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Hello friends. Welcome back to the lecture series on Applied Statistics and Econometrics. So, 

we have been discussing classical time series analysis. We are going to continue with the 

discussion, and we are going to end that discussion in this lecture only. So, before we jump to 

the theoretical discussions and illustrations case studies, let us have a look at the agenda items 

for today.  
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So, we are going to start with the discussion on smoothing techniques, and we are going to 

cover two smoothing techniques. One is the popular one, which is called moving average 

method or it has got other names like rolling or running average method as well. And second, 

we are going to discuss exponential smoothing, which is a special case of moving average 

method. And then we are going to briefly talk about the issue of forecasting and then we are 

going to end today's discussion by having a very brief idea about forecasting accuracy.   
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So, what are smoothing methods? These are the forecasting techniques that are appropriate 

for a time series with horizontal pattern. So, let us know, look at an example of a time series 

variable, which is showing horizontal pattern. So, now I request you to concentrate on the 

graph that is placed in the middle of the slide. Here I am portraying the values of Laspeyre’s 

Index of Industrial Production for our manufacturing sector of India.  

So here you see, I have plotted 6 year’s quarterly data for this Laspeyre’s Index of Industrial 

Production for manufacturing sector, and you see there is zigzag around that number 0, which 

is basically at the center of the data, and you can see that there is no prominent long run trend 

in the data.  

So, you cannot draw straight line either with a positively sloped one or a negatively sloped 

one. Here the fluctuations are all around the value 0. So, you here you can see that the 

Laspeyre IIP for manufacturing sector for this particular time period, of course, is showing a 

horizontal pattern.  

So, if we have such kind of time series data, then what does a smoothing technique do? So, a 

smoothing technique actually dampens this in our regular fluctuations around the constant 

mean. And what is the advantage of that? So, basically it helps us to disentangle the mild 

train defect is there is any and the seasonality effect or component that is embedded in the 

time series data.  

So here we have two types of smoothing techniques in this course. So, we are going to start 

with the brief definitions for each one of them. And we are going to start with moving 



average first, because this is the most popular one. So, moving average, which is abbreviated 

as MA is a smoothing technique that is used to analyze data points by creating a series of 

averages of different subsets of the full data set.  

And in this course, I am going to show you ample number of examples, how to compute 

moving average, so please wait for a moment. And then the second one is exponential 

smoothing. This is a statistical technique that replaces a data value of a particular time period 

with the weighted average of the actual data value and the value that results from the 

exponential smoothing for the previous time period.  

So, this is slightly complicated. I hope that, these ideas of moving average and exponential 

smoothing will be much clearer to you when we will discuss some new medical examples. I 

am going to tell you the exact steps, how can you compute moving average and exponential 

smoothing, so that we will discuss in today's lecture only.  
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So, now why we are adding this term moving in front of the average method. So, we are 

adding the term moving because the first element of the moving average is obtained by taking 

the average of the initial fixed subset of the number of series. So, suppose we choose the first 

k number of observations in the time series then the subset is actually modified by shifting it 

forward.  

So, what do we do there? We actually exclude the first number of the series and then include 

the next value in the main data set in that subset of k observations. And then again, we 



compute that verse so a new average value is obtained and this is the way the average number 

is constantly moving over time.  

So, here in this slide, I am going to show you the steps or the formula, how to compute the 

moving average values or how to actually implement the moving average method.  So, here 

we must first select the order of k. So, what do we mean by this order of k here? So, if we are 

dealing with say a monthly time series data set, then within a year there are 12 data points, 

and the seasonality, if it exists that will be basically reading from one month to the other.  

So, you can have a 12-point moving average to reduce the fluctuations the seasonal 

fluctuations. But if you have a data set, which is a quarterly data set. So, if you have a dataset 

for say some number of years and for each year you observed the value of the time series 

variable for different quads, four quarters, then you can actually construct a four point 

moving average. So here for a monthly data set, the k is usually 12. And if you are dealing 

with the quarterly data set the usually, the value of k is 4.  
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So now you concentrate on the last bullet point of this slide, where in the sub bullets, I am 

explaining the mathematical formula. And you look at the formula capital FT plus 1, so that 

is basically given by the sum of most recent k data values divided by the number of k. So, if 

you remember how I have tools in my case.  

