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Welcome back to real time signal processing. So, today we will discuss about the number 

system. Just to give a recap of what we covered in the last class. First, we did sampling theorem, 

some DSP hardware basics, what we looked into. So in this class we will see number system, 

its needs and then benefits in programming, although you may think that it is a primary class 

section, but we will see that how it is beneficial for implementing it in hardware. That is what 

we will be looking at today.  
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So first, we will see what are the number formats available. So, we know in DSP signals are 

represented as discrete sets of numbers from the input stage along through intermediate stages 

to the output. So, all the stages have to be in the discrete format and all the applications of DSP 

like filters, FFT, coefficients to be represented all as numbers. So there are 2 formats popularly 

available in DSP processors, one is the fixed point format.  

 

The other one is the floating point format, most of you might have used the floating point 

format, still, we will see how to represent that in DSP process, we will look into the thing.  
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So coming to the fixed point format, so, we know that it is the simplest scheme. So, we 

represent the number as integer or fraction using fixed number of bits. So, we know that an n 

bit fixed point signed integer as we mentioned it again it is a signed integer what I am 

representing, so, the representation will be from −2𝑛−1 to 2𝑛−1  and we know 𝑥 is the number 

what we are representing.  

 

So which is given by so minus s dot here s represents the sign bit of the number if it is equal to 

0 it is positive number and if it is minus 1, if it is equal to 1 it is a negative number. So, the first 

number will be −𝑠.  2𝑛−1 and then the next number will be its magnitude is 𝑏𝑛−2 what will take 

it into 2𝑛−2 and so on, in the last we have 𝑏1 . 21 and then 𝑏0 . 20  
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So, all of us know that what is the range this number format can take. So we will see the most 

negative value in this format is x is given by −𝑠.  2𝑛−1 to 𝑏0 . 20. So, if we know the negative 

bit is equal to 1, so, if a substitute s=1 it is −1.2𝑛−1 and rest of the bits is going to be 0. So, this 

is equivalent to −2𝑛−1. So which is represented in binary format as 1 followed by all zeros. 

 

And then if we use 16 bit representation for this number, then the binary format for most 

negative number is going to be 0, 𝑥, 8, 0, 0, 0 in hex, and then the most positive value in this 

format what it can take is −𝑠.  2𝑛−1. So, this is a number what we have represented as earlier, 

and then we know the sign bit is going to be zero for positive numbers. So 𝑥 is represented as  

−0 ∙ 2𝑛−1 and we consider all the rest of the bits later as one then it becomes the number 

representation is equivalent to 2𝑛−1 − 1.  

 

So, in the binary format, it is going to be 0 because it is a positive number. And rest of the 

numbers magnitude is represented as 1 in all through in a 16 bit format. The maximum value 

is given as 0, 𝑥, 7, 𝐹, 𝐹, 𝐹 in hex, we know the number representation hexadecimal, I think most 

of you would have covered the thing. So, 𝐹 is the maximum number, which gives us the 15 as 

the value for it.  
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So the next one, so we have to represent this number in the integer format. So we know that in 

when n = 4, the value, what I can represent in integer format is −2𝑛−1 ≤ 𝑥 ≤ 2𝑛−1 − 1. So in 

this, we have substituted 𝑛 = 4. So if we substitute in the next line, so we know that −24−1 ≤

𝑥 ≤ 24−1 − 1. So the range is going to be −23 ≤ 𝑥 ≤ 23 −1, which is nothing but −8 ≤ 𝑥 ≤

7.  

So in this case, we know that 𝑥 ∈ {−8, −7, −6, −5, −4, −3, −2, −1,0,1,2,3,4,5,6, }, and then 

the positive side it is 0, 1 to 6. And then the last one is 7 in this slide. So we will see that how 

to represent our number 𝑥 = −3.  
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So, this is the integer format so we said 𝑥 = −3 how we can represent. So, we know that this 

is a negative number, so 𝑠 = 1. And then we know that when I divide 3/2, I will be getting 

one. So the digit what it will be is 1 ∙  21 + 1 will give me +3. And then since we are using the 



4 bit representation, this bit is going to be zero. So the number what I can represent in binary 

is 1 which gives the negative value and 0, 1, 1 is −3.  
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So coming to why we have to go for the fixed point, fractional format, we will see it in a while. 

