
Real-Time Digital Signal Processing 

Prof. Rathna G N 

Department of Electrical Engineering 

Indian Institute of Science - Bengaluru 

 

Lecture - 09 

Pipelining and Parallel Processing for Low Power Applications 

 

(Refer Slide Time: 00:28) 

 
Today we will discuss about pipelining and parallel processing for low power applications. The 

recap of the last classes we discussed about linear phase FIR filter in length, and then how to 

build it, that is what, what we have seen in the last class. In today's class, how we can use the 

architecture that is pipeline and parallel architecture to build a fire filter for low power 

applications.  

 

So, when I talk about the low power in this case, we will be considering the capacitive load 

power consumption, which is given by 𝑃𝐿 = 𝐶𝐿 × 𝑉𝑐𝑐
2 × 𝑓𝑜 × 𝑁𝑆𝑊. So, we say that the power is 

proportional to, we say the frequency and square of voltage what we call it. So, we can if we 

reduce the voltage, we know that the power consumption is going to come drastically, but for 

speed, we have to increase our frequency.  

 

So, we have seen that we can use the architecture for speeding up our computation using 

pipeline and parallel. So, the frequency is going to be increased. But in this case, we will see 

that how we can use the thing by reducing our power consumption that use by reducing our 

operating voltage. So, here we will give it 𝑃𝐿  as a capacitive load power consumption and 𝑉𝑐𝑐 



is our supply voltage and 𝑓𝑜 is our output signal frequency and 𝐶𝐿  we call it as external load 

capacitance basically and 𝑁𝑆𝑊 will be total number of outputs switching.  

 

So, if we assume 1 bit what we are transmitting, so, it becomes 𝑛 =  1 so, switching load will 

be 1 in this case. So, if we have more number of bits that also will be contributing to our power 

consumption.  

(Refer Slide Time: 02:23) 

 
So, we will see what is the basic idea of pipelining, which I have already discussed. That is we 

took either a car assembly in this case example is given Henry Ford in 1908. In 1914, what 

they were taking time is 3 minutes, what was the every car was coming out. So, latency in that 

case, we say was 93 minutes, basically, the maximum time what was taking, although they 

were able to achieve 3 minutes, but as you can see, 93 minutes was the latency between 2 cars 

because one of them was taking more time.  

 

So, what we call that example, we took the water pipe in the last class. So, we will be seeing 

that the length of the water pipe is less than our latency is going to be less, but if it is long, then 

we know that it is going to have a maximum latency we call it as critical path. So, further 

increase the clock speed or sampling speed to or reduce the power consumption to for the same 

speed in a DSP system.  

 

So, for the parallel processing will have multiple outputs are computed in parallel in a clock 

period. The effective sampling speed is increased by the level of parallelism if we want to 

increase the speed or we can reduce the power consumption.  



(Refer Slide Time: 04:01) 

 
So, why do we need pipelining and parallelism? One is to reduce our critical path that is the 

longest path delay and increase the clock speed or sample speed what we are putting it or 

achieve a reduced power consumption. Same thing with parallel processing, not reduce the 

critical path here, not increase the clock speed but increase sample speed and then we can use 

it for reduce power consumption.  

(Refer Slide Time: 04:34) 

 
So, we will see the data flow in parallel and pipeline structure how it is going to be 

implemented. So, we say that we have 4 processors here, P1, P2, P3, P4, if there is no data 

dependencies, we know that all the 4 processors will be working on different data sets. So, if 

we have the same number of processors in pipeline processing. So, we say that each processor 

has to wait for the previous data to be finished, computation to be finished and then it should 

be coming into the next stage.  



 

So, each processor you will be seeing that the latency of this P4 processor is, it has to wait for 

4 clock cycles till it can operate. So, once all the data have been filled then they can work in 

parallel. So, that is what the latency of the pipeline whereas in the parallel processing all of 

them, there should not be any dependency between the data in this case.  

(Refer Slide Time: 05:44) 

 
So, when we say that how it is going to have this thing data dependence, we say that in parallel 

processing requires no data dependence between the processors then only they can run in 

parallel. So, as you are seeing it, the data flow in P1 processor is going to go in horizontal way, 

same thing with respect to the rest of the processor. Whereas, in the case of pipeline, we said 

there is a data dependency between the 2 processors.  

