
Real - Time Digital Signal Processing

Prof. Rathna G N

Department of Electrical Engineering

Indian Institute of Science - Bengaluru

Lecture - 37

Adaptive Filter Applications

Namaste welcome back, to real time digital signal processing course. So, today we will look at

adaptive filter applications.

(Refer Slide Time: 00:33)

So in the previous class, we discussed about the LMS algorithm, leaky LMS and then NLMS

algorithm how with little modification, we can implement the adaptive filter.

(Refer Slide Time: 00:47)

So, today we will look at a little bit on the application of adaptive filter. The first one what we

will take is adaptive prediction. So, how we are going to predict the system which is connected

to the system? So, what it says is the linear predictor, it is going to estimate the values of signal

at future time applied to your wide range of applications such as speech coding, and then

separating. The equation for this is given as 𝑦(𝑛) = ∑ 𝑤𝑙(𝑛)𝑥(𝑛 − ∆ − 𝑙)𝐿−1
𝑙=0 .

So, you will be seeing according to the figure, there is a delay of the signal, which is going to

be fed into the system to find out the error of the function so y of n is taken out here. And then

we have the LMS algorithm here, which is going to decide weights on the system, basically,

and this is the delayed signal, that is 𝑥(𝑛 − ∆), which is going to come into the system. And

then 𝑦(𝑛) is the thing, this is what 𝑦(𝑛) is the predicted one.

So we will be subtracting and then taking it out minimizing the error, then what happens? So,

we will be predicting what is y of n basically in this case. So, the filter coefficients are going

to be updated by the LMS algorithm as you will be seeing that w(𝑛 + 1) = 𝑤(𝑛) +

𝜇𝑥(𝑛 − ∆)𝑒(𝑛) that is error which is fed back into LMS algorithm.

So, we say where 𝑥(𝑛 − ∆) is nothing but 𝑥(𝑛 − ∆) is the first sample that is delayed by ∆

units. So, the other ones are delayed as earlier, we take it [𝑥(𝑛 − ∆)𝑥(𝑛 − ∆ − 1) ⋯ 𝑥(𝑛 − ∆ −

𝐿 + 1)]𝑇 what we will be giving as an input? So, L is the length of the filter that is what, what

we are doing l? l = 0 to L - 1 we are calculating 𝑦(𝑛). So, then as usual like LMS algorithm

what we have is 𝑒(𝑛) = 𝑥(𝑛) − 𝑦(𝑛). And filter using the reference input 𝑥(𝑛 − ∆) to predict

its future value 𝑥(𝑛) where ∆ is the number of delay samples.

(Refer Slide Time: 03:49)

So, continuing with the predictor, so, we are going to consider an application of using an

adaptive predictor to enhance the primary signal which consists of 𝑀 sinusoids corrupted by

white noise. So, which is expressed as 𝑥(𝑛) = 𝑠(𝑛) + 𝑣(𝑛) is white noise basically what it is

being considered, then what happens to output = ∑ 𝐴𝑚 sin(𝜔𝑚𝑛 + ∅𝑚) + 𝑣(𝑛)𝑀−1
𝑚=0 because

we have to considering the sine signal here.

So, sin(𝜔𝑚𝑛 + ∅𝑚) is the phase of the signal +𝑣(𝑛) where we have 𝑛 is this 0 mean white

noise with unit variance assumed as 𝜎𝑣
2. So, then what is the thing is going to happen this is the

error signal. So, you will be seeing that and then it starts coming down and then settles with

whatever the value of it. So, now, you will be seeing that this is output 𝑦(𝑛) and 𝑠(𝑛) is our

input.

So, you will be seeing that initially it was small after that they are going to merge and then go

one another. So we will be able to generate whatever sine function what we have given the

thing, so, we are able to predict this is output.

(Refer Slide Time: 05:37)

So, coming with next application is the adaptive noise cancellation. So why do we have to

cancel will see the noise. So, here we are going to give a suitable delay that is unit delay of 𝑧−∆

is inserted in the primary channel. So, here we are going to have this is the signal source and

this is noise source and this is primary reference signal and here is the reference sensor, which

is going to collect noise source. So, when we apply this, this we call it as the reference sources

𝑥(𝑛).

