically you need to estimate a regression equation from the sample data. Now in 

econometrics are we happy only with the estimation of regression equation? Here in this example 

say demand function for tea answer is no. We can make use of this demand function many ways 

So, one good example could be like projecting the future demand for tea. So, the regression 

equation once it is estimated from the sample data can lead to the future predictions.  

So, now let us come back to the general discussion. We have had enough discussion on the 

example. So, here after you select your dependent variable, the variable of focus then what you 

have to do if you want to develop an econometric model. So, you have to now look at the other 

specification issues of the model and there are 3 different components of a model specification 

except for the dependent variable Y.  

So, there could be axis the independent variables or explanatory variables or in many text books 

you will see the term regressors and the 2nd component of the model specification is the 

functional mathematical form of the variable. So, when you say that your dependent variable Y 

is linked to a set of independent explanatory variables axis then in which way they are related.  

So, there has to be an explicit functional form, a mathematical equation, So, that that your 

variables are going to be linked in this particular manner. And then once that is set you have to 

assume certain properties of the random disturbance of the stochastic error term and then these 

properties of this stochastic disturbance term will lead you to a particular estimator. So, at this 

moment let us make a distinction between estimator and estimate its very crucial.  

So, what is an estimator? An estimator is a mathematical formula for which you can generate 

different values once you plug the values of the variables that you see in that formula. So, in this 

lecture and in the next lecture also we will see that when we will conduct regression our basic 

aim is to first find out an estimator formula which is good in many ways.  

Now why we have to make the assumptions on the stochastic or random error terms? Because 

when we want to establish certain properties for the estimators we will require the assumptions 

regarding the stochastic or random error terms, hence the properties of the stochastic error term 

or random term is also very important in regression analysis in econometrics.  

So, before we start discussion on the estimation of regression equations in econometrics, let me 

talk about a very simple story. And this story or example or illustration whatever you want to call 



it is a motivation and this will show you how from data, from the very scratch we can think about 

regression problem in econometrics.  
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So, here we consider a data set from randomly chosen households in a city. It is a hypothetical 

data set of course. Now we observe their monthly income in rupees 1000 and that is denoted by 

X and then we also have data on their monthly expenditure again in rupees 1000 and this is 

denoted by Y.  

Now from economic theory we have this idea that quantity demanded and consumption 

expenditure depends a lot on the income of the consumer. So, here we are taking household as 

the consumption unit. So, in that case the consumption expenditure made by household shall 

heavily depend on monthly income and from that economic theory or hypothesis we are 

developing this example.  

So, suppose we have collected data on some households and I am going to now show you 

representation of the collected data in terms of 2 tables. So, here concentrate on the table number 

1, which is the 1st table in the slide. So, note that here in the columns, I am showing monthly 

household income in rupees 1000.  

So, all these numbers 40 60 80 100 120 these are basically monthly household income total 

income of the household expressed in rupees 1000. And then in the rows, I am showing you all 



different numbers on the household consumption expenditures, again these are monthly totals 

and expressed in 1000 also.  

So, now let me provide you some explanation about the data. So, you are observing some 

monthly income totals like 40000 60000 80000. Now this may look very crude but you may ask 

from where did I get this kind of exact numbers for income. In reality people do not disclose 

their income level.  

So, here in our questionnaire we have provided the income ranges to the household and the 

household head or the member who is responding to the questionnaire can put a tick mark in the 

income box that he or she feels the best suited for his or her household. So, we started with some 

box like less than 30000 and then the 2nd income range or the box says that total monthly 

household income is between 30000 and 50000 rupees.  

And again the next box or the next income range says that your total monthly household income 

is some number between 51000 and 70000 and this list goes on like that. And the person puts a 

tick in the appropriate box and then we, these are basically the class limits or different class 

intervals if you remember previous discussion in applied statistics part when we were discussing 

frequency tables.  

So, we can just take the midpoint of this class. So, these are the class marks and I mean these 

will give you a very rough idea about the monthly household income of the particular household. 

So, that is how we get these discrete numbers and this is an arbitrary hypothetical data set. So, do 

not worry about the numbers how they are generated as such at this moment. But just assume 

that you see different level of household incomes.  

