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Hello, friends. Welcome back to the lecture series on Applied Statistics and 

Econometrics. So today, we are going to start a discussion on 1 of the major themes in 

statistics and econometrics namely regression analysis. So, we will start with a brief 

discussion about covariance and then, we will introduce the concept of Pearson 

correlation coefficient and then, I will show you a hypothesis testing concerning the 

Pearson correlation coefficient statistical significance. Then I will introduce the concept 

of regression, I will talk about very briefly about least squares principle and coefficient of 

determination.  
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So, now, we are going to talk about the concept of covariance, what is covariance? So, if 

you have two quantitative variables say x and y, so, they can vary with time or they can 

vary from one individual to another individual. So, for different values of x, you see 

different values are why are there when you see a data set, it can be a time series data or 

it can be a cross section data.  

So, now a question automatically arises in mind. So, is there any association or 

relationship between these two variables x and y, on which I have a set of data? So, 

expressed in other words, what if my x changes whether y will change? And if at it 

changes then if x increases is why is also going to increase? Or y is going to decrease?  

So, these questions could be answered through the concept of covariance. So, covariance 

is basically a measure of the joint variability of two random variables. So, in other words, 

each determines the relationship between the movement of two random variables, say x 

and y.  

So, now, I am going to show you the mathematical or statistical expression for the 

covariance concept. So, it is given by this symbols sigma xy. So, otherwise it is also 

called COV X, Y in textbooks. And you see, this is basically a random variable concept. 

So here, you have two random variables x and y.  



So, first you have to subtract the mean of random variable X and from the values of the 

variable x. And then, you also have to subtract the expected value or the mean value of y 

from the random variable y. Then you have to multiply them and as these two are random 

variables, these deviations from mean, respectively of variables x and y, so, the product is 

also a random variable. So, there will be probability associated with each of these 

deviance variable values. So, you multiply these deviance observations with their 

probability, so that you can get the expected value of the total.  

So, the first line of this COV X, Y expression actually gives you that. So, x times yes, so 

when you multiply two random variables, the product is also a random variable. So, you 

can definitely take expectation of that variable. So, that is why I can write expectation of 

x times y. And then, expectation of y is basically once calculated, that is a constant. So, 

when you are taking expectation of x times ey, then you can write expectation of x times 

expectation of y. So, expectation y will be treated as a constant.  

So, remember we have discussed this issue how to handle the transformation of random 

variables and how to take mean and variance when a variable is transformed, either by 

location or by scale. So, that same concept you can apply here. So, here, expectation of x 

times y is there in the third bracket. So, basically that is also a constant when calculated. 

So, y is the only random variable, so you have to take the expectation of y and e of x will 

actually come out from that expectation and it will stay as a constant, but still multiplied 

with that expectation of y.  

And last term in the second line is expectation of x times expectation of y. So, it is 

basically multiplication of two constants. So, expected value of a constant is that constant 

only. So hence, you get back the same item at the end of the third line, right.  

So, then you simplify further to get this expression expectation of x y minus expectation 

of x times expectation of y. So that is basically the simplified form of the covariance and 

its population covariance, because we actually are dealing with the population here when 

we are defining the concept. But there is also a sample analogue of covariance. So, now 

we are going to look at the expression for sample covariance.  



So, now you look at the bottom part of the slide and I am showing you the formula here. 

So, you have a sample of size n and you have observations on these two variables x and 

y. So basically, you have to calculate the sample mean x bar and y bar for the variables x 

and yes, respectively.  

Then you have to calculate the differences from these sample means and then into 

multiply. And then, you need to sum these products over n number of data points. And 

then finally, you divide that he knows some product by n minus 1 to get the value of the 

covariance between x and y.  

Now, we are going to talk about correlation coefficient, which is also a related concept to 

covariance. But just wait a minute, before we start discussion about correlation 

coefficient, what do we learn from these covariance number that we have just calculated 

by using that sample formula version?  

So, by looking at the sign of the number, we can actually infer the nature of the relation 

or the association between two variables x and y. So, if we get the sample covariance 

value to be negative, then we can say that there is an inverse relationship between x and 

y. So, if x increases, then y decreases or if y decreases, then x increases.  