First, we will discuss what is this number system? So the N bit fixed point signed fraction or 

representation, we see that the number x can be represented between −1  to (1 −  2−(𝑛−1)). So 

n is the number of bits what we will be using as normal notion.  

 

So if I represent this in the open format, so x will be −𝑠 ∙  20 + 𝑏−1 ∙ 2−1 +  𝑏−2 ∙

2−2 +  .   .   . + 𝑏−(𝑛−2) ∙ 2−(𝑛−2) and then the last number will be represented as           𝑏−(𝑛−1) ∙

2−(𝑛−1). So here, again, s represents sign of the number, if it is equal to 0, it is positive, and if 

it is equal to 1, it is a negative number.  
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So we will see how for a fractional format can be represented. So that is the most negative 

value how we did for the integer format, so we will see for the fractional format, the most 

negative number, so we will be represented as 𝑠 =  −1 and then rest of them are going to be 

zeros. So which is going to be equal to minus 1 and this is represented as our regular thing 1, 

all zeros, which is 0, 𝑥, 8, 0, 0 format.  

 

And then what is the most negative value that can be represented in this format, what we will 

see the thing, so, we have 𝑠 =  0 and rest of the values are going to be 1. So it is represented 

as 1 − 2−(𝑛−1). So in the binary format will be representing as zero the point is, whatever is 

not given any place bit value is given for the decimal value. So it will be zero point all ones or 

in the process, it will be taking it as 0, 1, 1, 1, 1. But the notation for us is 𝑥 = 1 − 2−(𝑛−1) will 

be the largest value what I can represent in this format.  
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So we will see what will be the granularity of this? Why we have to go for the point, fractional 

format? So which is given us this way, so −𝑛 ∙ 20. What I have it so in the resolution in this 

case is going to be 2−(𝑛−1) will be my granularity what I can have from this representation.  
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So coming with the example, so we will see 𝑛 =  4, what are the numbers I can represent in 

the fractional format, so, which is −1 ≤  𝑥 ≤  (1 − 2−(𝑛−1)). So, we are substituting 𝑛 =  4 

here. So which comes out as −1 ≤  𝑥 ≤  (1 − 2−3), which is nothing but x should be 𝑥 ≤   
7

8
 

that is what we have to represent then what is the x values it will be taking from −1 to +
7

8
 in 

what we call it as the smallest value will be -1. 

 

Then next will be minus 
7

8
, and so on −

3

4
 and then −

5

8
. You may be wondering why I have got 

−
3

4
, just check 7 ∙ 2  is going to be 14, 

14

16
, what you will be doing it or you will be adding −

7

8
 

−
7

8
 8 will be giving you this value when you simplify the value of it. So like this, you will be 

going on representing till 0. So and then later on the positive side what you will be representing 

it as 
1

8
and so on, the last number will be 

7

8
.  

 

As you can see that how many values you have represented in the negative side and then how 

many values are represented on the positive side as you will be seeing that it has the 2, 4, 6 and 

8. So, that is what the values what you will represent it as on the a negative side and positive 

side, you will be seeing that it will be 7 as we have we know that 2−4−1 is going to be 1- this 

is going to be 7 in that case, magnitude of it.  

 

So we will see that what is the smallest precision measurement I can have with 𝑛 =  4 which 

is nothing but 
1

8
, which is coming from 

1

2𝑛−1what we said in the previous slide.  
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So moving on, so how I can represent the number 𝑥 =  
3

4
. So we will see in the fractional format, 

how we are going to represent it. So, we know that −𝑠 ∙ 20 this is the representation what we 

are considering for the fractional format, and then we have to substitute as 
3

4
 which is equal to 

0 ∙ 20 +1 ∙ 2−1 which is nothing but 0.5 and then the next number is going to be +1 ∙  2−2 

which is 0.25, we all know that 
3

4
 in the fractional representation is 0.75.  