So, if I am dealing with the quarterly data set, then there are four quarters and then here k can 

take value 4, so I will basically start with first four values of the data set, and then I will 



compute an average and then I will, exclude the first observation from the dataset or that 

subset, and then I am going to include the very fifth observation in that time series data set.  

So, once we are done with the first average computation, we are going to exclude the first 

observation from that subset. So, I am going to exclude the quarter one of year one value, and 

then I am going to include quarter one of year two time series value in my subset and then 

again, I am going to compute that average and that will give me no another average value. So, 

this is the way I am going to proceed.  
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So here, I am showing you the formula where capital F t plus 1 means it is the forecast of 

time series for the next period. And Yts are basically the actual value of the time series in the 

period t and k is the order. So here it is important to note that there is a jargon.  So, if you 

have chosen k to 4 for a quarterly data set then basically you are computing a fourth order, 

moving average. Now, the moving averages could be off mainly two types and they are 

called centered moving average and other one is called weighted moving average, so we are 

going to briefly have a look at these two items and then we are going to talk about a special 

case of moving average at length.  
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So, the centered moving average is a moving average method such that the time period is at 

the center of the end time periods use to determine which values to average. And again, later 

I am going to show you an example how to compute the centered moving average. And the 

weighted moving average method actually assigns different weights to the different time 

series values then computes a weighted average of the most recent k data values.  

So, you see the simple moving average actually is not making use of any weight, whereas, 

weighted moving averages are making user weights. So, now we are going to consider the 

case of exponential smoothing which is a special case of the moving average method. It can 

also be seen, as a weighted average moving average method.   
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So, under the exponential smoothing method we select the weights for the most resent time 

series value only. And you see, we have to introduce a new concept here, and that is called 

the smoothing factor or sometimes it is called co-efficient of a degree of weighting decrease. 

So, this is generally presented by alpha in statistical literature and it is a fraction. So, alpha 

always takes value between 0 and 1. So, basically you are taking a convex combination of 

two different time series values.  

So, let us revisit that formula for F t1, which is basically the forecast or fitted value of the 

time series variable for period t plus 1, where Yt is basically my actual observation for time 

period t. So now you see, as I was explaining you a couple of seconds before that I am going 

to talk about a weighted average or a convex combination of two different time series values. 

So, here alpha, is basically the smoothing factor weight or the coefficient of degree of 

weighting decrease whatever you want to call it, that alpha value is multiplied with Yt and 

then 1 minus alpha is applied to the value. Ft and Ft is really the forecast for time period t. 

So, now you see the forecast for a time series point t plus 1 is basically weighted average of 

two different time series values or you can also say that it is a convex combination of two 

different times series values. One is of course, the value of the time series variable in the 

preceding period, but this Ft is basically the another variable to which you are applying this 

weight and that is basically the fitted value of the time period t which is the preceding period.  

So, to apply exponential smoothing for a particular time period you must have an idea about 

the fitted value of the preceding time period. So that is a big assumption that you must 

remember.  



So, now to forecast with the exponential smoothing. Suppose I have a data set Y1 to Y capital 

T so they are a T data points. So now, as I was telling you that you have to have some idea 

about the Ft which is basically the forecasted or fitted value of the previous period. So, then 

you as you, that F1 is equal to Y1. And then you apply that equation to get the forecast or the 

fitted value for the second time period, which is t equal to small t equal to 2 and you have this 

expression F2.  

And you see, you get back actually the observation Y1 which is the actual value of the time 

series. Then you take Y1 as proxy for F2, and then you continue to calculate the fitted value 

or the forecasted value for the time period t equal to 3, and then you see you apply the value 

of Y1 in place of F2 and you get a much-complicated expression compared to the first one 

and you can continue like this.  