And then primary signal source whatever we are collecting through the primary source, which

is going to be ∆ delay, what we are going to get the thing and we say this is my desired signal

what I want it and this will be adapting according to the LMS algorithm, which is 𝑦(𝑛) and

then we will be subtracting desired signal with the output and then this error what we try to

minimize and then which is fed back and then the weights are going to be updated based on

error function.

So, how we are going to define this will be desired signal is nothing but 𝑑(𝑛) = 𝑠(𝑛) + 𝑥′(𝑛)

basically. So, what is that, where if y(𝑛) = 𝑥′(𝑛) we obtain 𝑒(𝑛) as the desired signal 𝑠(𝑛).

So, what is it? The widespread use of cell phones has significantly increased the use of voice

devices under high acoustic noise environments, most of you would have observed that when

you are using your mobile in the completely noisy environment.

So, sometimes what you would try to do is close one of the ear and then try to hear from the

other ear. So, that is what, what we are going to do the thing. So, how you can do adaptively

noise cancellation within the mobile based on the surrounding noise. So, what happens? That

is intense background noise often corrupts speech and then degrades the effectiveness of

communication.

So, you will be using the adaptive noise canceller basically employs an adaptive filter with

LMS algorithm and can be applied to cancel the noise components embedded in the primary

signal. So, if we know the noise source and other things, so, we can capture and then try to

subtract it so that we will be cancelling the noise and then output can be a clean speech signal.

(Refer Slide Time: 08:44)

So, as an example, so to apply adaptive noise cancellation effectively, so, these are the 2

conditions which has to be satisfied, what is it? That the reference noise picked up by the

reference sensor must be highly correlated with the noise components in the primary signal

picked by the primary sensor. So, because we know that primary data is getting corrupted with

the noise, so, the noise sensor should pick up this noise from this thing and then it should be

fed.

So, the reference sensor should only pick up noise that is it must avoid picking up signals from

the signal source. So, you are going to have a contradiction in this case. So, one has to look at

this. So, how it is going to be so, you will be seeing that 𝑥0(𝑛) is the input this thing, phase

shift that is we are going to give 90 degrees phase shift for the thing, which we call it as 𝑥1(𝑛)

and then you are seeing the FIR filter what we have used in this case to fine tune and then do

the noise cancellation.

So 𝜔0(𝑛) to 𝜔1(𝑛) filter thing what you are looking at it that is second order filter what you

have seen it. So, this is going to be fine tuned, based on what is the thing like LMS filter. So

this is the desired signal what I have given as an input, and then based on this, we will be

calculating y of n and then as usual, we will be subtracting it. So, now, what is this? Error signal

is fed into LMS algorithm. So, this is going to take both 𝑥0(𝑛) and then 𝑥1(𝑛) as input.

And then adjust the weights based on the error only it is written little below so that we are not

smudging or crossover of the line is going to happen from this input and this input and it is

shown separately this is what we call it a single frequency adaptive notch filter what we have

designed in this case, so, you will be seeing that what is the desired signal is given here and

then you will be seeing that output error signal e of n. So which is going to correspond to output

basically, what we are going to get out of the thing? So noise cancellation is happened in this

case, and then we will get the signal correctly.

(Refer Slide Time: 11:38)

The other one is how we are going to inverse model the channel in this case example is

communication channel is one of the application what it will be considered. That is what, what

it says in practical applications, we have to estimate the inverse model of an unknown system

in order to compensate its effect as an example. So, in digital communications, the transmission

of high speed data through a channel is going to be limited by intersymbol interference.

So, those who do not know the thing you can refer to what is intersymbol interference, which

is caused by channel distraction. So, we know the frequencies of the channel which it is passing.

So, if other frequencies overlap will have the intersymbol interference, so, how to distortion

which is going to cause? And data transmission through channels with severe distortion can be

solved by designing an adaptive equalizer in the receiver that counteracts the tracks the

unknown and changing channels, how we are going to design this?

