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Hello, friends. Welcome back to the lecture series on Applied Statistics and 

Econometrics. So, we are almost done with our hypothesis testing discussion. From 

today’s lecture, I am going to start discussion on a new topic or module you can say, and 

that is basically very interesting in practical purposes and that is called the relationship 

between 2 variables.  

So, here in this lecture, I am going to cover the relationship between 2 qualitative or 

categorical variables. And in the next lecture, I plan to cover how to model the 

relationship between 2 quantitative variables. So, let us first look at today’s agenda items. 

So, we will briefly introduce the concept of statistical independence. We are going to 

discuss in about general contingency table and then, from there, we will study the case of 

chi-square test. Now, chi-square we have discussed previously, but we are going to revisit 

that concept again, in a far more general setup. And then, we finally, we will end today’s 

discussion by defining Cramér's V.  



(Refer Slide Time: 1:30) 

 

So here, we are going to discuss the statistical independence in the context of qualitative 

variables. So, let us start with denoting 2 categorical variables by x and yes; and x is my 

explanatory or independent variable. And that can have 1 of the 3 levels or category say 

ABC, it can have less than 3 also like 2 or it can have more than 3 also. But for 

simplicity’s sake, let us assume that we start with a variable with 3 levels.  

Then the variable y is my response variable or the dependent variable. So, by saying that 

I say that there is some kind of dependence between x and y. So, y actually depends on x 

that way and this variable also can have 1 of the 3 levels or categories namely k, l and m. 

So, now, we are going to introduce the concept of statistical independence through 

probability.  

So here, let me define 2 probability terms, probability of capital X taking a level a and 

probability of random variable y taking a level k. And these probabilities are the marginal 

probabilities, because this refers to the chances that an observation in contingency table 

or in our sample has a particular category on a particular variable, say in this case, x 

equal to a that is irrespective of the category for the another variable.  

So, suppose you observe a particular observation number 10 in the data set and for that 

observation, the, you observe that X has taken value a, but that taking value a is not at all 



dependent on whatsoever value or level that observation has taken for the other random 

variable y. So that is why they are truly the marginal probabilities. 

So, now we are going to introduce the concept of joint probabilities. So, probability x 

equal to a comma y equal to k actually denotes the joint probability and it means that a 

randomly selected observation has both property or attribute a, property attribute the, 

simultaneously. So, here, it is a typo here. So, it should be k and not d.  

So now, based on these 2 definitions that we have introduced on probability and we have 

also talked about conditional probability before, based on these probability concepts, 

now, we are in a position to define statistical independence. And we provide 2 

definitions. 1 is basically in terms of joint and marginal probabilities. And the other 1 is 

in terms of marginal probability and conditional probability.  

Now, we are going to look at a very interesting concept and it has got practical 

applications in real life and that is the concept of odds ratio. So that is actually pretty 

much linked with 2 cross 2 contingency table and I would like to start the discussion on 

odds ratio by saying this that if you are dealing with the higher order contingency table, 

then the odds ratio calculation may not be possible. So, please remember that whatever 

we are going to discuss here is strictly valid for 2 by 2 contingency table.  
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So, to study odds ratio, we have to first study what is odds. So, odds are basically related 

to the probability of an event, but they are not exactly the probability of a particular event 

happening. So, odds is defined as the ratio of the probability that that particular event will 

occur and the probability that the event will not occur. This formula from there, you can 

actually get back the probability of a happening very easily, if you switch terms. So, in 

that case, probability of event a happening can be calculated as odds divided by 1 plus 

odds.  

So, now, let us explain the idea of odds with a very simple example. And this example we 

are going to continue with when we are going to introduce the concept of odds ratio. So, 

let us assume that we have a box and there we have some balls and we see that there are 5 

balls, 4 yellow and 1 green. So, now we are going to close our eyes. And we are going to 

draw a ball randomly from that box. So, this is basically the experiment. And then, in this 

context, let us take examples of odds and odds ratio.  