So, here alpha plays a very big role. And how to choose a particular value of alpha. Because 

suppose if you have chosen an alpha value of say 0.02, then you will get a series of forecasted 

or fitted values, but if you have chosen alpha equal to 0.8, say, then you are going to get a 

very different set of forecasted value. So, how to actually choose the particular value of 

alpha. So, in statistics, literature, there is some guidance given how to choose alpha value.  

So, a commonly used value for these constant smoothing factor alpha is given by 2 divided 

by capital T plus 1 where capital T is the number of observations in the time series data. So, 

note that, as a passing comment I should mention that a higher alpha discounts the older 

observations faster. And you should prefer a smaller value of alpha if there is too much 

random variability in that data. So, these are the guidance provided by statisticians in the 

literature. So, remember these as thumb rules.  

So, now we are going to deal with a hypothetical data set. And I am going to show you how 

can you compute moving average and exponential moving average numbers for a 

hypothetical time series data set. I am only going to show you some examples. And I believe 

that these examples are going to help you much to understand the steps compute for moving 

average and exponential smoothing techniques.  
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So, here in this slide we are going to discuss an example of smoothing a time series. And here 

we have a hypothetical data set with five time periods, and the time series variable is Y. So, 

we see five values of Y. And here I am going to show you how one can compute the 3-point 

moving average and not 2-point moving average. And finally, we are going to show you how 

exponentially moving average numbers can also be calculated.  

So here, if we start our discussion with three-period moving average then actually it is simple 

because if we say take time period 2 then we have to basically take three numbers, 7, 9, 15 

and then we need to sum and then divide by 3 and then the resultant number is 10.33 and that 

is going to be the 3-point moving average for time period 2. Note that here there is no 

problem of centering because he calculated moving average is exactly mapped with the time 

period 2.   

But what if we take k equal to 2 or this is a general problem I am going to discuss for any 

even value of k, the order of moving average. So, here to be the simplest possible case we are 

going to discuss the case of k equal to 2. So here, if we take the case of k equal to 2 then what 

will happen. So, to calculate the moving average for time period 2, we have to get first 2 

values 7 and 9 and then we have to take the average, and you see the value of course is going 

to be 8, but where to place this newly created average. 

Because you see, I cannot place this number 8 to either of these two time periods, 1 or 2. So 

actually this number 8 is placed somewhere in the middle of these two time periods, 1 and 2.  

So, that is why you see, I have created this gray cell where I do not have any time reference 



or if you wish you can put the time reference say 1.5, the midpoint of time periods 1 and 2, 

and then you can place these two-point moving average value 8 against this time 0.1 0.5.  

But note that in the original data set, we do not have a time period 1.5. So, there is a problem 

of mapping between the two point or even point moving averages and the time periods given 

in your dataset. To resolve the issue, we have to now make use of this concept centered 

moving average.  

So how do I do that? So, I have already calculated the moving average for the time periods 1 

and 2. And next, what you have to do, you have to exclude the time period 1 and include the 

time period 3, but keep time period 2. So, now you are considering two values, 9 and 15. You 

take the average so that is going to be 12. And these newly created two-point moving average 

will, again be placed against the hypothetical time period, 2.5, which is exactly in between 

time periods, 2 and 3, which we observe in the data set.  

So, now we have two, two-point moving average numbers, 8 and 12. Now, if you take mean 

of these two numbers you get 10, and then these newly created centered moving average 

number 10 will match to the time period two, and then you see the mapping between the 

moving average numbers and the original time period, and the original time period value is 

restored.  

So, this is the way you can compute the moving average centered for other time periods as 

well. And I am showing you how to calculate the moving average centered values for time 

periods 3 and 4 as well. So, note an interesting thing here. If we are going to compute 

centered moving average, then we are going to lose one data point at the beginning of the 

series and the end of the series. So, that is why you see under the column of MA sent I have 

two dash at the time period 1, and again 1 at that time period 5. So, you lose out on these two 

time periods.  