And then if the covariance value is positive, then we can say that there is a positive 

relationship between these two variables, x and y. So, if x increases, y is supposed to 

increase as well. And if x falls then correspondingly, y will also fall. And if the value is 0, 

then we can say that they are independent of each other.  

So, any movement in x is not reflected in any kind of movement of y or any movement in 

y, is not reflected in the movements of x. So then, you can say that x and y two variables 

are independent of each other, if you observed covariance value to be 0.  

Now, the problem is that covariance number is not standardized or not normalized. So, 

when you have a data set and you see the covariance value, and if you get another data 

set when probably the person is talking about same variables, but maybe in different 

units, then that covariance value from their data set these two numbers you may not be 

able to match well.  



So, for comparison purpose, the covariance has to be standardized and normalized and 

correlation coefficient exactly does so.  
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So here, in the slide, I am going to show you the formula for Pearson correlation 

coefficient. So, note that correlation analysis is basically linked to the idea of covariance. 

So, by covariance, we mean that this tries to measure the direction of movements in two 

linked variables x and y. And now, well, how these two variables x and y are linked to 

each other. So, there could be a linear relationship, there could be a non-linear 

relationship. So, when I talk about correlation, it is just a special kind of relationship 

between two variables.  

So, a correlation analysis actually is executed when you want to test whether there is a 

kind of linear relationship between two variables x and y or 0. So, basically put in other 

words, you want to see the strength of linear association or linear relation between two 

variables x and y. So, as the name says that it was again Karl Pearson, who actually 

proposed a formula how to find a measure of this associations with linear association 

between two variables x and y. And we are going to study the formula he proposed.  

So, at the population level, when you deal with two random variables x and y, the 

population correlation coefficient is given by this symbol rho, Greek letter rho. And you 



see at the subscript, I am showing you these x and y, two random variable and these can 

be expressed as this mathematical formula covariance between x and y divided by the 

standard deviation of x times standard deviation of y. 

So, normalized measure of covariance, which is this correlation coefficient always falls 

between minus 1 and plus 1. So, as per the formula the lower bound of product moment 

correlation coefficient is minus 1 and plus 1 is the upper bound for the measure. Now, 

this minus 1 and plus 1 means that the data is talking about a perfect linear relationship 

between two variables, but the nature of the association or the relationship is different. 

So, I will request you to wait for maybe a minute, I will show you some diagrams, which 

will talk about different types of correlation possible in a data set.  

But first, let us have a look at the sample analogue of this correlation coefficient formula. 

So here, at the bottom part of the slide, I am showing you the sample correlation 

coefficient formula, which is given as r hat because you need to estimate from a sample 

you actually do a value of rho, which is the population parameter.  

Now, please concentrate on the numerator let us do numerator and denominator one by 

one because at one go this looks extremely messy. So, probably this is the most messy 

expression that I have shown so far in the course. So, let us look at one by one. So, let us 

concentrate at the numerator first, note that, this is nothing but the sample covariance. 

And if you now look at the denominator, then you see two square roots. So, if you closely 

look at the first one or in which is placed first in the denominator that is basically the 

sample standard deviation.  

And the second one in the denominator is the again, another sample standard deviation, 

but the first one is for the variable x and the second one is for the variable y. So, now, we 

are going to look at two very interesting properties of Pearson product moment 

correlation coefficient. So, let us focus on the red box at the right-hand side of the slide. 

Here, I am talking about two interesting properties. And property number 1 says that the 

Pearson correlation coefficient, both the population and sample version, they are 

invariant under separate changes in location and scale in two variables x and y.  



So, you define two new variables here say m and n, where m is defined as a plus b times 

x and n is defined as c plus d times y. So, this capital M and capital N, they two are also 

random variables because they involve other two random variables x and y. So, A and C 

are basically the location parameter changes that is happening and the B and D are 

basically talking about the change in the shape parameter. So, now, basically you see 

what the Pearson has found or the formula tells us is that the correlation between x and y 

is equal to the correlation between these newly created variables m and n.  
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So, now, we are going to talk about few more properties of Pearson correlation 

coefficient, we will talk about the nature and the strength of the linear relationships that 

one can find from this formula. So, we are going to consider various possible cases. So, 

in this slide, I will first talk about the nature of the association and I have already given 

you some idea in this talk only. So, there could be 3 different types of association 

possible. One is of course, no correlation and that is indicated by the covariance value 0 

or the Pearson correlation coefficient value 0.  