So, in this particular context, what is the odds of picking a green ball? So, you see the 

probability of picking a green ball from that box containing 4 yellow and 1 green is 

basically 1 over 5 and that is basically 0.2. And when we are talking about calculating 

odds, so, it is not only probability of picking up a green ball from the box, we also have 

to calculate the probability of yellow ball picked up from the box.  

So, in that case, of course, it will be 1 minus 0.2 or, as there are 4 yellow balls in the box. 

So, the probability that a yellow ball will be taken randomly is 0.8. So now, you have to 

take the ratio of 0.2 and 0.8. And then, you will get 0.25 as the odds of picking a green 

ball, which is different from the probability of picking a green ball which is 0.2.  

Now, we are going to talk about odds ratio and odds ratio, OR is defined as the ratio of 2 

odds. So, in this particular example of box containing some balls, there are 2 likely events 

either a yellow ball will be chosen or a green ball will be chosen. So, let us define an 

event A, which says the yellow ball has been chosen. And let us define another event B, 

where we can say that it is a green ball which was chosen. So, now, I am interested to 

calculate the odds ratio for picking a yellow ball compared to a green ball.  



So basically, we are interested in OA divided by OB. So, this is the ratio of 2 odds for 

events A and B, respectively. So, I am not showing you how to get the OA, which is 

basically the odds for event A, you can calculate it yourself as an exercise following the 

previous example of odds of picking of a green ball. And that is 4 and that has to be now 

divided by the odds of picking a green ball because that is my event B. So, I divide 4 by 

0.25 and then, I get 16.  

So, how can I interpret odds ratio? Odds ratio has very nice interpretations, but it depends 

on specific context. So, let us save the interpretation of odds ratio for a moment. Now, 

what can we say more by looking at the odds ratio that we have calculated? Well, we can 

talk about the degree of association between 2 qualitative variables by looking at the odds 

ratio and if odds ratio takes value 1, then that means that 2 events are equally likely, and 

basically, they are independent of each other.  

And if odds ratio is higher than 1, then basically we can say that 2 events are positively 

associated or 2 variables are positively associated. And if we observe odds ratio, being 

less than 1 then we can say that these 2 variables are negatively associated.  
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Now, we are going to look at the 2 by 2 contingency table. It is the simplest possible 

tabular format of representation of qualitative data. And we have already seen this twice 

in this course. Once at the very beginning and then, 1 at the time of the chi-square 

independence test that I studied maybe 2 lectures before.  

But here, I am going to now link this odds ratio concept with contingency tables that we 

have not discussed before. So, if you remember from our previous discussions, 2 by 2 

contingency table is basically a two-way frequency distribution. It is also called a 

bivariate frequency table. And as again, let us assume that we are dealing with 2 nominal 

or categorical variables x and y.  

But here, is the difference; here, we are assuming that we have explanatory variable x 

which takes only 2 values or levels and let me assume that they are 1 and 2. This is just 

for simplification purpose. And then my yes, the dependent variable or the response 

variable can have 1 of the 2 values or levels and again, I am simplifying by assuming yes 

can take values 1 or 2. Now, nij denote the count of observations in a cell in the 

contingency table. So, here I am showing you the contingency table. So, now I am going 

to show you 2 examples, how to compute conditional probability and joint probability 

from a 2 by 2 contingency table.  



So now, come back to the table. Here, I am showing you that the case of conditional 

probability for cell 1, which has the frequency in n11, and what is the probability that y 

takes value 1 given that x is 1. So, for that, what we have to do, we have to basically in 

the numerator, we will have n11 because that is the frequency which satisfies both x 

equal to 1 and y equal to 1. And then, basically what I have to do, I have to divide it by 

the sum of the numbers that you see in 2 columns for x equal to 1.  

So, as x is given 1, so then you have to sum all the frequencies, which is satisfying that 

criteria that x equal to 1. So, x equal to 1 case can have 2 different values of y, right? Y 

equal to 1 and y equal to 2, n11 number of observations taking value y equal to 1 and n12 

number of observations taking value y equal to 2. So, ideally, you need to sum them up 

and then the ratio of n11 and the sum will give you the conditional probability.  