And then you see that for each household income level, I am reporting the monthly household 

expenses reported by various households in my sample. So, you see for the 40000 level, I see 6 

values reported then for 60000 monthly household income also I see there are 6 values of 

monthly household expenses. And then you see the last column 200 shows that there are only 3 

numbers.  

So, basically in our sample we had only 3 households who reported that high monthly household 

income and this table basically gives me the idea about the bivariate distribution of the X and Y. 

So, from here for each column now I can calculate the sample mean of Y. So, basically we can 



calculate the Y bar from the sample. But note that these are for all given axis. So, for example for 

the column 40, if you calculate the sample mean for Y then you get 34.5.  

So, now an interesting question could be asked that, what is the expected value of consumption 

expenditure of a household whose monthly income is some number in the table say 40000 or 

60000 or 200000 So, then how would you answer? So, to answer this particular question you 

have to look at the conditional mean. Now one can say that why conditional mean, So, for that 

let us go back to the slide again and then I will explain you through the 2nd table in the slide.  

So, here you see we have table number 2 at the bottom of the slide and there I am showing you a 

bivariate probability distribution for X and Y. So, what do you see here? So, the X values are 

given the 40 60 80 numbers are given and then you see in the rows, I am not reporting the 

consumption figures. I am reporting some numbers in the fractions. So, these are basically the 

probabilities. So, these are all the conditional probabilities.  

So, what do I mean by that? So, I am actually measuring probability of Y given for some 

particular value of X. So, if I fix the value of X to be 40 then you see in the 1st table I have 6 

numbers for Y. Now these 6, I assume they are equi-probable. So, if they are equi-probable then 

the probability of a particular number say 32 or 37 in that column will be all 1 over 6 that is 

0.1667.  

So, that is why I am showing you 0.1667 in all 6 rows under the column 40. And similarly for 

other columns also I have computed the probabilities. So, now you can apply the expected mean 

value or the mean formula for a random variable. So, now you say that my Y the consumption 

expenses data that actually is a random variable and it will take different values with different 

probabilities.  

So, here in the data you see there are 6 possible values for Y for given X equal to 40 and there 

are probabilities associated with them and then you multiply the probability values with the 

realized value and then you report no our mean the expected value and that expected value is 

basically a conditional mean because this is computed after assuming one particular value of X.  

So, this is the way you can actually find the answer. But note that this is a small sample case. If 

you are dealing with say very large samples a 1000 then of course you can have more number of 

data points and then you also have more values or levels for variables X and Y. So, these tables 



will look very complicated and as the sample increases then you can say that okay you can 

assume existence of normal distribution, you can bring in the story of normal approximation and 

this conditional probabilities will not be uniform as you are shown here in this simple example.  
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So, in this slide we will now take the lessons from the previous slide and try to tell you the same 

story but through a graph. So, here we are going to introduce the concept of population 

regression line or population regression curve. So, here before I talk about the formal definition 

let us concentrate on the graph.  

So, here I am showing you a 3 dimensional diagram, here along the horizontal axis I am 

measuring the explanatory variable X that is my income household income level and then along 

the vertical axis number 1 that is for Y. So, that is basically measuring my consumption level, 

total monthly consumption for household. And then there is another axis here and that is 

basically the z axis or that is named as the conditional probability f of y given x.  

So, I am also measuring the conditional probabilities. Now suppose I have a very large sample it 

was not a small sample like I had  in knowing the previous slide. So, the story from the previous 

slide stays in this slide also. But here I am dealing with a large data set. So, now let us see how 

the story can be retold in terms of the diagram. So, let us assume that we are interested to discuss 

the case of X equal to 40 and X equal to 80.  



These are arbitrarily chosen numbers there is no specific reason why I have chosen 40 and 80. 

You can choose 60 and 120 also it does not matter. Anyway So, now after you have chosen 2 

particular values of X then you draw some vertical lines parallel to the Y axis and these vertical 

lines I have shown you both of them are in black. Now you note that here suppose you 

concentrate on X equal to 40.  

Now see you have 4 circles in light blue colors those are plotted on this vertical line. What are 

these circles? So, these circles are basically the observed numbers of total monthly household 

consumption expenditure for some households who has reported total monthly household income 

of rupees 40000. Now these 4 are basically representative numbers. There could be 40 more.  