But there could be two other types and they are actually, mostly found in real life data 

and that is they are positive correlation and negative correlation. So, what does positive 

correlation means? So, that means that high values of x tend to be associated with the 

high values of y and vice versa.  



Now, I can talk about the negative correlation. So, that means that high values of x tend 

to be associated with the low values of y or vice versa. And here, I can give you one 

example say oil prices and the stock prices of the airline companies. Now, although the 

correlation and covariance these concepts cannot be used for causality exercise. You 

cannot actually say that, x is causing y you are y is causing x. But sometimes there is 

causality embedded, like, let us consider the last example that I spoke about.  

So, there is a negative correlation between the oil price and the stock price of airline 

companies, why? Because oil is the key input for the airline company’s business. So, if 

oil price goes up, that will have a direct impact on the profitability of the airline 

companies. So, the future projected profits are going to be less for the airline companies 

and that will have an heavy impact on the stock prices in the share market for this 

company. So, that is why you see that they are linked. So, sometimes you can think about 

this causality from outside statistical theory, causality cannot be established by a 

statistical theory itself.  
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So, next we are going to talk about strength of association. Now, what do we mean by 

strength of association? Well, by looking at the sign of the covariance or the correlation 

coefficient formula, we can say that in which direction y is going to behave, if x is going 

to behave in a particular manner.  



So, it is either going to be no in positive manner or tit is going to be negative manner. But 

how strong this linear relationship is between these two variables, only the sign of 

covariance or the correlation coefficient is not going to talk about, much about the 

strength of the relationship that one can observe from the data. So, we compute the score 

and then, the absolute magnitude of the score, the Pearson correlation coefficient score 

will tell about the strength of the linear relationship that exists between two variables.  

So, I will now talk about the strength of the association and let me spend a couple of 

seconds on interpreting a particular value of say r that sample correlation coefficient. So, 

if you find a correlation of say 0.9 then that means that if 1 variable goes up by 10 

percent, the other variable is expected to go up by 9 percent.  

Now, there are different sort of values possible for r. So, I will start with an extreme case 

where you find r to be 0. So, basically there is no association or correlation between the 

two variables. And if you compute the absolute value of r and that is somewhere between 

0 and 0.25, then you say that you have a weak correlation between two variables, whether 

it is a negative or positive relation, that does not matter, because you are talking about the 

absolute value of r, but the relationship is weak.  

Now, if the absolute value of correlation coefficient falls between 0.25 and 0.75, then you 

can say that the correlation is of intermediate in nature, it is medium you can say, 

medium level of strength is found from the data. And if the absolute value of r falls 

between 0.75 and 1 then you can say that, you are seeing strong correlation in the data 

set. And finally, again, I end with another extreme case possible that is the absolute value 

of r is equal to 1, so that gives you perfect correlation.  

Now, after going through these ranges of possible r values, I am going to show you a 

slide where I am going to show you an array of diagrams, which will actually explain 

what you are expected to see in plots or graphs, when  there are different possible values 

of r. 
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So, here in this slide, concentrate on the diagram A and here, I am showing you the case 

of r equal to minus 1. So here, you see you have 5 data points. So, all these circles are 

basically data points and these are paired data of course. So, for one individual you 

observe say x1 y1; for individual 2, you have x2, y2 or if you are dealing with a time 

series data. So then basically it is, it can be say generally as xt, yt where the t subscript 

will come for the time element or time unit.  

And you see that all these data points that you have in your data set, they actually fall on 

a straight line. If the straight line is downward sloping. So hence, you see that r is minus 

1. So, r equal to minus 1 says that it is a perfect relationship between 2 variables, but the 

relationship is negative in nature. So, basically, they lie on a straight line, because they 

are perfectly linearly related.  

Now, I move on to the diagram panel B, and you see that there is a scatter of data points 

and some 2 data points are lying on the downward sloping straight line. But there are 5, 6 

more, which are not lying on the negatively sloped straight line, and they are just here 

and they are in the, but there is overall some kind of a feeling that there is some negative 

relation available in the data between y and x.  