Now, we are going to look at the joint probability again for the first cell and that is 

basically the probability statement, probability y equals to 1 and x equal to 1. Note that, I 

am not saying that I am computing the probability of 1 for the case when x takes value 

equal to 1. So, I am talking about the joint occurrence of y equal to 1 and x equal to 1. So 

here, what will happen, so here, you see that n11 will be the numerator again and in the 

denominator now, you have to sum all four frequencies n11, n12, n21 and n22, why is 

this so? Because we are talking about the joint occurrence of y equal to 1 and x equal to 

1.  

So, note that, how many ways actually y equal to 1 can happen. So, y equal to 1 can 

happen in 2 ways, when x equal to 1 and when x equal to 2 and there are 2 frequencies 

there in n11 and n21. And then how x equal to 1 can happen, x equal to 1 can happen for 

2 cases here. So that is n11 and then n12. So, you have to basically divide the frequency 

that you observed in the cell x equal to 1, y equal to 1 and divide that by the total number 

of observations in the sample, which is n. 
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Now, we are going to talk about the odds ratio calculation through the 2 by 2 contingency 

table by looking at a very simple hypothetical example. So, before I go to the example, 

let me know have a depiction of the formula that a very simple formula for OR 

calculation and that is basically given at the first bullet point and that is n11 times n22, 

these are the frequencies in cells and that is divided by n1 2 times n21.  

So basically, it is very simple to remember. So, you start from the northwest corner of the 

table or the northwest frequency cell and then, you come to the southeast cell and that 

you have to come diagonally, you need to multiply these 2 frequencies. And then again, 

you have to move up, you have to go northeast corner of the table to the cell and then, 

you have to come down to southwest of the table to the frequency cell and you need to 

multiply. And if you take ratio, then you get the OR or the odds ratio.  

So, note that this is very interesting, when I first introduced the concept of odds ratio, I 

said that it is a ratio of 2 odds, and then to calculate the odds ratio from a theoretical point 

of view, we have to first get to know the probability of an event happening and then, you 

have to calculate the probability of that event not happening.  

And then, similarly, you have to do that for the another event, B say. So, you have done it 

once for event A and then you have done it for event B and then you calculate the ratio 



and that is your odds ratio. But when you are dealing with 2 cross 2 simple contingency 

table, actually you can skip that probability computation and you can go for direct 

computation of odds ratio from the frequency itself, that is what it was shown through 

that formula.  

Now, let us look at a very simple example. So, we all know that these days parents send 

their sons and daughters to different coaching centers, so that their chance of passing 

particular entrance exam for either entering a higher education institute or getting a 

government job or other types of jobs increases. So, basically the prospects of peering 

exams increase.  

So here, we have 2 samples of job seeking candidates. And sample 1 consists of 23 

students from a coaching or training program and these 23 students actually have 

attended the training for cracking examinations and out of these 23, 16 of them are able 

to pass particular examination, but 7 could not.  

Now, you also get another sample which comprises of 19 persons and they actually 

somehow did not attend a coaching or training program. So, they made all the 

preparations themselves for the examination. So, out of these 19, now only 8 could pass a 

particular selection examination and 11 failed.  

So, this is basically the context and if this is the story I have, how can I represent this 

hypothetical story in terms of a 2 cross 2 contingency table. So, now, let us look at the 

table at the right-hand side; and then, here you see along the rows, I am going to measure 

the explanatory variable, which is attending a particular training or coaching program or 

not?  

And along the columns, I am going to measure the response or the outcome variable and 

that is basically pass or fail in a particular selection examination. So now, in 4 cells I 

have placed the frequencies that I have got from the example. And then, I also have 

shown you the totals.  

Now, I am going to apply the magic formula that is in the first bullet of the slide to these 

numbers and then let us get the odds ratio. But it is not a bad idea if we use these 



numbers in the cells, also to calculate the odds for different events. Because odds with 

which we started I think we should have some example for that concept as well.  