 

So, P2 is waiting the data from P1 the same way P3 will wait from P2 and then P4 will be 

waiting from P3. So, this is how the data will be if they are dependent then the flow is going to 

be in this fashion.  

(Refer Slide Time: 06:29) 



 
So, coming to the usage of pipeline processing, how we can do the thing, we can do by inserting 

latches or registers between combinational logic circuits. So, that way we will be reducing the 

critical path or it can be shortened. So, the consequence of introducing this will be reducing the 

clock cycle time and increase the clock frequency. So, it is suitable for DSP applications that 

have we call, it as infinity long data stream.  

 

So, we are assuming that input data is coming continuously, so, we have to operate on that. So, 

method to incorporate this pipelining how we are going to do it, we will see it in a while using 

the cut set, and then do the retiming of the circuits. So, we will define the cut set, we call that 

as a set of edges of a graph, if these edges are removed from the original graph, the remaining 

graph will become 2 separate graphs.  

 

That is there are no dependence between the 2 graphs that have to become independent, then 

only we call that as a cut set, usually, we apply feed forward cut set in our filter. So, in this 

case, we call feed forward because data move in the forward direction on all the edges of the 

cut set. So there will not be any feed backward data flow. So only we consider the if there is a 

feed forward data, then we call, that cut set as a feed forward cut set.  

 

The other one is re-timing so how we are going to see the re-timing algorithm is re-adjusted 

while keeping the partial ordering of execution unchanged so that the results are correct. So, 

we will see that how we will be doing that.  

(Refer Slide Time: 08:39) 



 
So as an example, we will take that this is the data flow graph what we have it so data is moving 

from A1, A2, A4 and then A6 is the last thing or it can flow in this direction. So we say that D 

means there is a delay in this data path. So, what will be the longest delay that is what, what 

we see, we have to see in this graph, or we call it as the critical path, since there is a delay.  

 

So we will assume that it will be going into this register, it can be a register or so that it is going 

to hold the data and then in the next clock cycle it will be going into this point. So here we will 

be seeing that from A3 the data has to flow to A5 and then to A4 and then to A6, this is the 

longest path in this. So, which we call it as it is going to take 4 clock cycles or 4 unit time to 

get the data from one node to the last node in this case.  

 

So we said that we will put a cut said basically, so I can cut the graph into 2 pieces in this way. 

And then we said, we are going to introduce delay units, wherever we have put the cut set. So, 

or a shift register, one of the thing, what we will be using it, as we can see that we have cut this 

into 2 parts this way, but we have forgotten to put a delay unit here. So, that is how it says this 

is an error, basically.  

 

So how if we cut this properly, and then put all the delay units in the cut set, then what happens 

to our critical path what will see it, so we say that from A3 to A4, I have a delay path, and then 

from A4 to A6, it is direct. And then what we have is from the delay unit, if I take that the data 

is moving, it has to move to A4 and then A6. So that way it takes 2 clock units to reach the 

maximum delay in this circuit or in the data flow graph.  

(Refer Slide Time: 11:12) 



 
So, what is it? So some of the concept, what we will see how we will be representing our 

pipelining and parallel concept is represented. In the pipelining, we introduced pipelining 

latches along the data path. So this is the original circuits, 𝑥(𝑛) is the input. And then this is 

one of the 𝑎(𝑛) is the coefficient 𝑏(𝑛 − 1) can be the other coefficient. So 𝑦(𝑛) is going to 

have it as 𝑎(𝑛) ∙ 𝑥(𝑛) + 𝑏(𝑛 − 1) ∙ 𝑥(𝑛) basically. 

 

So, this is my 𝑦(𝑛), when I say that the critical path is going in this case is 2 adders. So, it has 

to pass through them to get my 𝑦(𝑛). So I want in a single clock cycle my 𝑦(𝑛) has to come 

out, then what I do is I cut this, line into 2 parts and introduced a delay line. So I am putting 

increasing the hardware. So 𝑥(𝑛)is this, it will be added in 1 clock cycle. And this is going to 

be latched here.  

 

And in the next clock cycle, I will be adding with whatever data coming from here, and the 

output in the current state is going to be 𝑦(𝑛 − 1). And then in the next clock cycle, I will be 

getting the 𝑦(𝑛). So I will have compared to previous structure, I will be getting 1 delay output, 

initial output after that it is going to come continuously when we talk about the parallel 

processing, so we will be duplicating the hardware.  