So, now we move on to the case of exponentially weighted moving average. So, if you 

remember, I told that for the first time period the fitted value you can, assume it to be the 

value of time period 1. So, the exponentially weighted moving average value for time period 

2 will be the number 7 that you observed in the case of time period 1. But then how to 

calculate the EWMA for period 3, if you assume a alpha value of 0.2.   

So, what will you do? So, in that case, you have to go back to the previous time period which 

is 2 and you have to figure out what is the actual observed value of a time series variable Y 



that is 9. You multiply the smoothing factor 0.2 with that actually observed number and then 

you multiply 1 minus alpha, which is 0.8 with the fitted value or the projected value for that 

time period.  

And from the last bullet point only, we know that, that value is 7, so you then, after you, 

multiply you sum these two products and then you to get a number 7.4, which is the EWMA 

for period 3. Now, we are going to talk about a very important concept and that concept is 

called seasonal index. Now, why we must learn about seasonal index. Remember, in the last 

lecture I have told the entire objective of classical time series analysis is that it should help us 

in forecasting or projecting the future values of the time series.   

So, suppose we have an initial data set where the time periods are 1 to capital T and we are 

interested to know what is the value at time periods say capital T plus 1, capital T plus 2, we 

do not have the values for capital T plus 1 and capital T plus 2, but from the historical data, 

which is with us for a first capital T time periods from there we want to draw some inference. 

We want to estimate the future values of the time series variable.  

So, for that, you need to disentangle the different components of the time series variable or 

time series data namely train, seasonal component and then the cyclical component if there is 

any. And of course, there is a random component but here we are assuming for the sake of 

simplicity that our random component is very well behaved, it is purely random. And it is 

basically coming from a white noise already Gaussian distribution, so we do not have to 

worry about it.  

So, there are these systematic factors that we need to take care of when we are trying to make 

projections about future. And we should do it step by step. In the last lecture we have 

discussed the case of linear trend. So, if there is a linear trend, if by plotting the time series 

variable you see that there is an upward or downward trend visible enough from the data then 

you just apply the OLS technique and get a trend equation estimated, and that will basically 

give you the fitted values of Y. 

If you, get the OLS estimators for the population parameters and then plug the different 

values of time period in the equation, you will get the fitted values and that is basically the 

trend value, that is the trend component of your time series variable. So, we have studied that. 

Now, we are going to concentrate on two more cases. First of all, when we discuss that case 

of linear trend, I assume that the trend was visible, but trend not be visible. Trend maybe very 

mild. It is there, but it is not visible enough. If you are just looking at a graph printed on a 



piece of paper, so then basically what to do then you can apply the case of exponential 

smoothing. 

And as I told you, that exponential smoothing is very useful when there is constant or regular 

fluctuation around constant means, so basically that is the horizontal pattern with which we 

started the discussion on smoothing. So then, you have to adopt a different technique, which 

is basically a smoothing technique. 
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So, here we are going to now start the discussion about seasonal index, which helps us in 

making predictions or projections about the future values of time series. So, a seasonal index 

is basically a factor that adjusts a trend value to compensate for the typical seasonal 

fluctuation in that period of seasonal cycle.  

Now, there are four steps for developing a set of seasonal index values from the original time 

series data. And I am going to just briefly discuss them. So first you to construct a centered 

moving average of the time series data, and again, the choice of k is arbitrary. So, if you are 

dealing with the quarterly time series data feel free to take a value of k equal to 4. If you are 

dealing with monthly time series data, then probably we will start with k equal to 12.   