And that is why you also find the computed value r to be less than 0. So, you say that 

okay, there is negative relationship between two variables, but they are not perfectly 

negatively related. Now, we move on to case C, there you see that the scatter diagram or 

the data points in the x and y plane, they are not showing any kind of pattern and that is 

why there is no association or linear association between x and y and possibly for this 

kind of case, you will get a value of r equal to 0.  

Now, I move on to the panel D, where you see that, I have 5 data points and all of these 

data points are lying on a positively sloped straight line. So, in this case, you can say that 

x and y they are perfectly linearly associated or related and as they lie on one single 

straight line, the value of r is expected to be plus 1.  

Move on to the panel E, where you see another case where you see that there is overall 

positive relationship between y and x as found from the scatter plot. But the data points 

are not lying on the fitted line that you see this black line, but as there is a positive overall 

relationship between two variables, you are expected to see a value of r to be positive 

here.  

And now, the last in the slide the panel Fiscal, here, you see that two variables y and x are 

showing you some kind of a non-linear trend in the data. But although the relationship is 

mostly nonlinear between x and y, still if you try to compute r value you are expected to 

see a value of r being positive. 

Now, we are going to talk about a very important concept and that is the hypothesis 

testing related to the idea of correlation coefficient. Well, I have started by differentiating 

between population correlation coefficient and the sample correlation coefficient, right.  

And population correlation coefficient parameter rho is unknown. So, what we do we just 

collect a small sample from the universe and then, we try to make a guess about the 

population parameter rho. As usual, we have done this thing, we have discussed this thing 

in the statistical inference part of the course.  



So here, if you take one sample you are expected to get one particular value of r hat, the 

sample analogue of the population correlation coefficient rho. And then, if you take 

another sample, it will give you a different value of rho, rho, r hat not rho, r hat.  

So then basically, if you keep on generating samples from the population and calculating 

different values of r hat then you will find a distribution finally. And that is basically the 

sampling distribution for r hat, right.  

So, from that sampling distribution, what can you infer about the population parameter 

rho? So, that is basically the subject matter of hypothesis testing. Here, the target is to 

statistically check whether in the population at the population level two random variables 

x and y are linearly related or not.  
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So, we start with an assumption that two random variables x and y, they follow bivariate 

normal distribution and I also assume that if there is no association between these two 

variables, then we expect rho to be equal to 0. Of course, then you write your null 

hypothesis as rho equal to 0. And suppose you are interested to check whether it is not 

equal to 0 because a priori, you do not know whether rho is to be positive or rho is to be 

negative. So, to be on the safer side, you just set your alternative hypothesis as rho not 

equal to 0, so that will lead to a two-tailed test.  



So now the next step should be to define your test statistic. So, here in this case, the test 

statistic formula I am showing you here in this red box and note that that this particular 

test statistic t follows a t distribution with n minus 2 degrees of freedom. Now, why you 

have to deduct 2 from n the sample size? It is because, if you remember the formula of 

the sample correlation coefficient r hat there we make use of x bar and y bar. So, these 

are the sample means for variables x and y. So, as you are computing x bar and y bar to 

finally get the expression working, you have to deduct these two data points from the data 

set.  

So here, final degrees of freedom will be n minus 2, okay. So here, I am going to show 

you the working of these test in terms of an example. So, here I assume a large sample 

you need, not because you are dealing with t here. So, even if you have a sample size of 

20, you can perfectly apply this test.  

But let us assume n equal to 40 and then, somehow a data set tells me the value of r is 

0.6574. Suppose, I have calculated it beforehand and then, I set alpha at the standard 

norm 0.05, 5 percent level of significance. So, I have to calculate the test statistic value 

first and the t calculated value is 5.4.  

So now, if I want to follow a traditional method of hypothesis testing, then I have to find 

the critical values, right? So, as it is two-tailed test, alpha needs to be split into two parts, 

in two equal parts, one for the right-tail and one for the left-tail. So, you actually divide 

alpha by 2 and so that you save the probability density or mass 0.025 at two different 

tails.  

