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Welcome back to real time digital signal processing course. So last class, we were looking into 

LMS algorithm. So we will see that how we are going to derive this one in today's class.  
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So, we have started with the adaptive filters, why do we need it and what are the applications, 

it is going to be used one of the application, we saw it as hearing the buds and then other things. 

So, today, we will see that how we can derive adaptive filter that is basically Least Mean Square 

LMS algorithm.  
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So, we discussed about the method of steepest descent in the last class. So, that is, it is an 

iterative or recursive process technique that starts from some arbitrary initial weight vector 

𝑤(0) and it is going to descends to the bottom of the bowl what we said. So, by moving on the 

error surface in the direction of negative gradient estimated at that point, so, you will be 

estimating it and then going down in the thing.  

 

So, for L = 2 so, this is the error surface what we have got it, and this is the error contours, in 

concentric circles, what we will be getting at and then how we are going to calculate, we said 

we will be deriving this shortly. So, that is future weight update n + 1 is going to be done with 

the current weight −𝜇 is step size basically, as you can see in the error surface, how we will be 

coming down and then the 𝛻𝜉(𝑛). So, that is what, what we call it as gradient of the mean 

square error function with respect to weight function. So, negative sign indicates that the weight 

vector is updated in the negative gradient direction.  
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So, we will take up an example and see how we will be coming with the work on the steepest 

descent algorithm. So, the function given we need to obtain the vector that would give us the 

absolute minimum what we are looking at. So, 𝑌(𝑐1, 𝑐2) = 𝐶1
2 + 𝐶2

2 , so it is obvious that 𝐶1 =

𝐶2 = 0 give us the minimum basically. So, this is the quadratic bowl 𝐶1 is in this direction and 

𝐶2. So, we know that, this is what, what we are expecting. So in the bowl, how will be traversing 

and coming down what we will see? In practical applications we may not reach 0.  
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So, as an example so assume that 𝐶1 = 5 and 𝐶2 = 7 in the beginning and we are going to 

select the constant 𝜇, if it is too big, we miss the minimum if it is too small, it would take us a 

lot of time to hit the minimum. So, in this case, we will select 𝜇 = 0.1. The 𝛻𝑦 = [

𝑑𝑦

𝑑𝑐1

𝑑𝑦

𝑑𝑐2

] =

[
2𝐶1

2𝐶2
]?  

 

So, our iterative equation is what we are going to have it is [
𝐶1

𝐶2
]

[𝑛+1]
 is given as [

𝐶1

𝐶2
]

[𝑛]
− 0.2 ∗

𝛻𝑦. So, which is nothing but [
𝐶1

𝐶2
]

[𝑛]
− 0.1 [

𝐶1

𝐶2
]

[𝑛]
what we are going to get the thing, so when 

we substitute this 1 – 0.1 will be 0.9. So, this is 0.2 divided by what you are going to have it is 

2 so, that is the reason why what you will be getting as 0.1.  
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So, now, what we are going to substitute is iteration first what we have [
𝐶1

𝐶2
] = [

5
7

] is been 

given, and in the second iteration, so, [
𝐶1

𝐶2
] according to this equation, substitute [

𝐶1

𝐶2
] and then 

solve the thing 0.9 [
𝐶1

𝐶2
], what we are going to have it, so, the next iteration, so, by multiplying 

[
𝐶1

𝐶2
], so, you will be getting it 0.9 times 5 is going to be 4.5 and this becomes 6.3 and then 

continue this in the iteration 4.5 and 0.9 so this is what, what we will be getting it and 𝐶2 is this 

value.  

 

So, at iteration 60 as you can see that the value has come down to 0.01. So, you will be seeing 

that initial guess what you have taken the thing [
𝐶1

𝐶2
] and then you are traversing down the thing. 

So, here it is going to be 0.01 and 0.013. So, as we can see the vector [
𝐶1

𝐶2
] converges to the 

value, which would yield the function minimum and the speed of this convergence depends on 

step size. So, in this case, we had taken it as 0.1 is steps times 𝜇 basically, that is what, what 

we have assumed in this case.  
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So, now, what is the thing is going to happen? So, how to calculate the mu or how to arrive at 

the least mean square algorithm, what it is shown here? So, in many practical application, so, 

statistics of desired signal 𝑑(𝑛) and 𝑥(𝑛) are going to be unknown that is input signal. So, the 

method of the steepest descent cannot be used directly, since it assumes the mean square error 

is available to compute the gradient vector. So, then what happens you will be seeing the LMS 

algorithm developed by Widrow.  