So, you will be seeing 𝑊(𝑧) =
1

𝐶(𝑧)
. So, we are taking 𝐶 we assume that 𝐶(𝑧) is the filter at the

transmission end at the receiver end, you will be designing the inverse filter. So, one must be

thinking how the inverse filter is going to be designed. So you should have what we call it as a

minimum order filter basically. So, all the poles and zeros of the input filters should be inside

our unit circle.

So that when we design the filter
1

𝐶(𝑧)
, so which is both zeros and then poles will be getting

interchange. So, they should not be going out of the unit circle. So, this is what one has to

design and then what we call that when we do the cross multiplication 𝐶(𝑧)𝑊(𝑧) = 1 such

that 𝑥̂(𝑛) = 𝑥(𝑛). So this is what shown in equalizer as an example of inverse modelling. So

what is it?

So, we have the input 𝑥(𝑛) and then this is a 𝐶(𝑧) what we have the thing and then output is

𝑦(𝑛) and then which is a fed LMS algorithm as well as weight function for calculation. It

passes through the filter here, and then the 𝑥̂(𝑛) is the output what we are calculating and then

this 𝑥(𝑛) is going to be delayed by ∆ and then which is fed as desired signal. So when the

difference is minimal then will be knowing that 𝑥̂(𝑛) = 𝑥(𝑛).

So, this is how we will be trying to get whatever we have passed through the communication

channel will be received in this fashion. So, almost it is equivalent whatever we receive 𝑥̂(𝑛)

is equivalent to almost 𝑥(𝑛). And as usual error will be through the LMS algorithm and then

taking the input from 𝑦(𝑛). So, we will be designing weight function.

(Refer Slide Time: 15:37)

So, how we are going to do the channel equalization is shown in this because this is an

experiment where it is going to be used adaptive equalizer using the complex LMS algorithm

for a simplified ITU standard, communication standard what you will be taking it V.29 is a

fax modem. So, for various other; this things we call it as audio or speech we have different

standards. So, in this case for fax modem, this is the standard, one uses.

So, according to this V.29 recommendation, the modem operates at speed up to 9600 bits per

second on the general switched telephone network lines and the equalizer for modems can be

realized using our adaptive FIR filter what it is shown here. So, in the absence of noise and

intersymbol interference, the modem receiver decision logic output can precisely match the

transmitted symbols and the error signal will converge to 0 this is the ideal case one is

considering then error can reach to 0.

So, what is this thing graphical representation as it is shown, so, we have the received signal

and we have the received filter constructed here. So, the output of which is going to adaptive

algorithm. And then the same thing will be going for the adaptive equalizer weights calculation

and then we will be putting a decision device here depending on the thing, so, either the switch

will be turned on to find out the error if it is this thing adapting to the channel noise.

And if there is no noise you can put the decision to this one, change over to here the output will

be coming. So, here you will be passing it to the training of the signal if the decision is on the

other side and you will be using this training the signal to adapt itself, so algorithm uses the

thing. So we will be here also we will be minute trying to minimize output of the error. So this

will be equalization output what we will be getting it?

(Refer Slide Time: 18:25)

So the next application what we call it as voice scrambling? So we will be using filtering and

then modulation techniques here to do the scrambling of the voice, why one has to scramble

the voice will see it. So, the approach makes use of basic algorithms for filtering and then

modulation with voices and input the resulting output is scrambled voice will get it. So, the

original descrambled voice is recovered when the output of this from the kit if we are using the

hardware.

Or if we are using the MATLAB the output of this is given to input to your second kid running

the same program or in the same place we can run this program and then imitate that we are

depicting that 2 places that is wherever we have recorded the voice we have scrambled it

because I want to have it as a private one. So that I know how I have scrambled my speech or

audio then at the receiving end, the person knows how the scrambling has happened. So we

will use the same concept to record this.

So that way, you will be calling it as a watermarking on speech and then audio signals. So how

we can do it using scrambling we will see in the experiments both using MATLAB and then

code composer studio. So even in the code composer studio, what you can use is if you have 2

kits, you can connect 1 kit to do the scrambling, the other kit will be rescrambling and then you

can get the correct speech depicting both transmission and then receiving concept.