So, I define my first odd as the odd of someone passing, if he or she took a particular 

training program. And you see here that out of those 23, 16 passed and 7 failed. So, the 

odds has to be 16 divided by 7 and that gives you the number 2.29. So, you can interpret 

this number as their odds of passing the examination is 2.29 times higher for a student if 

the student has taken a training.  

And how do you then calculate the odds for someone passing without training? So here 

you can see that the numbers are 8, 11 and 19, 19 is total. So only 8 passed and 11 failed. 

So, you have to take ratio of 8 and 11 and then, you get 0.73.  

And how do you interpret this number? So, you can say that if a student or candidate has 

not taking a coaching or training program, then he or she is 0.73 times likely to pass 

compared to fail? And now how do you define the odds ratio overall? So here, you define 

the odds ratio as passing after taking the coaching program.  

And here, you apply the formula from the sales that you are seeing here in the left hand 

side table and the numbers are shown for this case study knowing the right hand side 

tables, so you may get the values of n11 and n22 and they are basically 16 and 11. And 

then, you multiply and then divide by these 2 numbers n12 and n21, which are 

respectively 7 and 8 from our table. And finally, you get the value 3.142 as the odds ratio.  

Now note that, it is very interesting, if you now take the ratio of 2 odds that we have 

calculated beforehand, which are 2.29 and 0.73. So, that is odds of the event called 

someone passing if the candidate has taken a training. And the second event was that 

someone passing without taking a training. So, if you take the ratio of 2.29 and 0.73, 

these 2 odds numbers you actually get 3.142, okay?  
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So, now, again, we are going to look at the interpretation of the odds ratio. So, I have told 

you previously that odds ratio can be seen as a measurement of degree of association 

between 2 qualitative variables. So, in this context, how do I interpret the odds ratio? So 

here, if the odds ratio is taking value 1 then that means that the event is equally likely 

under both situations.  

Now, what do I mean by the event is equally likely under both situations? So, it is 

basically the event of passing the exam and what is these both situations? So, situations 

here are either you have taken the training or you have not taken the training. So, these 

two are 2 different situations.  

Now, the second sub-bullet of the first bullet point says that if the OR score is greater 

than 1 then event with the first odds are more likely to happen. And that is basically the 

event we are talking about that is the first event that the student has passed a particular 

selection exam after taking the training program. And if the OR is less than 1, then the 

event with the second words are more likely. So here, the second odds basically passing 

the exam, but without attending the training program.  

So here, you see that now, we got a OR score of 3 point something from the previous 

slide. So here, as the OR value is greater than 1, we can say that these 2 qualitative 



variables passing a particular selection examination and attending a training or coaching 

program, they are positively related. So that means that if the student actually has taken 

the training program before appearing for the examination then the odds are higher for 

him or her to pass the exam. 

Now, we are going to talk about the concept called log odds ratio. Now, why we have to 

talk about the log odds ratio because sometimes it is purely an empirical issue that 

sometimes odds ratios, sampling distribution becomes very skewed. And I hope that 

when I say that sampling distribution of odds ratio, you will understand what I am trying 

to say, because you have calculate the odds ratio from 1 particular sample after tabulating 

the numbers in the 2 by 2 contingency table.  

But what if, if you take another sample? So of course, you will get into another odds 

ratio. So then, if you plot all these odds ratios then you are going to get the sampling 

distribution of that, right? So now, empirically, what we have seen that the sampling 

distribution of the odds ratios can be very skewed at times and then, it is not a very good 

feature, when you are trying to conduct hypothesis testing and estimation.  

So basically, statisticians propose that why do not we take logs? The first step is to 

calculate the standard error of log odds ratio theta and how do you calculate that? So, 

there is a formula, I am showing. So, basically you have to take the inverse of the sale 

frequencies, you need to sum these inverse sale frequencies and then, the sum the square 

root of the sum should be taken and that will give you the standard error of theta.  