So, you have to now locate two different critical values from that t table. But t is an 

amazing distribution, because it is a symmetric distribution. So, you need to just find one 

critical value, the other critical value will be exactly mirror image of the first critical 

value.  

So, here for the degrees of freedom 38 you find the critical value for the upper-tail t 0.975 

and that is 2.02. So, now you set your decision rule and what to do. So, as our test 



statistic value calculated t is not falling in between this range plus or minus 2.02 you 

reject the null hypothesis.  

So, now, I am going to start talking about regression. So, this is the first time we are 

going to look at a regression at some, elementary level in the course. I have very briefly 

introduced the concept of regression, when I introduced the course. But now, let me 

differentiate between the correlation and regression because we are going to talk about 

these two concepts in the same lecture.  

So, in a simple layman’s term, why we need two different techniques or why we need 

two different terms? So, correlation probably by now, you have understood that it is 

going to measure the strength of linear relationships between two variables x and y. But 

suppose, I want to create some kind of a model and I want to have some kind of a 

mathematical or statistical model so, that I can predict the values of y for certain given 

values of x in future.  

So, can I do that by using the concepts of covariance and correlation? The answer is no. 

And note that, this simple formula of correlation, coefficient and covariance that I have 

shown that is no simple to collect when you are dealing with only two variables. But 

what if I have, a model in mind where I have a dependent variable yes, but dependent 

variable y depends on a set of other variables and there could be five explanatory 

variables, there could be 15 explanatory variables. So, once you have a complicated 

model that you want to estimate for decision making, then correlation and covariance will 

not take you farther.  

So, you need a different tool from where actually you can estimate some kind of a 

mathematical equation, which will help you to predict values for y for given values of x. 

And regression analyst actually does that. So, in a nutshell in correlation when you are 

computing the correlation coefficient, you treat two variables y and x as equally. So, 

there is no distinction between dependent variable or response and the x variable 

independent or exogenous.  



But here, in the regression analyses, you will see that we will constantly talk about these 

kinds of terms like dependent variable. independent variables. So, that is the major 

distinction between correlation and regression.  
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So, I have already covered bullet points one to four when I was talking to you. So now I 

am going to talk about the bullet point five. So, everything has a start and where this 

regression business started. So, again, I am going back to history stuff. And there was a 

biostatistician named Sir Francis Galton in UK in the 19th century. And actually, it is him 

who invented or introduced this term regression analysis.  

And he was dealing with some demography data. And accidentally he found out a very 

interesting feature from the data. And what did he find? So, he had observed the height of 

individuals and for each individual, he also had data on his or her parents height. So, he 

observed that on an average, the taller parents used to have taller kids and the shorter 

parents on an average used to have short height kids.  

But what he noted from the data is that that average height of the children born from 

parents of a given height tended to move towards the average height of the population as 

a whole. So, what does that mean? It means that the average height of children from taller 



parents used to be of less height compared to the average height of the parents and of 

course, that is going downward, so, that is basically regressing.  

So, basically, there is some kind of a grand mean or the grand population average for the 

height and everybody is basically converging towards that average height. So that is what 

Galton found. So, here, I am not going to cover more history stuff. So, let us talk about 

the crux of regression analysis, linear regression analysis, because we are not going to 

talk about how to capture non linearity through regression models as of now. So, focus on 

the linear relationships.  
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So here, we are concerned with fitting a straight line to a set of paired observations x1, 

y1, x2, y2, dot, dot xn, yn. So, what does that mean? So, I have n data points in my 

sample and I have data on two variables x and yes, these are paired observations, because 

for one individual one or individual two, I observe both the values of x and yes, okay?  

So, now, I say that, I have some idea from the theory or I can make some rough 

hypothesis that my regression equation should be of particular form y equal to a naught 

plus a1 times x plus epsilon or E. So, here y is my dependent variable. So, that depends 

on the values of x, x is independent variable or explanatory variable. And let me also 

introduce the other notations in the equation and a1 is basically the slope parameter, a 



naught is the intercept parameter. So, if you for a moment ignore the term e that equation 

that you are seeing above actually is a straight-line equation that you are familiar with 

from your class 10 level or 12 level maths.  