So, commonly referred to as frequency inversion in this case is going to happen, it takes an

audio range in, that is 300 hertz to 3 kilohertz. So we call this as narrowband frequency what

we will be using it and which will be folding, because we are going to scramble with whatever

the input frequency, in this case we will be using 3.3 kilohertz as the carrier signal in this case,

and will be merging with the thing will be folded and then it will be sent.

So the frequency inversion is achieved by multiplying or modulating the audio input by carrier

signal, causing a shift in the frequency spectrum with the upper and lower sidebands. So we

will be getting both the higher one with the 3 and then 3.3 it will be 9.9 kilohertz and then the

difference will be 0.3 kilohertz. So, one will be upper and the other one will be lower one. So

this, lower sideband that represent this audible speech range, the low tones or high tones, and

vice versa what happens?

So, these low tones become high tones when we have received it, whereas the high tones will

be converted into low tones. So this is what, what we will be getting it

(Refer Slide Time: 21:58)

As an example, how it is going to be done is shown in the figure. So I have a taken input as

this thing audio input, which is sample with 8 kilohertz. So, or a speech signal, which is going

to be sampled at 8 kilohertz, then will be representing between 300 to 3 kilohertz is speech

null, which is going to come so then this has to be this thing, what we want is the frequencies

about 3 kilohertz has to be cutoff. So we will be putting the low pass filter with the cutoff

frequency of 3 kilohertz and then we call this as point A.

Then we take 3.3 kilohertz as carrier signal that is using the sine generator, which you will be

multiplying with this thing input signal which is cutoff at 3 kilohertz, and we will be generating

B. So this can be fed through the 3 kilohertz low pass filters, eliminating high frequencies, and

we will be getting C as the scrambled signal as output. So, what it shows us scrambling at point

A we have an input signal band limited to 3 kilohertz and at point B we have a double sideband

signal with suppressed carrier basically.

And then at point C the upper sideband and the section of the lower sideband between 3 and

3.3 kilohertz are filtered out. So the scheme is attractive because of its simplicity, only simple

DSP algorithms namely filtering sine wave generation and then amplitude modulation are

required for this implementations. So when we come to the reverse of it, we can rewrite the C

can be given to as an input signal. I will write instead of my input C is the one and same thing

C, 3 kilohertz a low pass filter, we can design the thing.

And then this is given to multiplier and then same reference signal what I am going to keep it

as 3.3 kilohertz. So, this goes to this thing, make a multiplier here. And then the output B is

going to be passed through 3 kilohertz low pass filter. So output will be equivalent to input

whatever we have given at the transmission end this is the thing is going to happen that I will

put it as this is transmission and here at the receiver when you want to recover your voice or

your audio if you want to protect your thing, this is the way one can do it.

And then you can add whoever wants to receive it you can tell them how you have done your

modulation. So, they can depict this in hardware and then at the receiver they will be getting

whatever input you are intended for that particular person. So that is how the scrambler is going

to work.

(Refer Slide Time: 25:33)

So continuing with the thing, how it is going to we will be seeing how the carrier frequency

and then low pass filter will be mixed and then how our filter response is going to be in the

frequency domain is shown here. So, what is going to happen? First, the sample speech signal

is filtered by a low pass filter we said ℎ(𝑛) is the order of the filter whose cutoff frequency

what we will be calling it as 𝑓0 is high enough not to cause distortions of the speech signal.

So, that is the ideal filter what we are going to call it here as you can see in the figure, this is

the low pass filter and then what is it? Its band is −𝑓0 to 𝑓0. And then what happens to the thing

the sampling rate 𝑓𝑠 is the sampling frequencies chosen such that 4𝑓0 < 𝑓𝑠. So, that means to

say that your sampling frequency has to be greater than 4 times of the frequency component

what you want to pass.