So here, the second sub-bullet point under the last bullet point in the slide is showing you 

the formula for that. And as we are assuming that our sampling distribution of theta is 

more or less symmetric bell shaped and normal approximation, we can assume so, why 

do not we go for as a z test? Yes, we can actually conduct a z test for the significance of 

theta.  

So, you have to calculate or define the z statistic for that. We assume that the unknown 

population parameter value of theta is theta naught. So, in that case, we define z as theta 



minus theta0 divided by standard error of theta. This is very common to what we have 

done previously when we conducted z test.  

So, after we have defined the z test, we can also construct the confidence intervals for 

these parameter theta. And that is basically theta plus minus z for the significance level 

alpha by 2 multiplied by standard error of theta. So, z alpha by 2 is basically also not 

unknown to you, it is basically the critical value from the standard normal table for the 

level of significance alpha, as we are doing a 2-sided thing, so, that is you need to divide 

it by 2.  

And then, once you get the number from the statistical table, you multiply that with the 

standard error that you can calculate using the formula in this slide only. And then, that 

number, that product has to be added and subtracted to the sample statistic value, which 

is theta here. And then, you get your confidence interval.  

So, once the confidence interval is constructed for theta, note theta is basically not the 

entity with which we are going to work. We are actually finally interested in the odds 

ratio. So how do I get the confidence interval for odds ratio? Simple, because you have 

taken the log to get the log odds ratio, so you have to reverse the process. So, basically, 

the limits of the confidence interval now, you will have to take the exponent of those 

numbers and then, these new numbers will give you the confidence limits for the odds 

ratio.  

So, that is what I am showing here, that if you have theta L and theta U the limits of the 

confidence interval, then you take exponents of these 2 numbers and you get ORL and 

ORU respectively. So, now, let me emphasize on 1 limitation of this 2 by 2 tables. And 

that is why we can go for generalization First of all, you may be interested in 2 qualitative 

variables, which will have more than 2 levels or categories or attributes that you are 

interested in. And why then restrict yourself to only 2 particular levels. And the second is 

that well, the odds ratio you cannot compute in 2 cross 3 or 3 cross 2 or 3 cross 3 or 

higher dimension contingency tables.  



So, how do you then measure the degree of association shape between 2 qualitative 

variables? So then actually, we have to go for something general in nature and for that we 

have to introduce a new concept of degree of association between 2 quality variables and 

that is called Cramér's V.  

But to see how Cramér's V is computed, let us tell the story from a very general point of 

view. So, we are not going to show you an illustration of 3 cross 3 or 4 cross 4, because 

the solution or the method we are going to talk about is far more general. So, let us now 

look at a m cross p contingency table.  
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So now, let us assume that like previously we have a n observations So, sample size is n 

and we have these observations on 2 categorical variables x and y. But note that there is 

this difference here. So, x can now have 1 of the p categories or levels and these p levels 

or categories are represented in p rows. And then the y, the response variable can also 

have 1 of the m categories or levels, and they are represented in the different columns.  

So here, it is a typo here, so we will correct this to columns. So, the second sub-bullet 

point in the first bullet point, you make this note that y is represented through the 

columns and not the rows.  



Let us now assume that fij denotes the frequency corresponding to the i-th level of x and 

the j-th level of y. So, if you remember, when we introduced chi-square statistic, for the 

test of independence previously, we have said that to compute the chi-square statistic, 

you have to first actually compute the expected frequency.  

Then you have to basically take the difference of the actual or observed frequency and 

the expected frequency then, square it and then, basically you have to divide it by again 

the expected frequency. And then you sum over all cells. And that is how you get your 

chi-square statistic.  

So, but that was the 2 cross 2 case when we studied it last time. So, what will happen if 

we have this generalized matrix form of p cross m dimension? So that is what I am 

showing you here in the clumsy expression at the bottom of the slide. So, chi-square is 

defined as double sum and ie is basically giving me the number of rows from 1 to p and 

small j is giving me the number of columns from 1 to m.  

