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A Crash Course on KKT Conditions 

 

So, today we are going to learn portfolio optimization. And as we start portfolio 

optimization, we have to know certain basic facts of optimization so instead of directly 

jumping to the portfolio optimization the first course, the first last lecture of the first 

week should end, we equipping with tools in order for you to understand portfolio 

optimization in a better way. And hence today's lecture is a crash course on the KKT 

conditions. 

(Refer Slide Time: 00:53) 

 

KKT actually is name of 3 persons Karush Kunt and Taucket so these people are 

responsible to begin out the Lagrange multiplier rule when you have inequality 

constants. What is the Lagrange multiplier rule? The Lagrange multiplier rule that you 

have learnt in school, in your may be first year college of minimizing of function or 

maximizing of function with respect to one constants and that constant is equal to 0, one 

constant. What means that x whatever x that you choose, in order to find maxima and 

minima should be satisfying that inequality. 



So, that idea of doing it to the method of Lagrange is bought to it is more general form 

when you also include inequalities. But modern applications have inequality there is a 

hallmark other than inequality. It has you will very soon see as you seen already in the 

modals that we have constructed optimization modal that we have constructed, and that 

is the basic structure. Inequalities are the hallmark of modern optimization so we are 

going to study the Karush Kunt Taucket conditions right. You all aware in high school, 

let be study you take functions like this and we want figure out whether these are the 

maxima and minima provided the function if is also given to be the differentiable. 

So, what we do is, which are the figure out what x would satisfy the in equation that f 

dash x is equal to 0, derivative at x is equal to 0. Suppose such point is x not, but this 

condition you must remember is a necessary condition and not a sufficient one. That is 

when you get a x naught by solving in this equation it does not guarantee you that there 

is truly a local minimizer or global minimizer or local maxi miser or local maxi miser all 

this problem. And for that you need to talk about second order condition. We should 

aware in your school studies high studies. And now you try can take the secondary, were 

if I cannot take the secondary activities, then there is big issue. If there is if can take the 

secondary with if then and compute it that x not and see what happens. If it is strictly 

bigger than 0 you know this is will be minimizer local minimize, local than x not is the 

local minimizer. Actually this something calls as a strict local minimizer, but we are not 

going to get into those optimizations in deeper optimization issues at this moment. 

Rather for the course you did not get too much bogged up by those issues and if these 

happen then you get what is called a local maxi miser. This is some; this is the repetition 

of what you already know from high school, these just recollections. 

Now, is the simple tool, simple idea or simple mechanism by which you can possibly 

find the maximizer and minimizer of the function from R to R, is this applicable when I 

additionally put a constant that is, if I minimize function say from R to R, subject to x 

element of some interval. Can I use the same idea to have it? Answer will surprisingly 

turn out to be no. For example, if you take the function f x equal to x square so now, you 

want to minimize towards the whole R, this is called inconstant minimization. There is 

no addition or restrictions on, from where the variable should come it is free so here if 

you look at the function y equal to x square, then at x equal to 0 you obtain the 

minimizer. And of course, f dash 0 in this case is 0, but now suppose I take the same 



function y equal to x square, but I want to restrict it from, so now want to choose x 

within 2 and 1. 

So, it is the same problem minimize x square subject to x belonging to interval whose 

interval to 1. There is no doubt that designs look at the picture and immediately 

determine 1 has the minimizer, 2 has the maximizer. In that these are global maxi miser. 

So now, on this interval no one more x equal to 0 is present. So the minimizer here is 1. 

And let me compute f dash 1. So f dash x is equal to 2x. This implies f dash one is equal 

to 2, not equal to 0; so if minima, if you are looking at a constant minimizer; it does not 

necessarily fallow f dash equal to 0. Here thus is a paradigm shift from going from 

unconstrained from to the constraint problem. And here you see I have constraint 

informal inequalities. And I could wright these are x less than equal to 2. And mines x 

less than equal to minus 1. So there is the huge paradigm shift. 