So, the filtering operation can be represented by the convolutional normal expansion. So, we

have 𝑦0(𝑛) = ∑ ⬚𝑚 to order of the filter you can take it as 𝑙 − 1 if it is the lth order or mth

order 𝑚 − 1. So, we will have ℎ(𝑚)𝑥(𝑛 − 𝑙). So, if you have taken L as the thing, so, it will

be coming ℎ(𝑙)𝑥(𝑛 − 𝑙) is convolution thing. So, the notation can be any one of it what was

you.

So, the filter output y naught n gets modulated as this thing cosinusoidal carrier signal whose

frequency coincides when the filter is cutoff frequency 𝑓0 resulting in the signal as shown here,

what is it? 𝑦1(𝑛) as you can see that 𝑥(𝑛) which is, uses a low pass filter with cutoff frequency

𝑓0 which will be equal to 𝑦0(𝑛) and then this is the carrier frequency what you have chosen as

𝑓0 . So, which is that is desired signal s of n what you will be putting it.

So, you will be multiplying them and 𝑦1(𝑛) is the output of it what are the things it contains.

So, 𝑠(𝑛)𝑦0(𝑛) where your 𝑠(𝑛) = 2 cos(𝜔0𝑛) , where 𝜔0 =
2𝜋𝑓0

𝑓𝑠
. So, then you will be passing

it through your low pass filter with cutoff frequency as same as this one 𝑓0 to eliminate the

higher frequency component present in it and then output is 𝑦2(𝑛) is the scrambled signal.

So, when you can see that in the frequency domain how the thing is going to be getting shifted,

what you can see it? So, that is 𝑓 − 𝑓0 is the shift what you have given the thing. So, the signal

you will be seeing that it is shifted spectrum what you are seeing in this case and then when

you take the inversion at the receiving signal, so, this is how the inverted signal looks like this

is 𝑦2(𝑛) here in the with respect to frequency domain. So, this is −𝑓
0
 to 𝑓0 and we have

𝑓𝑠/2 what it is marked in this case?

So, this is how what you have to say that your 𝑓𝑠 > 4 times the frequency component of your

basically filter cutoff frequency 𝑓0 of the filter what one has to assume.

(Refer Slide Time: 29:47)

So, continuing with the thing how it is going to represent it? That is unscramble the signal we

already have put the thing one may apply the scrambling steps 𝑦0, 𝑦1 and 𝑦2 whatever it was

shown to the scrambled signal itself. So, this works because the inverted spectrum will be

inverted again recovering in the original spectrum. So in the lab, so, you will be studying a real

time implementation of the above procedures.

So we will be demonstrating so, those who are interested can look into the code and other

things they can run your own algorithm to implement this scrambling and then descrambling.

So, the low pass filter will be designed with parameters that is 𝑓𝑠 = 16 kHz, 𝑓0 = 3.3 kHz. So,

approximately as you can take it as 4 times the thing. So, if you assume 4 kilohertz as the thing,

𝑓0 so, 4 into 4 will be 16 kilohertz. So, you are choosing your sampling frequency as 16

kilohertz.

And the filter order if you use M = 100 using the Hamming window, which is given down here

that is w of n is the Hamming window you will be using it this is the equation for designing the

Hamming window. So, which is 𝑤(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑀
), n is going to be your input

sample. So, when you pass through that, this is passing through your Hamming window. So,

convolution equation is given as 𝑦2(𝑛) is output.

So, this will be depending on your order of 𝑚 in this case 0 to 99 what it is going to be

ℎ(𝑚)𝑦1(𝑛 − 𝑚) and then ℎ(𝑛) is going to be impulse response has to be restricted with respect

to window because this is a continuous minus infinity to infinity what we assume so, this is

𝑤(𝑛)
sin(𝜔0(𝑛−𝑀 2⁄))

𝜋(𝑛−𝑀 2⁄)
. So, here 0 ≤ 𝑛 ≤ 𝑀 basically and 𝜔0 = 2𝜋𝑓0 𝑓𝑠⁄ in this case it is 3.3

divided by 16 kilohertz.

And 𝑤(𝑛) is the Hamming window which is given by this equation. So, 0 ≤ 𝑛 ≤ 𝑀 whatever

we have designed in this case we have assumed it as 100.