 

So, 0.5 is given by this weight and then the next bit will be representing 0.25. So 0.5 + 0.25 =

0.75. So, the binary representation is 0, 1, 1, 0 since it is a positive value, we have put it as 0 

and then we have these two are the representation the last bit is going to be 0.  
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Coming with the fixed point format and then how we are representing it all of us know that 

even the integer representation is a fixed point number system, but where is the point actually, 



you will be seeing that we usually discard this it comes at the end of the number. So, the decimal 

point will be at the end of whatever number you have considered. And then the same you will 

be seeing it in the fixed point format, I have the sign bit and immediately there is this thing 

what we assume is a decimal point.  

 

So this since it does not have any bit allocation for it to say for my rest of the numbers, we 

assume that it represented are immediately after our sign bit. So, the next numbers what will 

be representing is b minus 1 and b minus n minus 1. Whereas in the case of integer you will be 

seeing that sign bit will be having the n minus 1 place and then later on it will be b n minus 1 

will be its magnitude and so on till b zero.  
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So coming to next what is the fixed point format? So why we have to use the fractional 

representation of numbers, this is what we will see the thing, all of us know that any 

multiplication of integer numbers will result in overflow, and may wrap around to result in bit 

error. So hold on for a while, we will see that how it can happen. So for an n = 4, the 

representation, what we have is minus 8, x can represent between -8 to 7.  

 

So consider the multiplication of 3 ×  (−4). So the result has to be −12 all of us know. So 

you will wonder why I am talking about the primary class multiplication. So but as we can see 

that the range, what I can represent is between −8 to 7, so −12 is outside the range. So the 

same thing, if I represent in the fractional representation, so I assume 𝑛 =  4. So then what I 

will be having is the representation in this format. So how can I do that? Basically, whether 

can I bring this one in this format, so that I will not be outside the range of it.  
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So for that, what we will do is, we will how we can represent this 
3

8
× x × −

1

2
= −

3

16
. So what 

did we do? Can you check the thing here, so we have because 𝑛 =  4 format, I have taken the 

thing, so the number what I can represent is 8, basically, so I have divided the number 
3

8
, the 

same thing, what I did was  −
4

8
, I have done here, so which is nothing but −

1

2
.  

So when I multiply these two numbers, the result is going to be −
3

16
, which is nothing but I 

can represent it in this format, −
1 

16
 −

2

16
   , then what happens to the number in the binary 

format, so we result in, we know that it should be a negative number. So initially, what we will 

put it is a plus value, what we will be giving the thing 0, 0, 1, 1 by 16, what we have it, and then 

the next one is 
2

16
   is 1 and 0, 0.  

 

So, which is equivalent because this is a positive number, what I have represented, I have not 

represented the negative value, here, I will be considering the 2’s complement of this number. 

When I take that 2’s complement, I will be the number what will be represented is 1.110100. 

So that is what it says is we will be having in 2's complement format. So what we say is, it is 

outside possible precision, what we say the thing.  

 

So, in this case, what we do is we will be discarding one of the zeros here. And then the lower 

values, we can discard and then take only the 4 bits. So that is what we say the LSBs will be 

discarded instead of overflow error. So that is what the thing, what is the trade off, in this case? 



Trade off is overflow error for rounding error, what we have to consider? What is the value 

represented? Can you tell me the thing in this case.  
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So now, we know that we have a trade off between overflow and then rounding error, what it 

is coming in, can I work on it to avoid these things. So we say how to increase range of numbers 

represented by integer format, first, we will consider it. So we can say that because my 

multiplication is going to cause me twice that of the number of bits what I need it, so whether 

I can increase the number of bits 𝑛 to 2𝑛.  

 

So this will increase the range of numbers substantially. So for 𝑛 = 4, my representation is 

between −4 to 3, when I increase by 2 times this 𝑛, then 𝑛 = 8. So the range of numbers what 

I will be representing is −28−1 ≤ 𝑥 ≤ 28−1 − 1.  So which is equivalent to −128 ≤ 𝑥 ≤ 127.  

 

So what will be the consequence of doubling the size of this number, one is, our storage has to 

double, because I have to, instead of 4 bit numbers, I will be storing them as 8 bit, this is a 

smaller example what we have taken. So this is not the scenario in real time. So real time, most 

of the numbers will be 16 bit what we can represent in hardware, most of the things, I think all 

of you will be using the number format as 32 bit long is 64 bit.  