Then in the step two, you express each original time series value as a percentage of the 

corresponding centered moving average value. And in step three for each period in the 

seasonal cycle, average all the ratio two moving average values, which is basically coming 

from step two. And then finally in stage four, you have to multiply all seasonal index values 

by the appropriate adjustment factor k times 100 divided by the sum of un-adjusted seasonal 



index values. So, these steps may look a bit complicated as they are expressed in words, but 

in later slides hopefully this will be cleared when I am going to show you the actual use of 

seasonal index.  
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So, first, you need to calculate the seasonal index from a time series. And for that, we first 

calculate the k order moving average averages where case the number of season or quarters in 

the data. And here, of course, from the story you can say that we are dealing with small data 

set, so that is why we are making use of moving average method over the least squared 

principles.  

And then we have to compute the centered moving average, which gives the trend of the time 

series. So, here the table at the bottom of the slide you are seeing some numbers given. So 

here suppose there is a fictional company who sales revenue data we have for two different 

years, 2005 and 2006, and the data is given for each quarter, so we have to tell eight 

observations.  

So basically, we need to first compute the four-quarter moving average, so I am showing you 

the numbers for four quarter moving average figures. And you can now try your hand to 

apply the formula that you have learned from today's lecture, and apply that formula on the 

sales revenue figures that I am showing you in column three. And then you can get the four-

quarter moving average numbers.  

And that is basically the non-centered four-quarter moving average number. But you have to 

now find the centered moving average numbers and that will actually give you the trend. 



Why? Because I told you that when you are calculating the non-centered moving average 

numbers, uh, there is a mismatch between the calculated moving average value and the time 

period. So, if you want to have a one-to-one mapping with the calculated moving average 

values with different time points in that case you have to use the centered moving average 

concept. So that is what we are doing here.  

So here you see, I am also calculating the centered moving average and that is basically my 

trend observation. So that is basically giving me the trend values or the trend component of 

my time series data. And note that I can only open these trend values for the last quarter of 

2005. And then, I can compute these rend values up to the third quarter of 2006.  

So, the lesson is clear from here that, if you are interested to apply the centered moving 

average technique to find the trend component of short lived or small time series data set, 

then you will lose out initial time points and the last time period. For those time periods you 

cannot calculate the value of the centered moving average. Anyway.   

So, suppose for those centered moving average trend values now what to do. We have to get 

the seasonal index, so that we can use the seasonal index to forecast the value for the time 

series variable. So how do we compute the seasonal or irregular index here? So here you need 

to divide the actual time series value Yt by the trend component.  

And they you see, if I assume that I am working with a multiplicative time series model then 

trend will cancel out from numerator and the denominator, so then I will get this seasonal 

irregular index. So basically, this index now is basically a ratio of the actual time series 

observation by the fitted value of that trend component. So, you get this seasonal irregular 

index that is basically in the last column.  
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So, now let us link these seasonal index concept to the forecasting job. So, as I said, first, we 

have to obtain the trend component of the observed values from the time series variable. So, 

if you have sufficient number of time periods data then you can use the OLS technique to fit a 

trained equation to the data points and then you can obtain the forecasted value of the trend 

component for that time period.  But if you do not have sufficient number of time periods, 

then you can use the moving average method. Once, the train value is obtained you have to 

adjust the data value using the cyclical or seasonal index values.  

Now, for simplicity’s sake, we can assume that there is no cyclical component. If there is a 

cyclical component, of course, the task is even harder. And that is why for this simple 

discussion I am excluding the cyclical component. So, let us assume that there is only a 

seasonal component present in the time series data, so if there is seasonality then you know 

what to do, that is what we are going to study the next.  

So, basically, what we have to do assume the fitted trend value for a particular quarter. Say, 

we are dealing with quarterly data for the sake of simplicity, because we have to take a 

particular value of k if we are interested to conduct an MA analysis, so I am assuming here 

that the data set given is a quarterly one so you can apply moving average method by 

adopting the value of k equal to 4.  

And I must say here that if you have a time series data, quarterly times series data where you 

have many, many number of years. Say suppose you have say 10, 12 years of data where you 

observe the values of a variable over different quarters then also you can go for a least 



squares regression because 40 is a large enough number so that you can fit a linear trend 

equation.  