(Refer Slide Time: 32:43)

So, the next application what we will be doing it is echo. So, here we will be doing the

generation in the next class will take up the cancellation. So, how the echoes are going to be

generated? First synthetically we can do the generation. So, most of you would have visited

where you have rocks and other things, when you speak so, you will be hearing the echo coming

back to you your own voice goes and reflects that is what, what we say reflection of sound. So,

which is going to come back to you a little bit delayed.

How we can synthetically generate? So, using code what will be looking at it, so, approaching

at the listener later than that direct sound. So, as you can see is this is the sound source. So, you

will be seeing that all the places it will be reflected your sound when you are speaking and

there is a hard surface that is what, what you will be seeing it what happens it goes and hits and

then it come back to you.

The first one is the direct sound what your it is coming to you the later on you will be getting

the reflected sound to your listener this we call it as a echo basically, what it says a true echo

is single reflection of the original sound. So, that is what, what we call it as echo we will see if

multiple reflection comes what we call in the next slide. The time delay is the ratio of the extra

distance to the speed of sound.

An echo can be realized as a signal wave that has been reflected by medium which has the

discontinuity in the propagation medium and returns with sufficient magnitude and delay to be

perceived by human ear, some places it gets absorbed then you might not be able to hear it as

echo. So where you have sufficient magnitude and then delay, then we will be hearing it as an

echo. So that, in echo effect, the true sound and the artificial sound are clearly separated. So

that human hearings can tell the difference.

So, Echo is audible because the speed of sound is relatively slow, about 343 meters per second.

And if we consider only one echo path, then an echo can be simulated using the following

equation. So that is output is the echoed output. So which is going to have the input plus delayed

input with gain what we can get the echo signal. So, we assumed gain should be less than 1 in

this case, because we have the magnitude of input is 1. So, we assumed this is less than 1 due

to losses in the echo path that is what we are going to imitate and then look at it.

(Refer Slide Time: 36:02)

So, this is again continuing with the generation. So, as it is seen that signal propagates from the

source to the listener in 2 paths. In this case, we have assumed that this is going to reflect and

these are going to be absorbed only one path get reflected as I said, signal from the source goes

directly to the listener, second signal goes to the wall and then reflected to the user. So, the

second process will take more time than the first process. So, the listener will hear 2 sounds in

a different period of time. And the signal power from the second process will be attenuated due

to the reflection process, this is what we discussed.

(Refer Slide Time: 36:44)

So, how we can digitally generate an echo by showing in this diagram, so how we are going to

do the thing? So, when dealing with audible frequencies, human ear cannot recognize the

identity of an echo from the original sound, if the delay is less than one tenth of a second. So

as you can see that if it is within this then you may not hear it as an echo. Thus, since the

velocity of sound is approximately what we call it as 343 meter per second at a normal room

temperature of about 20 degrees centigrade.

The reflecting object must be more than 16.2 meters from the sound source for an echo to be

heard by a person at the source. So these are the things then only you will hear you would be

wondering wherever I speak I should be able to hear my voice back. So most of the you will

be seeing sound recording rooms you will be having what we call it as a echo cancellers. So,

padding with not to reflect the sound so it is going to absorb so that only the pure voice is going

to be heard.

So you as an example, even I am sitting in a room where recording room where my voice is

going to be only heard and then outside noise and everything is cancelled, even whenever my

voice hits the wall, so you will not be getting any reflection in this place. So in most situations,

with human hearing echoes are about one half second or about half this distance, since sounds

grow fainter with distance.

So the strength of an echo is frequently measured in dB sound pressure level, what we call it

as SPL sound pressure level relative to the directly transmitted wave. So we will be generating

in the lab that is input is given. So, the same input will delay we can see that by varying the

delay, how we will be perceiving it? And then we are going to multiply with the gain and then

this is the delayed input which gets added with the normal input and output what we will be

hearing it as the echoed signal in the output.