 

And then a long and then longer double precision, what we will be using is 64 bit, but you will 

be seeing that how the consequence is going to be nearby. So, the storage is going to double so 

my hardware has to increase. So what we are discussing is the real time signal processing. So 



real time capabilities is going to come down so that we can do that or not, we will see when we 

take up some examples.  

 

And then we may need double the size of access using the original data bus. When we take up 

the architecture, we will see that by increasing this how my bus width is going to increase and 

then how it can increase the hardware as well as how it can slow down and one more thing you 

have increased it to 2n. But if I store this value and then use it with my 4 bit value, next I will 

be getting it as 12 bit can I go on increasing in this fashion forever, it is going to be a what I 

will say is no end for it for this increasing of the numbers.  
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So hence, we have to restrict the thing. So, that is the reason why we use the fractional fixed 

point representation. So it is what we call it as equivalent to scaling. And then usually the 

fractional number representation is going to be represented in Q format. So what is that Q 

represent is quantity of fractional bits, I will be using in my implementation, the number 

following the queue indicates the number of bits that are used for the fractional representation 

as they represent as Q15.  

 

I know it is a 16-bit DSP chip; basically, the resolution of the fractional will be 2 to the power 

of minus 15. So or it can be 30.518*e–6 in decimal value what I can represent. So what are the 

things here, Q15 means I will be scaling the number by 15 that is 1/215. And then once again 

Q15 means either I can scale by this division or I can do the shifting because all 1 shift right 

operation is going to be divided by 2.  

 



So I can shift right by 15 times so that I will be resulting in the value of it. So how will be 

incorporating when I take up the architecture we will be coming back to this number, how I 

can do this shifting otherwise, each shifting will be costing us every clock cycle. So I need 15 

clock cycles to shift if I have want to do 15 bit right shift, but we will be doing it in 1 clock 

cycle.  

 

We will look into this in the architecture when we take. So now as an example, how we are 

going to represent 0.625 in memory. The first one is we can use the truncation method 1 what 

we call it, so we will be calling it as an integer value. So which is nothing but 0.2625 ∗ 215 

what I am multiplying it the resulting integer values 8601.6 in the truncation will be truncating 

that whatever number coming out of the decimal point, so it will be represented as 8601. So 

you will be seeing in the 15 bit format.  

 

This is how in the binary 15 bit binary format is this one. And in the second case, we can do 

the rounding. So, what we will be doing, so we will be adding 0.5 into the result what we are 

getting it so, then we will be discarding the normal way are whatever number comes out of the 

decimal point so which will be 8602 here the binary representation what you will be seeing, so 

you have added 0.5 so the number has gone to +1 in this case, so it will be 1, 0 the rest of the 

numbers remain same. So this is the positive number what we have represented.  
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So whether you want to go for truncation or rounding, which one is better? So, we will see 

what happens with the truncation. So in this case the magnitude of the truncated number always 

less than or equal to the original value. So that is we will be seeing that it is consistently 



downward bias what I am going to have it whereas in the rounding, what happens magnitude 

of rounded number could be smaller or greater than the original value. So then what happens 

to the thing?  

 

Error tends to be minimised, that is positive and negative bias is what I am going to have it and 

popular technique is rounding to the nearest integer. So, we will be seeing in hardware when I 

have to do rounding then I have to add 0.5 to whatever the number what it is resulting in and 

then to the represented to the nearest value. So, there is additional addition is going to happen. 

So, which will be costing us again extra clock cycle.  

 

So, the simplest one will be a truncation, but if you are not able to get the required result, then 

you have to go for the rounding and then have the additional whatever clock cycle that is going 

to result from it. So as you can see INT 251.2 so, we know that it is truncate or we call it as 

floor it is 251 it is not going to cause any damage to the number represented whereas if it is 

rounding also it will be resulting in the same value.  