So, the question is, if I have a constant problem how do I write, what sought of necessary 

conditions, of being followed so that, I would be able to use of necessary conditions at 

least compute as point which I can suspect to with the minimizer. And then test it 

through other conditions. So let us jump to higher dimensions, and that would make you 

have a much better understanding what is coming. So in order to move towards the 

Karush Kunt Taucket conditions, it is important that we again recall what would have 

happened. 
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If I look at a function f from in higher dimension on set up there is a function f moving 

from Rn to R. Then how do you decide how to find the local maximizer or minimizer. In 

that case you are first step of course, is to find point x not which satisfies the gradient 

equal to 0. Basically it is gradient simply means, del f del, x 1 so vector of n components 

del f del x n, if I calculate them at the vectorial point, x equal to x not that should be a 

mean the 0 vector. 

So, find as a point x not that is all. But once I find the point x not, I do not have much 

options I cannot say that x not is the minimizer or maximizer. But in many problems you 

can actually try to rubbing to the problems structure and try to argue, but in many cases 

we are to realize on what is called second order conditions. Exactly progressing has we 

have done in the case of the function from real line to the real line. The same idea which 

mean progressed. But of course, you are in a much higher dimension setup so thinks 

cannot be just writing in bigger than 0 lesser than 0. So what you have to look into to the 

following. You have to know how to compute what is call the hessian matrix of f. 

So, the hessian matrix is nothing, but the Jacobean matrix of the gradient. Or rather is the 

matrix whose individual rows are the gradiance of del f del x 1, dot, dot, dot del f, del x 

n, so if I take the gradient of del f del x 1, so I take it with first with x 1, del f del x 1, 

square del to f del x 2 del x 1, del 2 f, del x 1 del x, and so I have taken the gradient of 

sorry, del x n del x 1, I have taken the gradient of del f del x 1, del f del x 1 actually of 

function right from R n to R. So you have del 2 f, del x 1, del x n so these are the matrix 

is the symmetric matrix provided if the function is differentiable twice differentiable and 

all these are continuous, and by young theorem this matrix is becomes twice continuous 

in differential function, then the hessian matrix becomes symmetric. 

So, those were some studied in some basic calculus. Now what we should not be very 

much intimated by this sought of expression. So once of find x not what I am supposed 

to do? Second that to 2 fold parts. So see if this is positive definite. And then again see 

an also check negative definite. So if it is positive definite, positive definite means that 

so take any vector w, and take this inner product first operate f, f or x not on w, and then 

take in a product with w, and this is strictly bigger than w for all w not equal to 0, we call 

this to be positive definite. So if this is 0 grad effects not 0 and this is positive definite, 

and imply that x not is the local minimizer. While the opposite is of course, true we just 

have to change signs. And that would imply that x not is a local maximizer. Once I know 



these two, so we have a complete picture and how to handle unconstraint problem of 

course, it is not all easy to find out this, but we still have a complete picture to handle 

unconstraint problem. 

Now, to begin the KKT story, which would go back to something more, is there any the 

convexity story? So here it is talking about finding secondary event that is exits and then 

you can do all these. Can there we some other conditions on the function so that 

whenever I have these and x not satisfying these that would give me a minimizer. In that 

case, one of the main assumptions on function f is that of convexity. So we are going to 

look at convex functions. So convex functions of functions of this form, so f from or it is 

convex, if f of lambda y plus 1 minus lambda x, is less than equal to lambda f y, plus 1 

minus lambda f x, for all, this is the symbol of for all inverted a for all lambda line in the 

close interval 0 1. Of course, this simply means that this is an element then the line 

segment joining x and y. This is something you have already known in have coordinate 

geometry on in basic high school. And also corresponding there is a concept of convex 

set. 