So, basically if you have a large number of y's for X equal to 40 then actually you can assume 

the normal distribution, you can bring in the normal approximation because you have large 

sample. So, then you can assume that there is some kind of distribution here approximately 

normal bell shaped and that is given in light blue color as well. So, if this distribution you can 

assume from the observed data then of course there will be a mean for this distribution is not it?  

So, that distribution mean is also marked in light blue. So, I have this broken line which is 

connecting this peak of the distribution and the asterisk or a star point here in black color. So, 

that star or this black asterisk point expresses or represents the conditional mean and this 

conditional mean is basically represented mathematically by this expression expected value of Y 

given X equal to 40.  

So, now let me move on to the case of X equal to 80, same story is applicable here also. So, if 

you follow the same steps or the same logic that I told you in the case of X equal to 40 you get 

another asterisk point or black star here. And that is again the conditional mean and 

mathematically that is expressed as expected value of Y given X equal to 80. So, now you have 

got 2 points on X and Y plane.  

So, we all know that you can draw a straight line if you have 2 data points. So, basically I am 

drawing a straight line here that will pass through these 2 conditional mean points in, these are 

represented by black stars. So, note that I have a thick green line or a straight line that I have 

drawn and this is going through the 2 black star points. So, this thick green line is called the 

population regression line.  



So, now I go with the formal definition that I am showing here at the top of the slide. So, a 

population regression curve is the locus of the conditional means of the dependent variable Y for 

the fixed values of the explanatory variable X. So, note that in that slide we have written line 

slash curve. Why I have written both? Because if you are assuming the linear relationship 

between 2 variables Y and X then you draw a line.  

But if you assume that there is non-linearity between Y and X and indeed if you see that after 

plotting 4 or 5 conditional mean data points on the X Y coordinate plane. If you see that there is 

sufficient non-linearity, then you can also connect these points by a curve. So, that is why this 

concept can also be straight line, it can also be a curve. So, that is why population regression can 

be expressed in both ways either in terms of a straight line or in terms of a curve.  

So, now if I take you back to the diagram you see that population regression line, as it is a 

straight line we can assume a functional form for that or a mathematical expression for that and 

that is what is written here, expected value of Y given X equals to beta naught plus beta 1 times 

X. So, here this beta naught and beta 1 are the regression coefficients and you know beta naught 

is my intercept coefficient and beta 1 is my slope coefficient from the knowledge of 

mathematics.  

We have also discussed this issue in the case of curve fitting in the part 1 of the course as well. 

So, this is not new to you. So, we got a relationship called population regression function and 

from there now we will begin our journey of estimation of this relationship between 2 economic 

variables. Population regression function actually is unknown to you. Why? Because you know 

that, that is the locus of the conditional mean of Y given the axis.  

But in your data set you may not be lucky to have these data points. So, basically what you 

observe you have raw data set and you have 100 or 1000 observations but you do not know 

which point actually is this black star point as per the slide that I have shown you last. So, you 

have to define some kind of a statistical technique So, that you can estimate some straight line 

you can get a very close proxy for that straight line that population regression line.  
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So, here in this slide we are going to talk about the population regression function and the sample 

regression function. So, the 1st bullet point is basically repeating the population regression 

function concept from the previous slide. So, we have already discussed about it. Now you see 

that this component that I have written in the 1st bullet point which is the population regression 

function is a systematic or it is a deterministic component, there is no stochasticity involved in it.  

Because mean once it is computed is a constant number. So, there is no fluctuation there. Now in 

the context of our sample or example it is the mean consumption expenditure of all households 

with the same level of income. But real life is not this simple like text book or classroom. So, 

here we are trying to explain the variation in monthly household consumption expenditure 

through one single explanatory variable that is monthly household income, of course total for all 

household members.  

Now in reality there could be many other factors which are also affecting the household 

consumption expenditure but you are not accommodating them in your simple linear regression 

model. So, what could be the other factors? It could be the number of children in the household, 

number of aged in the household, number of college going students in the, school going students 

in the household. So, for aged people of course there could be medical expenses and also in 

overall expenses for a household could be a bit on the higher side.  



For the school and college going children or students you have to spend money on tuition, then 

text books and uniform and these and that. So, of course in on an average the expenditure will be 

little bit higher then there could be another criteria or factor like the socio economic status. So, 

the factors I have spoken about which will impact the Y are also observed. So, if you collect data 

on these factors then you may think that I have collected every variable that I need to model Y. 