 

So, you can go to the net and then see he is the one who designed least mean square algorithm 

uses the instantaneous squared error e square of n to estimate the mean square error. So, which 

is given by 𝜉(𝑛) is you will be putting it as 𝑒2(𝑛). So, the gradient estimate is partial derivative 

of this cost function with respect to the weight vector, then what happens to our gradient which 

is going to be given by 2 times gradient of error vector into error vector what well be putting it 

𝑒2(𝑛).  

 

So, then since we know that error function is given by 𝑑(𝑛) − 𝑦(𝑛) substituted with the 

𝑤𝑇(𝑛) × (𝑛),  what is substituted, then what we have is 𝛻𝑒(𝑛) is given by when you take the 

gradient of it, which results in −𝑥(𝑛). So, that gradient estimate becomes as it is given by 

−2𝑥(𝑛)𝑒(𝑛), 𝑤(𝑛 + 1) is going to be 𝑤(𝑛) + 𝜇𝑥(𝑛)𝑒(𝑛). So, from where you have 

substituted that gradient thing with respect to this, I think you can derive the thing. So the 

constant 𝜇, what we will be putting it into update vector here.  
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So, then how we are going to calculate LMS algorithm. So, the diagram on the right side it 

shows that it has an input and then we have the weight vector here. And then 𝑦(𝑛) is output, 

and this is the desired signal, the difference between the 2 will give us the error, which is fed 

to LMS algorithm, which will modify the weights based on input 𝑥(𝑛). So, this is what the 

figure shows, and will write down the steps which are going to be followed in the algorithm 

calculation or weight calculation and then the output calculation and error.  

 

So, we are going to determine the values of L is the order of the filter, 𝜇 is the weight vector 

and 𝑤(0) is the initial values for weight vector. So, that is what it gives the thing this is the 

step size and 𝑤(0) is the initial weight vector at time n = 0. So, it is very important to determine 

these parameters values properly in order to achieve the best performance of the LMS 

algorithm. So, we will compute the adaptive filter output as 𝑦(𝑛) = 𝑤𝑙(𝑛)𝑥(𝑛). So, we know 

that it is a 𝑤𝑇(𝑛) ∗ 𝑥(𝑛).  

 

So, which is nothing but it is 𝑙 = 0,1, … , 𝐿 − 1 𝑤𝑙(𝑛) ∗ 𝑥(𝑛 − 𝑙). And we will be computing the 

error signal as 𝑒(𝑛) is given by in the second step 𝑑(𝑛) − 𝑦(𝑛). So, we have calculated 𝑦(𝑛) 

and weight vector initially we have assumed as 0 and then we will start with it and then 

whatever the desired signal what we have given minus the output will be the error initially as 

we know that 𝑦(𝑛) may be 0. So, error will be very high, because we have assumed the weight 

to be 0 and then 𝑥(𝑛).  

 



So, error will be high and then you will be seeing once it starts coming down it will be adapting 

to weights are adjusted. This is how we will be calculating 𝑤𝑙(𝑛 + 1) is going to be given by 

𝑤𝑙(𝑛) + 𝜇𝑥(𝑛 − 𝑙)𝑒(𝑛). So, where l is the length of the filter which is going to vary from 0 to 

L - 1. So, hence you will be seeing that number of computations what it is going to have in 

calculating the LMS algorithm is 2L additions and 2L + 1 multiplications what we are supposed 

to 2 to get the output. So, that is what the computation complexity of the LMS algorithm.  