And then as I have explained you a short while ago that we have to construct the 

difference of the expected frequency and the observed frequency. So here, in this 

formula, observed frequency is f of ij. So, that is basically you observe in the contingency 

table that you have constructed from your data.  

Then you have to calculate the expected frequencies and that is basically given by eij. Eij 

is basically the expected frequency for the i comma j-t cell. So, i here refers to the row, 

and j here refers to the column. So, then the difference has to be squared and then, you 

have to divide this by the expected frequency for that particular cell and then, you need to 

sum over different cells.  

So here, the basic philosophy is very simple. So the constructed or calculated chi-square 

statistic, basically does a very simple thing. It compares the observed frequency table 

produced by the sample with a hypothetical frequency table that would occur if the 

variables are indeed statistically independent in the population. So, what do I mean by 

that? How do you then compute the complicated expected frequencies? Well, it is not 

very complicated actually. If you remember the previous discussion, when we had for the 



chi-square test of independence, I have given you a formula and that was basically for a 

particular cell, the expected frequency is given by the row total multiplied by the column 

total divided by the grand total.  

So now, let us look at that same formula here in this general case and let us see how we 

can calculate the expected frequency for various sales. So, I will start here with the very 

first component in the sum expression. So, that is f11 minus e11 square divided by e11. 

So, what does it mean? So f11 is basically the observed frequency that your data tells you 

in the x equal to 1 and y equal to 1 cell. And then, e11 is basically the expected frequency 

that you need to now calculate. F11 you cannot calculate, it is given to you, e11 you have 

to calculate.  

Now, how would you calculate? So basically, what you do? So here, you see the row 

references 1, column reference is also 1. So, what you have to do? Here, you have to 

concentrate on row number 1 in the table and then, you need to sum the frequencies 

across columns.  

But you have to stay on the same row and that will give you the row total. And then, you 

have to now concentrate on the column. And then, now, you need to move down the rows 

and then keep on adding the frequencies.  

So that will finally give you the column total. So, you need to multiply that fist sum, 

which is the row total. And the second sum, which is the column total. And then you 

divide that product by the total number of observations in your data set, which is small m, 

which is the grand total. And then basically, that is your expected frequency. So, you take 

the difference, square it and then you finally divide that in term by the expected 

frequency itself. That is what the first component in this sum expression tells us. 

Similarly, you can follow the same logic for the other components that you are seeing 

here in this clumsy expression.  
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So here in this slide, I am going to repeat the same thing again for your help. So here, I 

am showing you a formula. Now, you get your chi-square value and from there actually, 

how would you interpret the matter? How can you decide whether 2 qualitative variables 

are indeed associated or not? So, if you by chance get a chi-square value of 0, then that 

means that the variables are actually independent, they are not associated with each other.  

But here, there is a note of caution that you must remember. And it is that fact that you 

cannot make such a strong decision based on one particular sample, because there could 

be sampling fluctuation. So, what if you get another sample from the population and then, 

that will give you a chi-square value of say, 0.19. Or it can also give you a chi-square 

value of 0.73, then how would you actually compare these 3 chi-square numbers because 

they are telling you different values, but these are from the 3 different samples.  

So how would you conclude whether the 2 variables are independent or not. So, for that, 

actually, you have to conduct a hypothesis testing. And that is what the Pearson’s chi-

square test does for you. So, here, I am going to describe, again, Pearson chi-square test 

of independence. And just again, another note of caution, to conduct Pearson’s test 

ideally, your eij should be greater than or equal to 4 for every i and j otherwise, there 

could be some abnormalities.  



So, that is basically a note of caution. But suppose our cells satisfy these criteria. So, in 

that case, we will continue with the formation of null and alternative hypothesis. So, here 

null hypothesis will be that my row variable x is independent of column variable y and 

my alternative hypothesis would be that the row variable x is not independent of the 

column variable y.  

So, basically, h naught says that there is no association and h1 says that there is 

association between these 2 qualitative variables. So, now you have to then fix a 

particular level of significance say alpha and then, you have to find the critical value, so 

that you can actually compare the critical values and the test statistic value and then, take 

a decision.  