And then there should not be any need for any random component or any stochastic component. 

So, even a deterministic model is good enough do not you think so?  

But the answer is no, unfortunately because still there could be other factors which may have 

impacted the households consumption expenses that you do not know at the time of survey 

probably you forgot to ask some questions like you may not have asked questions that okay in 

the last month or in last 3 months did you have some family gathering or some ceremony in your 

place like you have, have you married your daughter or son or was there any invitation or have 

you been to some tourist place for tourism.  

So, you may not have asked these questions to the household and if one of these things actually 

happen then it would have an impact on the household consumption expenditure and 

unfortunately your model does not take care of that. So, to be on the safer side in all regression 

models you should have a random noise component.  

So, here let us assume epsilon i denote the stochastic disturbance or the random error term which 

is the non-systematic component of the regression model you are trying to develop. So, what is 

this i subscript doing? So, i is denoting the ith household. So, if you have n number of data points 

i will range from 1 to n. Now this epsilon i is a surrogate for all the variables that are omitted 

from the regression equation or the population regression function.  

But they are collectively can affect Y So, that is basically the idea of bringing in this epsilon in 

the model. So, I write epsilon i as the difference between the actual observed value of dependent 

variable Y and the conditional mean that is expectation of Y given X equal to Xi or that can be 

simplified by this expression Yi. So, the original observation Yi the value of the dependent 

variable Y for the ith individual now can be broken into 2 components.  

First the deterministic component which is coming from the population regression function and 

that has this beta 1 plus beta 2 times Xi and the 2nd component is basically the random error 



component which is the epsilon. So, now let us discuss about the distinction between population 

regression function and the sample regression function. So, what is the sample regression 

function?  

So, we have already gone through the case of population regression function but that is basically 

in hypothetical world. You cannot get the exact values for beta 1 and beta 2 because these are the 

unknown true population parameter values. So, you have to get some proxies for them. How to 

get the proxies? You get the sample and then you follow some method So, that you can get some 

proxy values for beta 1 and beta 2.  

So, once you have say sample 1, you can get some proxies like beta 1 hat and beta 2 hat and then 

you get a sample 2 So, you will get another set of beta 1 hat and beta 2 hat. So, these all possible 

combinations of beta 1 hat and beta 2 hat will give you a range of regression equations and these 

are called the sample regression functions.  
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So, now we are going to talk about the assumptions that you must make in order to estimate a 

classical linear regression model. So, we will start with a very simple assumption and it says that 

the number of observations in the randomly drawn sample should be greater than the number of 

parameters to be estimated.  

So, although we know this looks a bit silly but if you have a simple model that I have shown you 

previously with one intercept parameter and one slope parameter then you must have at least 3 



observations to estimate the slope and the intercept parameter. So, that is basically in the nut 

shell we are talking about here.  

Now in bullet point 2 we are saying the independent variables are non-random whose values are 

fixed. So, that is a very important assumption. Third assumption says that the regression model is 

linear in parameters though it may not be linear in variable. So, what do we mean by that it may 

not be linear in variables?  

So, if there is non-linearity between 2 variables Y and X our regression technique the same linear 

regression model technique is well equipped to capture the non-linearity in the model. So, for 

capturing the non-linearity between 2 variables you can still adopt a linear regression analysis 

but you have to make the assumption that there could be non-linear relationship between 2 

variables. And that you can take care of by taking square term or the logarithmic value of the 

explanatory variables in the right hand side. But the parameters of course they will be all linear. 

So, you should not have like some term like beta square or log of beta.  

Now the 4th assumption says that the regressor variable values are independent of the error term. 

So, in statistical notation we write covariance between Xi and epsilon i must be equal to 0. This 

is also famously known as the exogenetic condition. Now we move on and the 5th point talks 

about the 0 conditional mean of the error term and that is expected value of epsilon i given X 

equal to Xi and that should be equal to 0 and this is a very useful property we will see why later 

on when we are going to talk about the properties of the least squares estimators.  

Now the 6th assumption says that the variance of error term is constant for all values of Xi and 

we call this constant variance assumption as the assumption of homoscedasticity and sigma 

square is the common variance term that is assumed for all epsilon i. Now the last one says that 

no serial correlation between the error terms it implies the covariance between epsilon i and 

epsilon j where i is not equal to j given Xi and Xj is equal to 0.  