(Refer Slide Time: 12:19) 

 
So, coming to the thing how graph is going to converge? So, we will see the thing unknown 

channel of second order what we have chosen the thing and then this graph is going to illustrate 

that is what you have the initial guess here and then this is 𝑐1 and then 𝑐2 what we have selected 

initially as we said, So, then what happens, so, it will be traversing depending on 𝜇. will be 

traversing in this way in the concentric circle, and try to we are supposed to get to 0. So, as we 

know that it is in practical situations, it is not possible to achieve this, so, we could only 

decrease the error below a desired minimum, so that we will be able to work on it.  
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So, there are different modified LMS algorithms to reduce computation time, what are the 

things? There are 3 types to improve the computation, 1 is the sign error LMS algorithm here 

as you can see, 𝑤(𝑛 + 1) is given us 𝑤(𝑛) + 𝜇𝑥(𝑛) and we will be taking the sign of the error 

n so, sign data LMS algorithm the other one sign of 𝑒(𝑛) is given as 1 or -1. So, if error is 

greater than or equal to 0 we make it 1 if it is less than 0 it is going to be -1. So, that it is either 

a negative of it or positive.  

 

So, that we are avoiding the multiplication by error of n in this case. So, the other one is sign- 

sign LMS algorithm here it is based on the sign error. The other one is on the sign on the data 

what you are going to have it then in this case what happens sign of 𝑥(𝑛) so, that you are 

reducing your computation. The other one is sign-sign LMS algorithm. So, this algorithm 

requires no multiplication and a design for mostly VLSI or ASIC implementation to save 

multiplications  

 

So, in Adaptive Differential Pulse Code Modulation that is ADPCM used for this algorithm for 

speech compression so, I Think we will be taking the speech coding a little later. So we will 

see why we need the compression there.  

(Refer Slide Time: 15:08) 



 
So, how it is going to work for a complex signals? That is LMS algorithm we have seen the 

DFT and other things for the complex signals. Here also we have to see that how it is going to 

work from least mean square applications dealing with complex signals. The frequency domain 

adaptive filtering require complex operations to maintain their phase relationships in this case, 

and then the complex adaptive filter uses that is complex vector 𝑥(𝑛) and complex coefficients 

𝑤(𝑛).  

 

So, then 𝑥(𝑛) is a 𝑥𝑟(𝑛) + 𝑗𝑥𝑖(𝑛). And w of n is also represented both in real and then 

imaginary parts in this way, then we know that complex output signal 𝑦(𝑛) is computed as 

𝑦(𝑛) = 𝑤𝑇(𝑛)𝑥(𝑛) what we have it. So, where all multiplications additions are going to be 

complex operations. So, the complex LMS algorithm adapts the real and imaginary parts of 

𝑤(𝑛) simultaneously as in this fashion 𝑤(𝑛) + 𝜇𝑒(𝑛)𝑥∗(𝑛). So, adaptive channel equalizers 

use 𝑥∗(𝑛) = 𝑥𝑟(𝑛) − 𝑗𝑥𝑖(𝑛). So, we will see these applications little later.  
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So, we have to see the performance analysis of LMS algorithm the as we know that IIR filter 

we consider the stability constraints. So, we have to see, first one is the stability. Next is how 

we are going to have the convergence rate? And then we will be seeing that excess mean square 

error and how it is going to have the finite-wordlength effects on algorithm just like any other 

linear filter, we have to see in that adaptive filter also. So, how these parameters are going to 

affect us?  

 

So, the first one is the stability constraint. So, that is 0 < 𝜇 < 2/𝜆𝑚𝑎𝑥, lambda max is the 

largest Eigen value of the autocorrelation matrix R. So, as we will be seeing in the lab that we 

selected with 𝜇 = 1, how are output was getting affected? So, this is the wave otherwise, 

arbitrarily we can choose the thing and then what is the thing is going to happen?  

 

So, we have looked in the lab. So, here what is should be the 𝜇 value, which should be < 2/𝐿𝑃𝑥,  

lambda max is Eigen value for autocorrelation matrix R. So, we know that computing 

autocorrelation matrix and finding out the Eigen value is compute intensive. And then how we 

are going to take the thing that is lambda L are the Eigen values of matrix R in that the 

maximum value of what we will be taking it and then divide 2 by that value.  

 

So, the other way of doing selecting 𝜇 is from the stability point of view. So, we can have a 

𝜇 < 2/𝐿𝑃𝑥, L is the length of the filter and then 𝑃𝑥 is we know that it is the autocorrelation 

function of the first this think input signal which is nothing but 𝐸[𝑥2(𝑛)] is the power of 𝑥(𝑛). 