So, if the chi-square is higher than critical value, then there is reason to reject the null 

hypothesis that 2 variables are independent. So, that is basically the philosophy of the 

rejection that we have followed, if we are following the traditional approach or traditional 

method that we have done several times in the past in this course only.  

So now, how to find the critical values to be specific? So here, find the critical value now, 

you have to basically consult the chi-square table, right. So, now chi-square test statistic, 

will follow the chi-square distribution with degrees of freedom p minus 1 times, m minus 

1. So, that is basically the number of rows minus 1 times number of columns minus 1. 

And for an alpha, you consult the table and you get some value. And then, basically, that 

is basically your critical value, right.  

So, here, the decision rule says that you can reject your h0 if the calculated or observed 

chi-square statistic value is higher than the chi-square tabulated value that you find from 

the table or in other words, the critical value. And you do not reject your null hypothesis 

if chi-square actually is less than or equal to the tabulated value or the critical value that 

you find from the table. 

So, now we are at the fag end of the discussion on contingency table and degree of 

association between 2 qualitative variables. So, I said that I am finally going to talk about 

a measure Cramér's V, which can be used for qualitative variables involving more than 2 



levels or categories. And here you go. So, in the last slide, we are going to talk about this 

Cramér's V only.  
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So, note that, chi-square test also has got some problem. Now, what is the problem? So, 

the chi-square test is not standardized, because if you take a data set and then, you 

compute the chi-square test statistic value and observe some value, you can get another 

sample and then, calculate another chi-square value these 2 chi-square values are not 

comparable to each other.  

And also suppose, you have 1 researcher who has talked about the same problem, but his 

but his x and y has say 2 levels each, but the other researcher has dealt with the same 

research problem, but that researcher or researcher number 2 is showing you a 

contingency table, where x and y have more levels say 3 each. So, from these 2 different 

researchers, you can see 2 different chi-square values computed. But you cannot compare 

because the dimension of the contingency table is not matching.  

So, how can you actually compare chi-square statistic values across different contingency 

tables? So, we need some standardization. So Cramér's V actually helps you to look at 

this problem. So, Cramér's V actually is a standardization procedure of the calculated chi-



square statistic, and its calculation involves several steps. So, before I show you the final 

formula, let me take you through the, or walk you through the steps.  

So, in the first step, you have to first determine, which variable has the fewest number of 

categories. And then you have to subtract 1 from that number of categories in this 

particular field. And suppose your row variable has fewest number of categories and it 

has k category, so, you have to deduct 1. So, the point of interest number will be k minus 

1. Now, you in the third step have to multiply that k minus 1 to the total number of 

observations n. And in fourth step, you need to divide the chi-square statistic that you 

calculated by the number n times k minus 1.  

And finally, in step 5, you take the square root of the number opted in step 4. So, in bullet 

point or sub-bullet point 5 of the main bullet point 3, I am showing you the final formula 

V. So, note that, the beauty of the Cramér's V is that, this Cramér's V is such a statistic 

that it values are bounded. So, its values are bounded by 0 and 1. So, minimum possible 

value is 0 and the maximum possible value is 1. Whereas, chi-square actually has no 

upper bound, chi-square can only be 0 at the no minimum, but it can take any positive 

number.  

So, that way Cramér's V is a standardized version of chi-square statistic and it is value 

actually helps us to comment on the association between 2 qualitative variables. So, if the 

value of V is less than 0.2, then you can say that well the association between 2 

qualitative variables is not that strong. But if it is, if the V’s value is higher than 0.6 then 

you can say that well, there is evidence from sample that there is strong association 

between these 2 qualitative variables.  

Okay. So, this is the end of discussion on the degree of association ship and relationship 

between 2 qualitative variables. So, in the next lecture, we are going to talk about the 

relationship between 2 quantitative variables. And now, we are going to talk about 

specifically the concepts of correlation and regression. See you then, thank you.  