 

Sorry, rounding is you are adding 0.5, so it becomes a 251.7 so, which is going to be rounded 

to 252. So, we call it as rounder, it is going to be sealed value what you will be considering in 

normal number representation or I can have a round nearest one more distinct function defined 

251.2 which is going to be 251. So, you will be seeing that truncation and rounding to nearest 

almost it is matching, whereas a rounding has increased the value of the number. 
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So, we will see that general fixed point representation how we can do that is given by Kuo and 

then Gan for 16 bit numbers. So, if it is an unsigned integer, and then how it is going to represent 

it in the signed integer format, the smallest value for unsigned integer is 0 and then the largest 

value it is going to be 1, 1, 1, 1. So it is going to be 15 and then unsigned fractional number, 

what I will be having it as smallest is 0, and then the largest value what I can have is 1, 1, 1, 1 

which is 0.9375.  

 

When I come to the sign representation, so the first value is 0, so, all the 3 so, this is plus 7, 

and then the least negative value is 1, 0, 0, 0 which is minus 8 and in the sign fractional the 

number representation we know that 0.1111 which is nothing but plus 0.875 will be the 

maximum value and then least negative value 1.00 which is minus 1 in this case, we have taken  

number of bits equal to 4.  

 

So, you can increase it to second bit yours sorry 16 bit and see what will be the minimum and 

then maximum value of what you can represent with this you can look at it. So, the minimum 

value will be 0 and then the maximum value will be 65536 in this case 216   what you will be 

having it 216−1    will be the value and then in this case, it is going to be 7FFF positive number 

will be 32767 and negative number is going to be minus 32768. And similarly you can calculate 

in the unsigned and then signed values.  
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So coming to the general fixed point representation. So we will be seeing what are the dynamic 

range and precision of 16 bit numbers for different Q format. This is also taken from Kuo and 



then Gan. So you will be seeing the first one as we said Q representation now will give me how 

many fractional bits represented to the right of it whatever represented here if I give 0.15.  

 

So, I know that all the 15 bits are represented as the this thing of fractional number, the 

maximum that is largest positive value, what I can represent is 0.999, what you will be going 

on and then representing it, and then the least negative value is going to be 1 and precision 

what I want to have it is represented with this number. Same thing, if I want to allocate 1 bit to 

the integer here, 0 bits I have included to the integer here I want to include 1 bit to the integer 

and 14 bits are for the fractional number, then my range largest value will be 1.999. 2, that is, 

least negative value I can have it is -2, and this is the precision what we will have. And then 

but I do not want to represent any fractional number, I want to have it as an integer, then I will 

be calling it as Q15.0, then I know that the 15 bits are represented as my fractional number, the 

value, what I will be representing is 327672 minus 32768.  

 

So, the precision in this case is going to be 1.00. So it depends on what precision you want to 

have for your application. Based on it, you will be taking your number system, you may be 

wondering why you have to discuss about this number system. As you know that in the present 

scenario, FPGA is mostly used for most of the applications because of low power. So whether 

when I am writing my own code. 

 

All of you know that in C you will be representing it as a hash define you will be doing it INT 

or float or double or whatever number but when you are using in the hardware, so you have to 

be careful whether I can save my resources, save my power. So that is what one has to look at 

it. So when you have to do that, you have to play around your fixed point representation of the 

number.  

 

So that you know for what application you are using it, what is the dynamic range, I have not 

discussed it here in the dynamic range in this case so we will be discussing it later. And then 

what is the precision what I want to have.  
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So coming to a few examples, what we will take it how we are going to do all of you may be 

wondering why how to do addition of 2 numbers. So here I am going to do it in binary. So you 

will be seeing the binary number is given in this way. So when I add these 2 numbers, so what 

is the thing is going to happen, I will be getting you will be seeing that it will, if you add the 

thing just to show you that have you will be adding it, this will be from right to left, what the 

addition is going to happen? 

 

This is 0, when I add 1 plus 1 zero, which will be carry and then you will be getting 1 here, and 

then you will be adding this further. So when you come to the last one, you will see that this is 

1+1=0. And when I put 1 here, so it will be 1 plus 1 is going to be zero, and then I will be 

representing it as 1, 0 here, then what we do is as shown in the blue thing here, I will be 

discarding this number, whichever coming at the most place of the number.  