So, this equation provides 2 important principles for determining the value of 𝜇 from these 2 

constraints, what is it?  



 

The upper bound of the step size 𝜇 is inversely proportional to the filter length here, thus a 

smaller 𝜇 must be used for a higher order filter and vice versa. Since the step size is inversely 

proportional to the input signal power, a larger 𝜇 can be used for low power signal and vice 

versa. The other way is more effective technique is to normalise the step size 𝜇 with respect to 

power P such that the convergence rate of the algorithm is independent of 𝜇 that is what one 

has to look at it.  
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So, now coming with the convergence speed continuing with the thing, so, each adaptive mode 

has its own time constant for convergence. So, which is going to be determined by the; step 

size mu as we know and the Eigen value associated with lambda l with that mode. Thus the 

time needed for convergence is clearly limited by the slowest mode caused by the minimum 

Eigen value and can be approximated as time to calculate mean square error is approximated 

as 
1

𝜇𝜆min
.  

 

So, lambda minimum is the minimum Eigen value of the matrix R, what we are considering 

this is the maximum time what it is going to take place. If we choose a lambda max, then we 

know that time to compute this is going to be lesser. So, we say because time tau mean square 

error is inversely proportional to the step size mu using a smaller mu will result in a larger time 

basically that is slower convergence.  

 

And when tau max is very large, only a small mu can satisfy the stability constraint. So, these 

are the things one has to consider when you are selecting your mu. So, if lambda minimum is 



very small, that time constant can be very large, resulting in very slow convergence here also. 

The slowest convergence occurs when using the smallest step size 𝜇 = 1/𝜆𝑚𝑎𝑥. So, you will 

be seeing that both of them are inversely proportional to mu step size and then 𝜆min .  

So, both will be contributing to the slow computation, time for adaptive filter. So, then what is 

it we say that 𝜏mse is given by less than or equal to 
𝜆max

𝜆min
 and which is by substituting 𝜆min we 

can do that, which is less than or equal to lambda max divided by minimum is approximated 

as maximum 𝑋(𝜔)  that is the 
𝑚𝑎𝑥|𝑋(𝜔)|2

𝑚𝑖𝑛|𝑋(𝜔)|2
. So, how is this? 

 

We know that 𝑋(𝜔) is the DFTF 𝑥(𝑛). So, we will be seeing that Eigen value spread can be 

efficiently approximated by the spectral dynamic range in this case, so we can see how the 

computation is going to be more? 
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So, now, the other way of is how we can control mean square error by using excess mean 

square error. So, which is 𝜉excess is given us 𝐿𝑃𝑥𝜉min . So, we know that, so the approximations 

shows that the excess mean square is directly proportional to mu and then use of larger steps 

saves mu is going to result in a faster convergence rate at the cost of degraded steady state 

performance by producing more noise, this is what, what we saw in the lab?  

 

Or yourself see that by making a 𝜇 larger step size only it will be giving you noise. So, therefore, 

there is a design trade off between the excess mean square error and the convergence speed 

when choosing the value of 𝜇.  

(Refer Slide Time: 24:10) 



 
So, now, how we can normalize this mu basically step function, so then later on what it was 

developed is normalized LMS algorithm. So, which is given by this equation that is 0 < 𝜇 <

𝐿

𝑃𝑥
. So, as it L is the length of this thing filter and 𝑃𝑥 is the power what we have to calculate. So, 

you will be seeing that it will take more time than LMS algorithm, then your update function 

for 𝑤(𝑛 + 1) is given selecting this 𝜇(𝑛)𝑥(𝑛)𝑒(𝑛).  

So, you will be seeing that where 𝜇(𝑛) is the time varying step size one has to calculate it is not 

pre computed as in when you are depending on your input power you will be calculating your 

step size and then it can be normalized by the filter length and signal power as 𝜇(𝑛) is given as 

alpha constant divided by 𝐿𝑃𝑥(𝑛) + 𝑐, where 𝑃𝑥(𝑛) is the estimate of the power of 𝑥(𝑛) at time 

n.  

 

So, 𝛼 will be taking the value between 0 and 2 which is a constant and c is very small constant. 

So, that we are not going to have when this becomes 0 division by 0 is avoided by this constant. 