So, here, let us come back to the example. So here, let us assume that for a particular quarter, 

there is a fitted train where from some method is 1044. And if the seasonal index for that 

quarter is 102.35 then the forecast with seasonal fluctuation is 1044 times 102.35 divided by 

100, and that results into 1068.5. So, in the next slide, I am going to show you a step-by-step 

method in terms of simple language, how a company manager or a farm manager can forecast 

demand for an item that the farm is manufacturing.  
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So, you start with by calculation of the average demand per season. And here, of course the 

season you can say that is represented by quarters in the calendared year. So, here we are 

talking about average quarterly demand for the item or the commodity. So, then you have to 

calculate the seasonal index for each season of each year. So, what to do? So then for that you 

need to divide the actual demand of each season by the average demand part season for that 

year.   

So, this is the way you can compute a proxy seasonal index. Then in that hard step you have 

to average the indexes by season. So, in this particular context take the average of all spring 

indexes then all the summer indexes and so on, so forth. And then you finally forecast 

demand for the next year, and divide by the number of seasons. So, in that case what to do.  

So, you first use the regular forecasting method, and divide by 4 for average quarterly 

demand. And finally, you multiply next year's average seasonal demand by each average 



seasonal index. So, now the result is a forecast of demand for each season of next year. So, 

now we are going to talk about an illustration with some hypothetical data.  
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So now, in this slide, I am going to focus on the seasonal index calculation, if we come across 

monthly data. So, monthly seasonal index indicates typical performance for each month. So, 

what do we mean by that? So generally, it is used to determine demand for various 

commodities or goods in a given market situation over the course of a typical year. So that is 

why I am saying that this indicates typical performance for each month. And, of course, a 

seasonal index for monthly data consists of 12 values and the total should be 1200 and 

average should be a 100.  

So, now this is somewhat on the monthly seasonal index concept. And now we are going to 

discuss briefly about the steps for calculation of seasonal index values from monthly data. So 

first you have to calculate a 12-month moving average total for the entire series, and then in 

the second step you calculate a two-month moving average total of that 12-month moving 

total. In step three you calculate the centered moving average by dividing the number 

obtained in step 2 by 24.   

Now, why are you have to compute the centered moving average because if you remember 

here, the order of moving average k is even, so we have to center the calculated moving 

average and otherwise there will be a mismatching between the time period and the 

calculated moving average values.  



So, in step 4, we divide each original value by the centered moving over to obtained in step 3 

and then in step 5, we have to calculate the arithmetic means of the ratio of the. In step 5, we 

have to calculate arithmetic means of the ratio to moving average values that we have 

obtained from step 3, for each to get the preliminary seasonal index number. And then in the 

last step, we have to adjust the monthly seasonal index numbers such that the total becomes 

1200 and the average becomes 100, so that we get the final index of seasonal variation.  So 

here, we have given you the steps, but in words, but these steps are probably a bit 

complicated at first sight. So, this will be clear, if we show you an example and that is what 

we are going to do the next.  
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So, here in this slide, I am going to talk about an illustration using hypothetical data, so that 

you see how different steps that we spoke about in the last slide is executed. So, suppose I 

have data, I have monthly data on some variable say sales of a commodity for 6 years, 

starting from 2010 January to 2015 December. And now, I want to calculate the seasonal 

index for this monthly data.  

What shall I do? So, you see the originally observed variable values are given under column 

one with heading sales. And then, as I told you in the previous slide, the first step is to 

calculate the 12-month moving total. So, that is given for column number 2. So, you see here 

I have to pick first 12 numbers, which is basically, which are basically the monthly sales 

figures for the year 2010, and then I have to calculate the total.  

And where can I place this total note that there is a problem of even k here. So, the total will 

not before a month, June or not before month July, so where will it go. So, you have to 



basically place the total in the middle of the year, so in between the months of June and July. 

So, that is why I have created an extra row between the months, June and July to place this 

sum total. And that is where I placed my total 347.4. So, it corresponds to midpoint between 

June and July.  