(Refer Slide Time: 39:17)

So, the next one is application is the reverberation. As we said you can see that there is a sound

signal here. So you will be seeing that one can be direct. And then there are multiple reflections

in this case. That is what I said it is a single reflection what we call it as echo when it happens

with the multiple reflections. So, what you will be seeing that this may be coming early, and

then the other after hitting here it may be coming these are the late once what you will be

getting it this may come early.

So you will be hearing multiple this thing reflections that is what, what it says reverberation is

the persistence of sound in a particular space after the original sound is removed. And in the

reverberation or reverb what we call it is observed when a sound is created in an enclosed space

causing multiple echoes to build up and then slowly decays the sound is damp by surrounding

walls and then air it is the sum of all sound reflections what will put it.

Most noticeable when the sound sort of stops, but the reflections are going to continue

decreasing in amplitude until can no longer be heard. So, the principle of reverberations is more

like echo but in reverb the sound reflections comes very often in a short period of time. So, you

will be seeing that this is the direct sound what is happening and then these are the earlier

reflected what you will be seeing it this we call it as during the predelay what you will get it

and then these are the early reflection time from here to here, what will be perceiving it.

After that these are the late reflections, you will be seeing that it is slowly dying it out. So this

is the reverberation time what we call it when it is going to down slowly.

(Refer Slide Time: 41:25)

So considering the thing comparison, to echo that is 50 to 100 millisecond after the initial sound

reverberation is many 1000s of echoes that arrive in very quick succession that is 0.01 to 1

millisecond between echoes. So with the elapse of time, the intensity of the multiple echoes is

reduced till the echoes are inaudible. So in reverberation how we are going to generate the thing

output will be input plus delayed output into gain.

So in this case, we will be considering the feedback signal that is 𝑎𝑦(𝑛 − 𝐷) output is getting

delayed by D +𝑥(𝑛). So then the response of the system is given by 𝐻(𝑧) =
1

1−𝑎𝑧−𝐷. This is

the delay in the zee domain. There are 2 important parameters reverberation, which are the

ones one is the predelay as we have seen in the previous case, we have the predelay and then

we have the amount of time of the first sound reflection.

Then the reverb decay, is the period amount of time that reverberation since the input stops.

So, we have seen that this the reverberation, this is the predelay, which is the early reflection

which is going to come then how does it look like because we have said (𝑛 − 𝐷) delays what

we are going to have it so, this each reflection we will be saying that they are spaced at 2𝜋
𝐷⁄ .

So, I will be getting a peek here, next peak is going to be 4𝜋
𝐷⁄ and 6𝜋

𝐷⁄ and so on till 2𝜋.

So, and then we will be seeing that this is unit circle and then we have this thing 2𝜋
𝐷⁄ spacing

what we are going to have it and rho will be the radius of the where the poles have been located.

So, you are seeing that poles are all around the circle. And that is what, what it says is these

are the poles what you will be putting across the thing at distance of 2𝜋
𝐷⁄ .

(Refer Slide Time: 44:13)

So, coming with the reverberation this shows the thing that is this is microphone what we have

it and the performer is here from here to microphone, comes direct and we know that

loudspeakers are in the sideways. So, sometimes as you will be seeing that even in the mobile

or when we are switching on for conference call or something will be telling if there is one

more loudspeaker we have it.

Or this thing input will ask them to switch it off and keep only one performer receiving and

also both Mic and speaker should be switched on. If both the speakers are on even now, you

would be hearing that the echo will be coming. So, whenever because I think pandemic has

taught us very nicely that online classes and other things. So, when 2 devices are on side by

side will say that please mute the other device and only one devices of the 2 of them are sitting

together be on so that we will not have any echoes or we call it as reverberation coming into

picture.

(Refer Slide Time: 45:26)

So, how to generate just like our echo digital reverberation is shown in this figure, this is our

input and then the output is going to be delayed and then fed back there in the echo case input

itself is delayed and then fed into system here the output is going to be delayed and then fed

with into the system with gain actually. So this is delayed output, what we will be hearing that

reverberation so you have to differentiate between an echo and then reverberation when we run

the example.

So thank you very much in the next class we will be considering echo cancellation and then

equalizer. Why do we need it? So what we will be taking it up in the next class. Thank you for

listening.