So, very small so that this is not going to get affected or using a very large step size for a very 

weak signal at time n, one has to note that 𝑃𝑥(𝑛)  can be estimated recursively. 
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So, NLMS algorithm will take little time compared to LMS. So, how we are going to choose 

this 𝑃̂𝑥(0) as the best a priori estimate of input signal power. So, a software constant may be 

required to ensure that 𝜇(𝑛) is bounded, if it is very small when the signal is going to be absent, 

so, that divided by 0 is avoided.  
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So, how we are going to do this one software implementation is shown in with few steps, that 

is, we will be assigning 𝜇𝑒(𝑛) is assigned as 𝜇𝑒(𝑛) for l = 0, l less than length of the filter. So, 

you will be continuing it this is the 𝑤(1) is calculated with respect to 𝜇 into whatever you have 

calculate 𝜇𝑒(𝑛) ∗ 𝑥(1). So that you need not have to do this multiplication inside every time 

which is consumed, you know that within the loop if you do the multiplication it will be adding 

on.  

 



Instead of that you compute and keep it outside and then use it for you will be reducing the 

multiplication. So, you can see that the updation can be done once in a sampling period what 

we will be doing it? Instead of every sample to reduce the computation and to take care of the 

pipelining delays. So, that delayed LMS algorithm which is expressed as 𝑤(𝑛 + 1) is nothing 

but 𝑤(𝑛) + 𝜇𝑒(𝑛 − 𝛥)𝑥(𝑛 − 𝛥).  

 

So, if you assume 𝛥 = 1 then 𝑒(𝑛 − 1) that is previous error what you will consider and then 

even 𝑥(𝑛 − 1) will be the previous sample what you will be calculating to update weights in 

the future of it along with the current weight.  
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So, next one is the finite precision effects one has to consider. So, what is this we have seen 

this effect in case of IIR filter, the same thing we will be using it so, we assumed the range 

input is going to be in the range between -1 and 1. So, we will be scaling a signal so, that the 

input if it is a sine wave the magnitude is going to be between -1 and 1. So, any even the cos 

function if you are considered or any speech signal or any audio signal you will be considering 

the magnitude to be between -1 and 1.  

 

So, later on we had to do scaling, finite word effects and arithmetic errors can be considered. 

So, however, we have done in the case of IIR filter, so we will be taking care of the scaling and 

then finite word effects representing our coefficients even mu has to be approximated after the 

thing and then whatever additional what we are doing it the errors have to be considered. So 

we know that 𝑒(𝑛) that is feedback for coefficients, scaling is going to be complicated. So, 

what is it earlier in the FIR filter, we did not have the feedback.  



 

So, you will be seeing in the figure, we have from the error, we are having a feedback path in 

the thing so, this also has to be considered. Then what happens? Also the dynamic range of the 

filter output is determined by the time varying filter coefficients which are unknown at the 

design stage in the FIR filter we have computed coefficients and then we knew that what will 

be the maximum precision what we are going to get it here what is the thing is going to happen 

is because we are on the go weight function is getting updated.  

 

So, we say that it is a time varying filter coefficients what we have to calculate? And we do not 

know at the design stage whether they are going to overflow or underflow one has to consider 

that. So, we say for adaptive FIR filtering with LMS algorithm, the scaling of the filter output 

and coefficients can be achieved by scaling that desired signal that is 𝑑(𝑛). So, the scaling 

factor a, which is in between 0 and 1 is used to prevent overflow of the filter coefficients during 

the coefficient update.  

 

So, reducing the magnitude of 𝑑(𝑛) reduces the gain demand on the filter, thereby reducing 

the magnitude of the coefficient values. Since a only scales the desired signal, so it is not going 

to affect the convergence rate, which depends on the magnitude spectrum and power of input 

signal. So that is 𝑥(𝑛) so 𝑑(𝑛) is not going to come in to spectral calculation or power 

calculation. So, it is not going to degrade our performance, when we do the scaling of desired 

signal. So 𝑦(𝑛) − 𝑑(𝑛) so, which is going to be kept in not to overflow.  
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So, what will be the thing now continuing with the finite precision LMS algorithm can be how 

it is going to be described that is using the rounding operations. So, we know that 𝑦(𝑛) is equal 

to that is value is going to be rounded. So, here it is not the autocorrelation matrix what we are 

representing it with is the rounding. So, the magnitude of whatever the equation we have FIR 

filter equation, which is going to be rounded.  