So, C is convex if an only if, these the symbol of if an only if, x y element of C, implies 

that in the whole line segment joining x and y, would be inside C. Observed that here if I 

would lambda equal to 1, I would get y if I would lambda equal to 0 I would get x so as I 

move from 0 to 1 I change lambda from 0 to 1, and actually moving along a straight line 

from x to y. So a major idea! Why convexity is important? Convexity is important, 

because if we want to minimize convex function over a convex set, that is constant 

optimization, in fact, then there no local minimizer. Every minimizer is a global 

minimizer. So if you would you know our whole space R and itself you also convex set. 

So we will largely we bother about functions of R n to R because in will literature you 

can also talk about functions some given convex at C to R and see whether they have this 

behavior convexity from a more geometrical point of view, means the following. Means 

that if you have a convex function and if you have you take 2 points on the graph of the 

function. And if we joined them by a code, that code would always line of the graph of 

that function line, after between these 2 points. 

So, the portion of the graph of the function, line between this of this point will always 

line below this particular line segment joining these 2 points. That is exactly the meaning 

of the statement. So what we are now going to show, is that if we have convexity, right, 



if we have convexity of the function f, then you do not look have to look for second 

order condition. The reason is this. Suppose I have a function which is differentiable and 

convex. 
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Then we have following nice expression that f will satisfy a following nice inequality. F 

is differentiable and convex if and only if, said this is write iff, but would the whole thing 

if and only if, f y minus f x is greater than equal to, gradient away if at x in our product 

with y minus x. And this is for all y elements R n, which is bother about convex function 

from R n to R. 

So, what happened? Suppose so this will so effect fix upon x, for whatever y I take this 

will true. So if x not be such that, grade effect not is equal to 0, employing this in equal 

little it will mean, f y is greater than equal to f x not, for all y. So this is the very 

important thing. That for a convex function, so if you minimize f convex over a convex 

set C, then local is equal to global and every local minimizer is a global minimizer. 

These are very short hand way writing. Do not think I have written mathematical in 

equation, local equal to global. Some small they just a simple way of writing, so we will 

now look come to the constant case and explain to you what is the Karush Kunt Taucket 

condition. So now, as we promise will start our discussion on the constant optimization 

problem. 



(Refer Slide Time: 20:33) 

 

Here, we will not focus; on equal focus on this in is general structure, what standard 

structure. So it is the one we had already written down. In the last class, however, we are 

not going to include x element of capital x. We will not be going to include extra, take 

this most simple format. Then we are going to discuss what sought of conditions, these 

would follow. If we have a local maxima minimize, we are going speaking down 

minimizer only, as I have already told in finance also a uni minimizing always one, in 

the optimization. Only so let us listen here, that here we would assume f, g i, h j, for all 

smooth. Smooth meaning continuous differentiable. They are differentiable and then the 

partial derivatives also continuous. 

Now, once I do that, suppose x not is a local minimizer. Then what? So x not is a local 

minimizer, what sought of conditions do x not satisfying in terms of the given data of the 

problem. So it was Fridgejohn in 1948, Fridgejohn is one name is not 2 names. Usually 

some people also called the john conditions. He wrote of paper giving the necessary 

condition and also use it to device certain algorithms. And send it due general of 

mathematics which rejected it. Later on it published in some conference proceedings. 

But this is one of the most fundamental conditions that we need to know when we 

studying some basic optimization. Fridgejohn condition do not require any addition 

condition it tells ok, if you have smooth functions, this is the problem it is not is the local 

minimizer then this will happen, but Fridgejohn says that if x not is a local mean, then 

there exist scalers lambda not, which would be associated with the grade aware, greater 



than equal to 0 lambda i, which is associated with the grade of g, and mu j, it is just an 

element odd would have any sign. 

So, this is the sign call, they are exists. On those were not familiar with mathematical 

symbols, this simply means they are exist. So there exist scalars, so there exist scalars. 