 

So, here we have duplicated 2 units basically, then what happens to the input? It has to be 𝑥(2𝑘) 

to the one of the stage for the other one 𝑥(2𝑘 + 1). So here, even the coefficients as you will be 

seeing it, it becomes 𝑎(2𝑘) and 𝑏(2𝑘) k. So, k will be varying from 0 to n - 1 in this case only 

2 what we have it, so, the other input to the second structure is 𝑎(2𝑘 + 1) and then 𝑏(2𝑘 + 1).  

(Refer Slide Time: 13:37) 



 
So, coming to the thing, when we use the FIR filter will consider as a 3 tap FIR filter. So, if we 

use the direct form structure, as you are seeing that I am talking about the structure, even the 

structure is going to matter, when we are drawing or designing our circuit. So, here we have 

used the direct form in that case, what is the equation for my FIR filter 𝑦(𝑛) = 𝑎𝑥(𝑛) +

𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2). 

So, we say that the sample period T sample should be greater than or equal to 𝑇𝑀 that is the 

multiplier plus the longest path in this is going to be from here to here, which is going to 

incorporate 2 adders. So, my sample period has to be 𝑇𝑀 + 2𝑇𝐴 when I talk about the sampling 

frequency should be less than or equal to 
1

𝑇𝑀+2𝑇𝐴
. So, depending on the time it is going to take 

to multiply and then add will decide my sampling frequency for this 3 tap FIR filter.  

 

So, the coefficients what we have assumed is a, b and then c. So, how will I get my 𝑦(𝑛)? What 

is shown here? 𝑥(𝑛) is the input, and these are the delay lines 𝑥(𝑛 − 1), and then 𝑥(𝑛 − 2). So 

as the equation suggests here, 𝑦(𝑛) = 𝑎𝑥(𝑛) + 𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2). So, that is what my 3 tap 

of FIR filter, when I consider the sampling frequency, what should be for this structure? So if 

I talk about the sampling period 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 should be greater than or equal to the time taken to do 

multiplication.  

 

And because the longest or the critical path delay, what we call it, here is 2 adders, what it is 

included 1 multiplier and then 2 adder, so it becomes 𝑇𝑀 + 2 times time for addition, so the 

sampling rate is going to be less than or equal to 
1

𝑇𝑀+2𝑇𝐴
.  



(Refer Slide Time: 16:03) 

 
So we will see how we will avoid this. One of the thing is, as we said, we can have a cut set in 

the because as you are seeing in the structure, all of them in the feed forward path, the flow 

what it is going, so I can have a cut set. So we said that it is taking 2 clock cycles to add, 

whether I can reduce it to 1 clock cycle, then what I am going to do is I am going to put a cut 

set here as you are seeing in the blue line in the forward path, that is what, what it is shown 

here, then I have to introduce 2 delays in the path, because I have cut 2 lines here.  

 

So there will be addition of delays in this case, now, you will be seeing the longest path in this 

case is going to be, so 1 multiplication and 1 addition. So, we will come back what we are 

going to define what is my longest path. And from here to here also it is going to take 1 clock 

cycle and from this delay to my output is going to have 1 clock cycle. So, we can make this 

structure as first unit and the second unit what we have it so, what happens to the output that is 

what, what it says is critical path from 2𝑇𝐴 + 𝑇𝑀 which is changed to 𝑇𝐴 + 𝑇𝑀.  

 

So, the clock will see that what will be the output at 0 if the input to this is 𝑥(0), then node 1 

what we call it what is going to happen in this clock cycle is it will be multiplying 𝑎𝑥(0) +

𝑏𝑥(−1) in this case. So, in the next clock cycle, so, you will be seeing that 𝑥(1) will be the input 

to this unit and then the thing is going to be node 1 it is going to compute 𝑎𝑥(1) +𝑏𝑥(0). 

So, in node 2, because this has moved to the next clock cycle, so it will be 𝑎𝑥(0) the previous 

one +𝑏𝑥(−1) and in the node 3 what we call it is here, which is going to be 𝑐𝑥(−2) and this 

will be my 𝑦(0) and same thing you will be seeing that in the third clock cycle. So, the all the 



units become full, then 𝑦(2) will be my output which is completely correct. So, compared to 

the previous one, you can draw this sketch for the one which did not have the cut set.  