So, the only interesting part that is added here is that e. So, that is the error or the 

residual. Why do we need an error or residual? We require this additional term residual or 

error in the regression model because how do you know or how do I know that the 

variation in y will be solely explained by the variation in the x.  

So, if y is changing, it may be partly because of no a change in x, but there could be some 

other variable z or w that we are not capturing in this linear regression model and these w 

and x can also have some impact on y. So, when you see that well x is not changing, but 

y is changing, maybe that change in y is for a change in w and z. So, you never know. So, 

that is why as you are not keeping all possible explanatory variables in your model to 

explain the variation in y, you keep these variable e which is the error variable.  

Now, the challenge is to find the a naught and a1 and these are the population parameters. 

So, when we write a regression equation, we are talking about a population relation. So, 

as usual we do not know the values of a naught and a1’s we have to find. How to find a 

naught and a1? So, here is a method called ordinary least squares or in other books 

sometimes it is called least squares principles also.  

So, you basically concentrate on the error. So, the error is defined as the difference 

between the observed value yi and the fitted value that is basically coming from the 

regression equation. So, suppose, somehow you have an idea about a naught and a1 and 

you have some proxy values for a naught and a1. So, if you plug a no the values of a 

naught and a1, then for each value of x, actually you can predict the value of y. So, that is 

the predicted or the fitted value coming from the regression equation.  

So, you actually have two data sets on yes, right? So, actually you have one y that is 

observed and one on the other y that is coming from a regression model, or it is the fitted 

or the predicted value from the model. So, you take the difference and some will be 

positive some will be negative. So, you square it so, that you can deal with only the 



positive numbers. So, the idea is to minimize the sum of error squares. And as it is a 

minimization problem know for any kind of mathematical optimization, you have to 

solve by looking at the first order conditions only.  

So, you take derivative, partial derivative with respect to the unknown population 

parameters a naught and a1 because these are the variables. So, a naught and a1 actually 

can take many values, so that is why it is the variable. So, you take the differentiation 

with respect to these variables and you take differentiation of the error sum of squares 

and set them equal to 0. So, as you have two unknown population parameters, you write 

two first order conditions and these two first order conditions I am showing you here in 

the red box.  

(Refer Slide Time: 38:24) 

 

Now, in the following slide, I am going to show you this idea of least squares principle 

through a simple graph. So, now, you look at this diagram in this slide. So here, the 

dependent variable y is measured along the vertical axis and the independent or the 

explanatory variable x is measured along the x axis and I am showing you the observed 

data set, suppose we have only four data points, simple case. So basically, there are 

paired observations x1, y1, x2, y2, x3, y3, and x4, y4, and you see these actual values are 

now given are shown in this quadrant by the blue colored asterisk.  



And now, the idea is that you have to somehow fit a straight line that will pass through 

these scatter of four asterisk points. But you have to be very clever while you are fitting 

this straight line, so that you can minimize the distance between the fitted line and the 

observed data points. So, here how to do it? So, that is what least squares principle 

actually tells us. So, it suggests that okay, you minimize the sum of the squares of the 

residuals between the actual observed y values and the fitted y values.  

So here, you see many straight lines are possible, which you can draw that will pass 

through the scatter of four asterisk points. Now, which one to choose? So, here suppose 

you choose one particular straight line and that is shown here and then, that will give you 

some values for the intercept parameter and the slope parameter, right.  

So, then from this equation, this hypothetical equation if you plug the values of different 

x’s, x1, x2, x3, x4, then you will get what? You will get the predicted or the fitted values. 

So, for x1 you will get y1 hat and for x2, you will get y2 hat and so on, so forth. So, these 

are the fitted values and these fitted values I am showing here as the red circles that all lie 

on the fitted black line.  

So, that is basically the fitted value and you see the difference. So, you fix one particular 

value of x and then you see that there is a gap between the red circle and the blue star and 

this gap is basically your error or residual that is coming from fitting the straight line, 

because your fit is not perfect as your actual values are not lying on the fitted straight 

line.  
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So, we have spoken about the first order conditions, right. So, now, let us see how we can 

get the proxies the best fit estimates for a naught and a1 by solving this mathematical 

optimization problem, we have a looked at the diagram, but from the diagram now, let us 

look at some math.  