This nature sees when you have inequality is your sign known the so called multiplier, 

these something like Lagrange multipliers. So then they are scalars such that, lambda not 

grade of f x not, plus summation i is equal to 1 to m lambda i grade of g i x not plus, 

summation j is equal to 1 to k, mu j rad a j x not is equal to 0. And lambda i g i x not is 

equal to 0 for all i. We call to 1 to m. So this is the standard optimize condition and 

lambda not, lambda 1 lambda m, mu 1, mu k, this full vector cannot be a 0. Vector 

means all of this cannot be simultaneous were all of these are simultaneous. It is 0 it; 

obviously, satisfy this condition. So we have to find out vector which were it cannot all 

simultaneous is 0, and of satisfied these. This is what Fridgejohn proved in 1948. And 

this condition is called the complementary slackness condition of very important tool in 

optimization very important notion. 

This simply means that, you cannot have both of these holding restrict inequalities at the 

same time. You cannot have a lambda is strictly bigger than 0, as well as the same time g 

i is strictly less than 0. This is not possible. Where is lambda is strictly bigger than 0 g i x 

not must be equal to 0, if we that is the weight is because then you will maintain this 

inequality, and this is very fundamental. So the drawback; however, of the Fridgejohn 

points was that, lambda not could be 0. If lambda not could be 0, then the roll of the 

objective function goes away from the problem. And that something you would like. And 

there are many, suppose if I now up, if some convexity happens on the f and g, then 

unless I know with lambda on strictly bigger than 0, I have no way to prove then under 

such conditions x not will again give me, although one minimizer. And they work there 

could be feasible point which are not optima. They can still satisfy the Fridgejohn 

condition. The Fridgejohn condition as the very important role is that it provides a 

negative negativity certificate. That is in the sense negative certificate, that is if there is x 

not which violates the Fridgejohn condition, then it is definitely not of the local 

minimizer of global minimizer. 

So, how to divide the condition at this annual is a Fridgejohn condition. Rather like 

lambda not becoming 0, go goes away and that was frame by Karush Kunt and Taucket, 



so originally frame by Kunt and Taucket in 1951, published and in 51, and then they 

found at Karush had already done some work of similar type, in his MS thesis, and then 

Kunt wrote to him and then the or the historical facts straighten. So Kunt and Taucket 

1951, is the paper which every what you referred to. What they say is the following. So 

of the same conditions, so with the Fridge John condition, add with it some conditions on 

the constraints, that is called constraint qualifications. Once you do that, you can show 

that, by choosing a proper constraint qualification lambda not is not strictly bigger than 

0. Then you can divide everything by lambda not, and then you knew multiplied where 

these conditions would be maintained. And the Kunt Taucket condition would look like 

grade effects not plus lambda i dash grade g i, x not plus mu j dash that h j x not. So this 

can be normalized to 1. So basically would once you know that lambda not is simply 

greater than 0 divide whole thing both side well lambda not. 

So, that is what is Kunt Taucket condition. Fridgejohn condition plus and constraint 

qualification will give you this. Suppose I say that I am in situation do check that all the 

gradient vectors of g i and all the gradient vectors of a j i nearly independent then, even 

easily show that lambda not strictly greater than 0. So rather go ask you go to the web 

and figure out what certain constraint qualification are there. Now the importance of 

Kunt Taucket condition comes when you are talking about convex functions. So if f is 

convex if g i is convex, and h j is a faint function are all discuss when you are talking 

about linear programing, h j is a faint, and KKT condition holds at a feasible x not, then 

x not is a global minimizer. 

So, would like that at home, you would write down, figure out what are constraint 

qualifications. And then you can show mathematically, you tried to show 

mathematically, this is happening then lambda not strictly greater than 0. I can divide 

also it is by lambda not basically choose lambda not equal to 1 and then write down the 

Karush Kunt Taucket conditions.  

So with this I would end todays talk, and when we start next week we really start with art 

of finance, we will talk about portfolio optimization. And that would be doing 2 parts, 

and then will go to the capital asset pricing modal. 

Thank you very much. 