So output will be start coming from here 𝑦(0), 𝑦(1), 𝑦(2), 𝑦(3), but in the this thing pipeline 

case, in this case since we have put only 1 cut set the delay is going to be 1 clock cycle. So, we 

will not be getting anything here it is irrelevant or it is garbage what we will have it so, output 

starts coming from here.  

(Refer Slide Time: 19:12) 

 
We will see effect of pipelining what are the drawbacks we will be increasing the delay 

elements, number of delay elements, what we call it as registers or latches in the critical path, 

this is a hardware addition what we have to provide, this causes increase in latency, then what 

we say is a clock period limitation we will see it, so the critical path may be between an input 

and a large we call it a latch and an output or between 2 latches, an input and then output.  

 

So this we call it as the critical path. So, this is how we measure how many multipliers or 

accumulators or how many hardware is in between these 2 things that will be the maximum 

critical path what I have to consider. So, we say pipelining latches can only be placed across 

any feed forward cut set of the graph, this we will be specifying every time, and then we had 

to go through the thing.  

(Refer Slide Time: 20:22) 



 
Next one is, as I was talking about the structure, can we have a transposition theorem 

incorporated in the signal flow graph, that is, what we are going to do is reversing the direction 

of all edges in a SFG signal flow graph and interchanging the input and then output ports, 

preserve the functionality of the system. So, we say that 𝑥(𝑛) is the input 𝑦(𝑛) is the output 

this is in the feed forward what we have it.  

 

So this delay can be represented as a D or in the zee domain, we will call it as z - 1 is going to 

be that delay. So, each node will be representing my this as an adder and this is a multiplier. 

So, now, what we are going to do is my output I will be changing it as an input and then input 

as an output and all the direction are going to be reversed basically, that is what the 

transposition theorem says. So, as you will see the thing 𝑦(𝑛) and then we will be keeping a, 

b, c as it is so, this has got changed.  

(Refer Slide Time: 21:37) 

 



Now, what is the thing is going to happen, so, we will incorporate in our data flow graph here 

from the signal flow graph, we call that as a direct form 2 (form II) structure we call that as a 

data broadcast structure. And in this case, you will be seeing that the critical path without 

adding any delay elements, it has become 𝑇𝑀 + 𝑇𝐴 we will see it in a while how it is going to 

be. So, to have the understanding correctly, what we have done from the previous thing, we 

have reverse the implementation of this graph actually. 

 

So that we are not comfortable going from right to left. So, we will put it back as a forward 

path itself. So, you will be seeing that 𝑥(𝑛) is going to be broadcast to all the 3 multipliers here 

it is c, here it is b and then a and then we have a delay element already present in the original 

one, this is the original. Now, you see the thing the critical path in this case is going to be 1 

multiplier and 1 adder this is from input to output and then from input to latch is also 1 unit.  

 

And then here also it is going to be input 2 latch is here only have a 1 multiplier delay. So, the 

maximum that is critical path is 1 multiplier and 1 adder. So, you can see that the structure if 

you choose it properly, I need not have to have any cut set or any pipelining introduced in some 

of the graphs that one has to consider.  

(Refer Slide Time: 23:24) 

 
Now, we will say that all of us know that multiplier is going to take longer time compared to 

my adder. So, as an example, we call this as fine gain pipelining. So, let 𝑇𝑀 = 10 unit time and 

adder takes 2 unit time and the desired clock’s period what we want is 6 unit of time. So, how 

we can achieve because multiplier is going to 10 units + 2 units will be my longest path in the 

broadcast section, if I am computing it, but my clock period has to be 6 units, then what we do 



is we can bifurcate our multiplier into 2 smaller units with processing time of 6 and 4 units. So, 

you will be seeing that 1 multiplier m1 is going to take 6 units and then m2 multiplier will take 

4 units. So, we are doing a cut set here in the forward path and then put a delay element in all 

the 3 legs of my filter.  

 

And then we will be seeing that from anywhere to anywhere that is input to my this latch is 6 

units in all the cases and from here you will be seeing this latch to this latch is only 4 units and 

the whatever shown in the blue will be the my critical paths basically from this latch to this 

latch it has 1 multiplier and 1 adder. So, which will be taking 6 units of time and from here to 

here also. So, this we call it as fine gained parallelism or sorry pipelining.  