So, you start from the red box at the top of the slide. So, you minimize this sum problem, 

so you take partial derivatives with respect to the unknown population parameters a 

naught and a1. So, you get some expression and then, if you simplify then you get 

another two set of equations. So, these two set of equations are called the normal 

equations and they involve two unknown variables that need to be solved.  

So, finally, you can solve and then, the last red box in the slide actually shows you a 

formula, which actually talks about the values or the best fitted or the best proxy values 

for the unknown population parameters a1 and a naught. So, now concentrate on the box 

that is placed in the southwest corner of the slide.  

So, here, note one says that the slope coefficient that is basically a1 this clumsy formula 

that you are seeing in the adjacent box that can be actually simplified and that can be 

expressed in a very simple mathematical expression; and that is basically the ratio of 

covariance between x and y and the variance of x. 



And the second note actually corresponds to the estimate for the unknown intercept 

parameter a naught. And by looking at the expression for the estimated intercept 

parameter, you can very well see that this regression line the fitted regression line always 

goes through the center of the data, you may not have one particular observation 

corresponding to the center of the data. But if you calculate the sample mean for your 

variables x and y, and if you plot that in the quadrant, then the fitted regression line shall 

pass through that point.  

Now, we are going to very briefly mentioned about the goodness of fit criteria for our 

model. So, once you fit a particular model to our data set, naturally, one question comes 

to mind that, okay, how good my model is? Can I take my model for future predictions? 

And you should have some measure by looking at which you can decide whether the 

model is trustworthy or not? Whether the regression model is doing a good job or not? 

So, and that is basically done by consulting concept called coefficient of determination.  
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So, we start with the total sum of squares around the mean for the variable y, the 

dependent variable and that formula I am showing you here in the first box. So, you see it 

is looking more or less like the variance of that variable, but the difference is that we are 

not dividing this some of deviance squares by the degrees of freedom. So, that is the 

difference.  



Next, we talk about the sum of squares of residuals around the regression line and that 

you have already seen because that is the expression that we minimize to get our well s 

estimates for the unknown population slope parameter and intercept parameter. And now, 

you measure the difference between st and sr that are shown in these two boxes. And 

from these difference actually, we can get the coefficient of determination. So, that is 

defined as st minus sr and this difference now has to be divided by st.  

So, this is basically expressed with a notation called r square, why it is called r square? 

because if you remember that r symbol was used to denote the sample correlation 

coefficient between two random variables x and y. So, this r square that you get by 

applying this formula in this box actually is the square of the Pearson product moment 

correlation coefficient between these two random variables x and y.  

So here, of course by looking at this expression, one can say that, this coefficient of 

determination is going to be always bounded between 0 and 1. So, r can be negative, but r 

square cannot be. So, r square is bounded by 0 and 1. So, for a perfect fit, of course, sr 

has to be 0, the sum of squares of the residual terms has to be 0 and only in that case r 

and r square both will take value 1 from the formula that I am showing you here and this 

diagram at the southeast corner of the slide is also going to give you a pictorial depiction 

of the coefficient of determination.  

So, note that, we are talking about variation in 3 thing. So, one is basically the variation 

in y and there is variation in the x itself. And finally, when you fit the regression, you 

generate the variable error the observations for the error variable and then, there is 

variation in that also.  

So, a good model will have less proportion of variability in y, it will, the most of the 

variability in y should be captured by the variability in x itself. So here, you see that, here 

I am showing you two circles in two different colors. So, the variance in y that is 

explained by x is given by the blue circle; and variance, which is not explained by x that 

is basically the error variance, that is given by the red circle.  



So, actually what you want? You want this blue circle encroaching the area of red circle 

as much as possible so, that there is overlap and this overlap between these two circles as 

I am showing you here by some markings, shades, so this shaded area as is as the shaded 

area expands. So, you can say that the fit of your model is becoming better and better. 

Because, you can then say that the variation in error is getting lesser and lesser as it is 

going to be explained more and more by the variation in x itself.  

So, we stop our discussion at correlation and regression analysis at this moment and we 

are going to again come back to regression with greater details in the econometrics part 

of the course. So, next item is going to be analysis of variance. So, please come back and 

see you then, thank you.  