 

So the decimal number, what I have represented in this case is because it is a positive number, 

and then 0, 1, this place is 2−1 I know and this is 2−2. So I am taking wherever 1 is occurring 

only those values, I am putting it here. So you will see that 2−2 = 1 and next is 2−3, and next 

will be 2−6, 2−7. And then the last one will be your 2−10 2−11, and then the 2−13   . So when I 

add this number, the value in decimal, what I will be achieving is 0.400024. So, this is how the 

addition is going to happen in our hardware. 
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And coming to the multiplication, what is the thing is going to happen? So I have to multiply 

0.5 and 0.25, what I say is Q3 format, so that means to say that I have 4 bits, it is in the signed 

format, what I am going to do the multiplication, so 1 bit for sign and 3 bits are going to be for 

my fraction. So 0.5 I know that 2−1 is 0.5, so the other 2 numbers are 00 and 0.25, 0.010. What 

I will be considering this is 2−2 =
1

4
 which is 0.25.  

 

So I want to do this multiplication, I have taken a simple so that I am not doing any truncation 

or rounding in this case. So, which can be represented in binary format that value what I have 

taken the thing. So I will be multiplying 0.100 into 0.010. So we will be bit by bit multiplication 

is going to happen. So, you will be seeing that one after the other, then what is the how we are 

going to calculate the final value all of you know that it is going to be numbers have to be 

added that is what we have been taught in our primary also. 

 

Then we will be adding it and then what we are going to do is because my format what I have 

input and output is in Q3 format, only I can represent 4 bits, the LSB bits I will be discarding 

which is shown in blue here, all three zeros are going to be discarded result is going to be 0.001 

which is nothing but 0.125. So, you will be seeing 0.5 multiplied by 0.25 will be resulting in 

0.125 in decimal. So, you will be seeing that how fast the calculator or your computer gives, 

but what goes on is this one inside your hardware. So, how this can be done faster and other 

things we will see in the architecture.  
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So, now, what we say is what is this point format and then size what we have to look at it. So, 

which format will compromise between precision, overflow and then storage needs. So, one 

method we said we can increase the number of bits, the other way of doing it is the floating 

point number which will give me all this solution. So, how it is going to give me the thing. So, 

we will say that suitable for computations where large number of bits and fixed point format 

would be required to store intermediate and final results and the algorithms that means 

summation of large number of products, in that case we will be using the floating point number. 

So, if 𝑥 is going to be represented in floating point format as 𝑥 =  𝑀𝑥𝐸𝑥 so, this we call it as 

mantissa. And this we call it as exponent this is a non standard format, we will see the IEEE 

format what it is the standard has defined.  
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So, in this case when I do the multiplication I have 2 plots floating point numbers, we know 

that it is 𝑀𝑥𝐸𝑥and then y is given by 𝑀𝑦 ∙ 𝐸𝑦. So, we know that we multiply the mantissa and 



then add the exponents to get the result 𝑥𝑦. So, floating point unit should have as you can see, 

to do the multiplication and do the addition for the multiplier for the mantissa and an adder for 

your exponent this is the architecture definition what we are getting from the floating point.  

 

So the numbers of adders should be normalised before addition that is the exponent of the 

number should be same for adding it is not as simple as my multiplication.  
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So, when I come to IEEE format representation, we call it as IEEE 754 which is defined in 

1985 this thing format for single precision that is 32 bit floating point that number is represented 

as 𝑥 =  (−1)𝑠 x 2(𝐸−𝑏𝑖𝑎𝑠)  𝑥 (1 + 𝐹). So here s, E and F are all unsigned fixed point format, 𝑠 will 

be representing your sign bit, E will be representing exponent biased.  

And then 𝐹 is the significant in this case and we say that this is the implied binary point here 

also will not be allocating any bits to the decimal point. So you will be seeing that the 

significant is represented with 23 bits, whereas the exponent is with 8 bits and sign bit is with 

1 bit. If it is 0, it is going to be positive, significant and if it is 1, negative significant. So, you 

will be now wondering why exponent is biased because why I can explain it also can represent 

it in positive and negative.  

 

So I am not allocating any bit for the thing. So we will be doing the biasing so that to avoid 

this positive or negative number representation for the exponent. So we will see as this thing 

example here, which is nothing but (−1)𝑠 x 2(𝐸−𝑏𝑖𝑎𝑠)  𝑥 (1 + 𝐹). So we know that 𝐹 is the 

magnitude fraction of the mantissa. So in determining the full mantissa value.  