(Refer Slide Time: 25:07) 

 
So, the next one will see that parallel processing how we are going to work on, we say they are 

dual basically, and if a computation can be pipelined, it can also be processed in parallel that 

is what, what we say. So, how we are going to do this, we say convert a single input single 

output. So, SISO is my single input single output that is what 𝑥(𝑛) to this, system into your 

multiple input multiple output, we call it as MIMO system via parallelism.  

 

So, you will have a seen here draw input is 𝑥(3𝑘), 𝑥(3𝑘 + 1) and 𝑥(3𝑘 + 2), you will be 

wondering what is it initially we took example parallel for 2 this thing parallel systems, here 

we are assumed 3 parallel systems. So, you will be seeing that your 𝑥(𝑛) will be changed as 

𝑥(3𝑘) in this case, and y will also be 𝑦(3𝑘), 𝑦(3𝑘 + 1) and 𝑦(3𝑘 + 2) so, this is 3 parallel 

system. 

(Refer Slide Time: 26:19) 



 
Then, what happens to my input and output representation? We have original what we have is 

𝑦(𝑛) = 𝑎𝑥(𝑛) + 𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2), when I pass this in 3 parallel section, what will be my 

output is 𝑦(3𝑘), 𝑦(3𝑘 + 1) and 𝑦(3𝑘 + 2), how the inputs have to be you will be seeing it. 

So, I will be replacing n with 3k, 𝑎𝑥(3𝑘) + 𝑏𝑥(3𝑘 − 1) + 𝑐𝑥(3𝑘 − 2). So, in the next case, 

3k + 1, what we will be adding with respect to n is 3k + 1.  

 

So, if you substitute that 3𝑘 +  1 and then 3𝑘 +  1 −  1 will become 3k, 𝑥(3𝑘) in this case, 

and then in the next case 𝑐𝑥(3𝑘 − 1), so, you will be seeing even 𝑦(3𝑘 + 2) will be represented 

in this way, then what happens, we call time taken for iteration is equivalent to 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 what 

we call it here in this case, it becomes 
1

𝐿
𝑇𝑐𝑙𝑘. So, which is greater than or equal to because 

number of parallel section I have assumed is in 3 here.  

 

So, which becomes 
1

3
(𝑇𝑀 + 2𝑇𝐴) , because I have not put any pipelining here, so, adder delay 

is going to be 2 units in this case.  

(Refer Slide Time: 27:57) 



 
So, what happens to 3 tap FIR filter, however, I will be representing it in the direct form 2, as 

you will be seeing it. So, if we use the direct form 2 what is the thing, so, this is the output what 

I want, 𝑦(3𝑘), 𝑦(3𝑘 + 1) and 𝑦(3𝑘 + 2), and we will consider 𝑦(3𝑘 + 1)rest of it, you can 

work it out. So, we will see that how we are going to get 𝑎𝑥(3𝑘 + 1) what I wanted the first 

output, so you will be seeing that 𝑥(3𝑘 + 1) is coming here.  

 

And then which is fed to my this multiplier, which is 𝑎𝑥(3𝑘 + 1). So which goes into the adder. 

So what the next one, what I want is 𝑏𝑥(3𝑘). So you will be seeing b is here, and then 𝑥(3𝑘) is 

the thing which is coming here, which is going to be multiplied with your 𝑏𝑥(3𝑘) so which 

gets added. So what is the last one what I want it, 𝑐𝑥(3𝑘 − 1) what I want in this case, so how 

we are going to get the thing.  

 

So what we do is I can take 𝑥(3𝑘 + 2), because when I introduce a delay line in this, because 

this is the 3 parallel structure what we have taken the thing, so delay is going to be 3 units. So 

this becomes 𝑥(3𝑘 + 2) − 3. So which is with 1 delay, so it is going to be 𝑥(3𝑘 − 1) this input, 

which is going to be multiplied with 𝑐. So all of them get added and then we will be getting 

𝑦(3𝑘 + 1). So, you can check the rest of them whether you are going to get this equation 

correctly with the structure or not. So thank you for hearing this lecture.  

 