So, here what do we mean? So, if we have n number of observations we are saying that the error 

term value for say individual 1 and individual 17 and say individual 127 they are not linked to 

each other or you can also say that the error term between individual number 2 and 3 and then 3 

and 4 they are also not linked in any way.  So, we are done with the assumptions for the classical 

linear regression models.  



Now you note the functional forms that I am showing you here in 3 bullet points at the bottom 

and we start with the population regression line So, you note that there is no error term So, it is a 

deterministic component of your regression analysis. Then the 2nd bullet point shows you the 

sample regression values. So, here you see that when you are talking about the sample regression 

values these will not involve the beta 1 and beta 2 neither it will involve the expectation.  

Because expectation is basically coming from the probability distribution but here when you are 

dealing with sample you have the raw data with you So, you write Yi that is basically the raw 

observation, the number that you see for the dependent variable Y for an individual element i in 

your sample and you see that beta 1 and beta 2 are now replaced by small b1 and small b2. So, 

these are basically the estimates for the beta 1 and beta 2.  

So, now how to get this estimates that we were going to discuss next. But note that as we are 

talking about the sample and we do not know the true parameter values beta 1 and beta 2 there 

could be uncertainty and that uncertainty is captured by the random disturbance of the stochastic 

disturbance term ei here. And the last in the list is sample regression line and that is basically 

again a deterministic expression. It will not involve any stochasticity.  

So, why because once you have estimated the proxies for beta 1 and beta 2 namely b1 and b2 

then you have one mathematical equation and the only unknown thing is X. So, if you plug 

values of X in that equation you will get the predicted or the fitted value for Y and this is denoted 

by Y hat i. So, once you provide a prediction then there is no error.  

Because it is coming from a model So, that is why here I am not in accommodating any 

stochastic or random disturbance term. Now the question of million dollar is, how do we get the 

proxies for beta 1 and beta 2? Beta 1 beta 2 are unknown we will never be able to know their true 

values that we have accepted but can we get some very good proxies about beta 1 and beta 2? So, 

that is basically we are interested in and that is what we will be doing in this 2nd part of the 

course.  

We will try to get best possible proxies for beta 1 and beta 2. So, here we are going to talk about 

the method that we have already actually gone through in the 1st part of the course and that is the 

least squares approach as proposed by the German mathematician and statistician Frederick 

Gauss who also invented the normal distribution.  
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So, note that we can write the regression residual as ei equals to yi minus b1 minus b2 times Xi. 

So, basically this is basically my regression residual and Gauss suggested that we have to 

minimize the sum of the squared residuals. So, we have done this least squares approach 

estimation method when we were talking about curve fitting and all in the part 1. So, I will not 

talk about this in great details but probably I will just spend a minute here on the diagram. This 

one also you have seen earlier.  

So, here Y is dependent variable X is my independent variable and the star values in grey or you 

can also call them as asterisk. So, you these are basically the actual observations. So, these are 

basically x1 y1, x2 y2, x3 y3 and x4 y4 pairs. Note that it is basically illustration So, its heavily 

simplified So, there are only 4 observations. And now I am saying that I have to find out the least 

squares estimator for beta 1 and beta 2, So, how to proceed?  

So, suppose I have the b1 and b2 values someone has given me. Now plug the value of x1 x2 x3 

and x4 one by one in that expression that I am showing you are at the top. So, this is basically the 

regression residual expression and then I can generate what? I can generate e1 e2 e3 and e4. Why 

because this yi is basically my observed value for the dependent variable for the ith individual in 

the sample and that is given the by this star.  

And once I plug different values for axis and if I am told previously that I know the values of b1 

and b2 then actually I know from the 2nd part of this expression I can get the fitted values which 



are denoted as y1 hat y2 hat y3 hat and y4 hat. Now there is difference, So, these fitted values are 

all falling on the straight line as expected because they are coming from the equation of a straight 

line. So, the fitted value shall lie on the straight line but there is a gap and this gap is basically 

the regression residual.  

So, some residual is positive sum is negative. So, basically you have to take square and then you 

need to sum and then finally you need to minimize the sum of squared residuals. So, we stop our 

discussion here. In the next lecture I am going to start with the calculus of least squares principle 

and then I am going to talk about the properties of the wireless estimators. See you then, thank 

you. 