So, maybe 15th June, you can say, hypothetically. And then you have to compute the next 

entry for the 12-month moving total, what to do. So, you have to now exclude the value for 

January, 2010, which is 25.7. And now you have to include the value of 2011, January sales 

figure, which is 29.1, and then you calculate the sum.  

And you see the difference between 25.7 and 29.1 is roughly a difference of 3.8 or 

something. So that is what you are observing here. So, the new total 350.8 is only three point 

something different from the previous total 347.4. And this is the way you continue. Now, 

you need to center this data, so that you can get the mapping between the calculated numbers 

and the time series points back. So, in column three, we are now calculating the two-point 

moving total. So, what to do for that? So, you have to first figure out the first two numbers, 

and then actually you can take the sum and then you can place it in the middle of these two 

sums.   

So, if you take first two numbers 347 and 350.8, then the sum total is 698.2. And now you 

place that against the month of July. So, the mapping between the calculated number and the 

original time point is restored. And then what you have to do, you have to now calculate the 

12-point to moving average and that is given under column 4.  

So, from 698.2, you calculate the moving average value 29.1. And in the last column, column 

5, I am showing you the ratio two moving average value calculation. So basically, what you 

have to do, you have to divide the original number 26.3 by this newly created moving 

average number 29.1 for the month of July, and then you have to multiply this with 100 to get 

the number 90.4.   

And this is the way you can compute the other ratio to moving average numbers for other 

months. Now, you see this calculated ratio to moving average numbers are taken to a 

different table, table lumber two say. And here, in the rows I have six different years from 

2010, 2015. To save space I am not showing the years in between 2010 and 2015. And in the 

columns, I have 12 months.  



So, you see for first six months in 2010, I will not get this issue to moving average values. 

And I have shown you why I have also explained to you why we will not get the initial 

periods numbers in the last slide also. So here you can see that the ratio to moving average 

number will start from the month of July and it is 90.4, so that way you can see it corresponds 

to your table number one calculations.  

And you then then have other numbers for other months. But you note down that by 

following the same logic you will not have the ratio to moving average numbers for last six 

months of the final year, 2015. So, you have ratio to moving out of the numbers up to month, 

June. And again, these are just some hypothetical numbers because I am unable to show you 

the entire data set here.  

In the next step, you have to calculate the arithmetic mean unadjusted, mean for this monthly 

ratio to moving average numbers. So, for the month of January you have five data points 

because you were losing out for the 2010 year so you calculate the mean, and hypothetically 

say that is 82.4. Similarly, you continue to get the monthly means for all months, and then 

you have to finally calculate the seasonal index. How to calculate the seasonal index? You 

have to first see, whether there is a need for correction factor or not.  

So, why do we require correction factor? I told you, theoretically, the sum total of this 

monthly means should be 1200 and the arithmetic mean should be 100. So, if that is not case 

then we know we have some inconsistency in our calculation. So first, we need to check the 

sum of our monthly means calculated. So, if you take the sum of these 12-monthly means, the 

sum will become 1191.2, so it is not equal to 1200, so we need a correction factor. And the 

correction factor will be I have already given you the theoretical formula before. So here, the 

correction factor would be k times 100 so k here is 12, so it is 1200 divided by the sum of the 

monthly means and then you get this correction factor is 1.0074.  

So now, you have to calculate the adjusted mean, and this will give you the final seasonal 

variation factor. So, for example, for the month of January, I am showing the calculation, so 

you have this unadjusted arithmetic mean for the month of January being 82.4. So, you 

multiply that number with the correction factor and you get 83. So, 83 is their finances and 

our variation factor for your dataset.  
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So, let us know talk about forecasting demand through a simple example. Suppose there is a 

farm and the farm has some data on the demand for an item for two years, year and two, and 

the demand can be further broken down in different seasons.  So, you see for your 1, the total 

demand for these item a is 80,000. And for year 2 the total demand for the item is 84,000. 

Now the farm wants to know what will be the demand for year 3, and the farm also wants to 

see the seasonal breakdown of these demand figures for year 3. So how do we proceed?  