 



So IEEE format specified that 1 is placed immediately before the implied binary point, 1 dot 

format, that is where you will be adding 1 to the whatever you have the fraction here. So, E is 

the biased exponent, so, the biased makes sure that the exponent is signed to represent both the 

small and then large numbers. So 2’s complement complex for comparison. So the bias is set 

to be 127, that is largest positive number represented by 8 bits with which is equal to 28−1. S 

is the sign of the fractional part of the number.  
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So as an example, how we are going to represent we will see the thing find the decimal 

equivalent of the floating point binary number with bias= 23  − 1 = 7. So you will be seeing 

this is the number what you have been given in binary format. So we know that sign bit is 1 in 

this case, and buyers have been given as 7, so I will be using 4 bits for my exponent, so which 

is 0110, and rest of them are fractional bit.  

 

So which is nothing but 00011100. So when I represent it fraction part 0 .  2−1, and then all the 

3 of them are 0, and the next number it will be 1 .  2−4, and then you will be seeing 1 and rest 

of them 0, which is nothing but 0.109375 is F value. And then experiment we will see the thing, 

0 .  23 and then 1 .  22, and then + 1 .  21 and 0 .  20, which is equivalent to 6.  

 

So when I put it in its format, we know that sign is 1 so it is a negative number -1 into what we 

have is because 𝐹 +  1 what I have to do it, so it is 1.109375 x 2(𝐸−𝑏𝑖𝑎𝑠) , bias we have is 7, 6-

1=2-1. So this is divided by 2, which is equivalent to minus 0.5546875 is the value of what I 

can represent.  
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So we will see a little bit on the DSP architecture and we will be taking detail one in the next 

class. So, what we have is, as you can see here, so I have for the floating point DSK 6713 

processor what I have considered here, so you have the integer or floating point multiplier here 

and then I have an integer floating point ALU addition and then we have some extended 

precision registers and we have some address generator 0 and 1 in this and then we have some 

auxiliary registers and some control registers.  

 

So, these are the compiler what you would be feeding in and this is the data bus, which is data 

bus is 32 bit long, and then the address bus is 24 bit and then we have something we call it as 

programme cache and this is the RAM what we have it which is 1K into 32 bit each. So, RAM 

block 1 what we have it 1K into 32 bit here and then the ROM for storing our coefficients and 

everything which is 4K into 32 bit. 

 

And some of the peripherals what you will be seeing connected here through the peripheral bus 

and then we have the like any other microprocessor 8 if I would have studied the thing, I have 

the DMA controller, which will be generating address generator and control registers. So 

directly I will be able to take from the memory and then load into the hardware.  
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So, coming to recap, what we have done in this class is, we discussed about the number system. 

So to see that whether you have understood or not the fixed and floating point. So I have given 

2 assignments here, please work it out. And then I will be showing you how we can compute 

this one. First one is add these 2 numbers, here it is non IEEE standard format what I have 

given the thing, exponent = 4, mantissa = 5 and bias = 7.  

 

So these are the 2 numbers one has to add. So please keep it in mind, we did the multiplication, 

it was very simple. We have multiplied mantissa and then added the exponent. In this case you 

will be seeing that the exponents are different, you have to bring it to one format. I will see that 

which format you will choose it, whether the higher one or the lower one. And then we will 

discuss why which one is better to choose the thing in that next class the second assignment 

what I have given is minus 0.75 by minus 0.375.  

 

So, we did the simple positive number multiplication. So, I want to it is going to be a trick to 

do multiplication of 2 negative numbers I know the result is going to be positive. So, you can 

trick me by removing the minus sign, but I want you to keep this minus sign and then do in the 

2's complement, so that using the 4 bit for both input and output and what will be the result 

whether it is going to be correct or not, what I want to you to try it out so that you can play 

with me in the number system in this fashion.  
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So with that we will end this today's class. So in the next class, we will be taking architecture 

of DSP. That is we will be using DSP synonymously for signal processing, as well as processor, 

Part 1, what we will be taking up in the next class because this number system will help us to 

see that what should be our architecture for designing it, although I have shown you one DSP 

architecture, we will see how we will be going about to build it. So those who are interested in 

building on their own DSP processor, you can use FPGA to build it. Thank you. 

 