 

Then 𝑒(𝑛) is going to be resulted as rounded of a times and 𝑑(𝑛) that is scaling of desired 

signal minus 𝑦(𝑛). The magnitude of it will be rounding it then what happens to weight 

function updation function, so that is also going to be rounded. And then you will be having 

𝑤𝑙(𝑛 + 1) = 𝑅[𝑤𝑙(𝑛) + 𝜇𝑥(𝑛 − 𝑙)𝑒(𝑛)],   𝑙 = 0,1, … , 𝐿 − 1,. So that is what, what it says is 𝑅[𝑥] 

in this case, fixed point rounding of the quantity x.  

So when updating coefficients, the product, whatever product we have, it is a double precision 

number because 𝑎(𝑛) is floating point number even 𝜇 is also going to be floating point and 

𝑥(𝑛) is also going to be either fixed point or floating point, still the result of 2 floating point 

numbers has to be double precision FIR used 32 bit for both of them, then it becomes 64 bit  
𝑤𝑙(𝑛)  and then rounded to obtain the updated value 𝑤𝑙(𝑛 + 1).  

 

So, adaptation will stop when this update term is rounded to 0 if its value is smaller than the 

LSB of the hardware, what we consider this phenomenon is known as stalling or lockup. So, 

this problem may be solved by using more bits and are using larger step size mu, to guarantee 

that convergence of the algorithm. However, we know that using a larger step size will increase 

excess mean square error.  
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So, the other variant of LMS algorithm is the leaky LMS algorithm. So, this is defined that is 

to reduce numerical errors accumulated in the filter coefficients. So, this algorithm prevents 

coefficient update overflow from the finite precision implementation by providing a 

compromise between minimizing the mean square error and constraining the energy of the 

adaptive filter. So, which is given by expression is given us 𝑣 times 𝑤(𝑛 + 1) = 𝑣𝑤(𝑛) +

𝜇𝑥(𝑛)𝑒(𝑛).  

 

So, where 𝑣 is leakage factor 1 is going to consider it is going to be between 0 and 1. So, if it 

is 1 we know that it is going to be LMS algorithm. So, that leaky LMS algorithm not only 

prevents unconstrained weight for flow, but also limits the power of output signal y of n in 

order to avoid nonlinear distortion of the transducer basically, such as loudspeakers driven by 

the filter output. So, we know that, when we are having a speech or audio the thing the output 

is going to loudspeakers.  

 

So, this distortion is going to be reduced by using leaky LMS algorithm. The excess power of 

errors caused by the leakage is proportional to what we call it as 1[(1 − 𝑣)/µ]2. So, 1 − 𝑣 

should be kept smaller than µ in order to maintain an acceptable level of performance.  
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This is adaptive FIR filter objects, if you refer to the book here the book is go with the reference 

is going to be given. So, you will be seeing that adaptive filt dot LMS these are the functions 

one can use for adaptive filter that is direct form leaky LMS algorithm. So, different methods 

have been given, one has to keep it in mind that this adaptive filt dot LMS has been removed 

in the latest version of MATLAB that is 2020 b. So, you have to use it as DSP dot LMS filter. 

 

So and then properly modify the codes and then you are to use it in your assignments or your 

work when you want to implement these filters. So, the code what it is given that is you will 

be having the random seed what it is generated, and then you have been given the coefficients 

of b so, you will be filtering the signal and then you are assigning your mu value as 0.05 and 

then call this function which has to be modified.  

 

So, we will see how we are going to modify these to the 2020 pre MATLAB and then use this 

filter to filter the things so, these are the steps. So, when you observe that this is the desired 

signal 𝑑(𝑛) what it is plot it and then you will be seeing that error signal which was very high 

which is shown in red, which is going to slow down and then you will be what is it almost 

minimized here. So, this is what your output signal 𝑦(𝑛) is going to look like and error signal.  

 

So, initially you will be seeing that output signal has little bit of noise and other things. So, 

when error is minimized, so it will be following the input signal. So, in the next class we will 

be seeing adaptive filter applications. So, thank you for listening to this lecture. 