So, suppose there is a statistician who has given some proxy measure for the demand annual 

demand for year three, and that is say 89,000. Now, the farm wants to know what will be the 

seasonal breakup of this demand figure annual demand figure. So, then what shall we do? So, 

you see the total for year one is 80,000 and total for year two is 84,000, so the first step 

would be to divide this total by different quarters.   

So, there are 4 quarters here, so you get an average demand per quarter being 20,000. So, 

based on that you can now calculate a very rough measure of seasonal index. And how to do 

it? So, you have to divide the actual observed demand for each season by this average season 

demand.  

So, for example, if I concentrate on the fall season or the autumn season, then I see the actual 

observed number is 24,000. So, I divide 24,000 by 20,000, I get this number 1.20 and that is 

my seasonal index for autumn or fall season. Similarly, I can calculate the seasonal index 

numbers for other three seasons. And you note that we are lucky that the sum total is four 

year one and similarly we can find out the seasonal index values for your two also.  



And again, also we are lucky the sum is 4. If the sum is not equal to 4, then, of course, we 

need to use correction factor, but here we are not using correction factor because the sum 

total is as part theory. So now, given this what to do next for year three. We only know the 

annual demand for the item in year three, and that is 89,000. So, what we have to do, we have 

to first divide this estimated annual demand by the number of seasons, which is 4, so we get 

an average demand per season being 22,250 items. And now you have to apply some 

seasonal index number to this average season demand.  

Now, which seasonal index to use? We have to take the arithmetic mean of the seasonal 

index values coming from two years, year one and year two. So, if we again, concentrate on 

the case of fall or autumn season, then we see from year one, the seasonal index values is 

1.20 and from year two, the seasonal index value is 1.24. So, we take simple mean arithmetic 

mean and then we get an average index value of 1.22. So that is the mean seasonal index for 

season fall or autumn.  

So, we can follow the same technique and calculate the average index values for other three 

seasons. And again, we sum them up, and we are again, lucky to see the sum being exactly 

equal to 4, so do not need a correction factor here.  

So next, you have to multiply this average index with this average part season demand for 

year three, so you have to multiply 1.22 with 22,250 to get the number 27,145 for the fall or 

autumn semester. So, this is the way you can calculate the expected demand or estimated 

demand for all other seasons for the year three. And as year three is totally being forecasted I 

have colored these numbers here in red, so that I can differentiate it from other two years. So, 

in the last slide, we are going to briefly discuss forecast accuracy.   

So, if you remember our discussion on linear regression analyses, we said that when we fit a 

model then we are interested in the accuracy of the model fit or goodness of the model fit. 

And in the case of the linear regression, we had this measure of coefficient of determination 

or art square.  

Now, in the case of classical time series analysis, when we are making projections, we may 

be interested to know how good or bad our projections are already or how good or bad in our 

model is. Because if you have come up with a bad model, then all the projections will be bad 

in the sense that they will be far off from the actual observed value of the times series 

variable. So, there is a need to have some measure for the goodness of fit of your time series 

analysis or modeling. 



And there are several measures available, but here in this course, we are going to only talk 

about two.  
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So possibly the simplest measure of forecast accuracy could be the mean absolute deviation 

or error, so the abbreviation is MAD or MAE in textbooks and that is basically the average of 

the absolute values of the forecast error. So, forecast error is basically the difference between 

the actual value of the time series variable and the forecasted value of the times series 

variable then you take the absolute value of this difference and then you sum overall 

observations and then finally, you divide by capillarity T minus 1, the number of observations 

minus 1.  

And then the second one is known as mean squared error MSE, and that is given by the 

average of the squared forecast errors. So, these squared forecast is basically very similar to 

the sum of squared of residuals that we have seen in the context of linear degression.  

So, here MSE is divided by the sum of squared deviations, and the deviation should be by 

capital T minus 1. So, capital T is basically the number of times series observations, in the 

data set. Thank you.   


