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Adaptive Filter 

 So, welcome back to real time digital signal processing course. So, we will cover today 

little on adaptive filter. So, to give you as you can see this is the module 3 what you 

would be covering. So, what are the two modules we covered in the previous classes is 

listed here. That is we covered in module 1 basic architectures and some number system 

and then in the second one we discussed about filters both FIR and IIR filters. And then 

we went on to see frequency domain algorithms discrete Fourier transform and how this 

can be made faster using Fourier transforms. 

 So, in the last class we little bit discussed about random process and then we will be 

taking up today continuing on that. So, before that we will discuss about in module 3 

what are the subjects we will be covering. So, first one is adaptive filters. So, we will be 

taking least square mean square algorithm and its applications and then we will just say 

normalized LMS and then even the RL is we will just discuss we will not go on to derive 

the thing, but more derivative we will be doing it on the least mean square LMS 

algorithm. 

 

 So, later on we will cover basics of image processing, basically we will be covering a 

discrete cosine transform with little bit of introduction to our image processing. And how 

we will be implementing in the hardware which is going to give us the full site just like 

our FFT algorithm. So, coming to continuation of the random process. So, little bit of 

theory in the last class we have covered. Today we will discuss about little on the 

autocorrelation function of the random process, 𝑥(𝑛)  defined 𝑟𝑥𝑥(𝑛, 𝑘) = 𝐸[𝑥(𝑛)𝑥(𝑘)]. 

So, we say random process is stationary if it is a statistic do not change with time. So, the 

most useful and relaxed form stationary is the wide sense stationary what we call it which 

is named as WSS. So, process that satisfies the following two conditions. So, that is we 

call it as wide sense stationary the mean of the process is independent of time in this case 

what it is given as 𝐸[𝑥(𝑛)] = 𝑚𝑥. So, we say thus 𝑚𝑥 is constant that is what we say it is 

independent of time. 

 Then the autocorrelation function it is going to depend only on the time difference which 

is given by 𝑟𝑥𝑥(𝑘) = 𝐸[𝑥(𝑛 + 𝑘)𝑥(𝑘)]. So, we say 𝑘 is the time blank in digital domain. 

The two important properties of our autocorrelation function 𝑟𝑥𝑥(𝑘) with respect to our 

WSS process is defined in this way. First is the even function. So, what do we mean by 



that? So, 𝑟𝑥𝑥(−𝑘) = 𝑟𝑥𝑥(𝑘) which is this the other property is it is bounded by giving that 

that is the |𝑟𝑥𝑥(𝑘)| ≤ 𝑟𝑥𝑥(0). 

 So, here we call 𝑟𝑥𝑥(0) = 𝐸[𝑥2(𝑛)]. So, we call it as mean square value. or the other 

name is power of random process 𝑥(𝑛). So, if 𝑥(𝑛) is a zero- mean random process then 

what we have is 𝐸[𝑥2(𝑛)] = 𝜎𝑥
2. So, continuing with the thing consider the sinusoidal 

signal as an example which is given by 𝑥(𝑛) = 𝐴 𝑐𝑜𝑠⁡(𝜔0𝑛). 

 So, we have to find its mean and then autocorrelation for of the 𝑥(𝑛). So, for the mean 

what we substitute is 𝑚𝑥𝐴 𝐸[cos(𝜔0𝑛)] = 0, this is 𝑚𝑥 equal to. So, we know that our 

cos function is given by  So, you are taking the expected value of this cos omega naught 

n over the thing. So, when you add them up you will be getting 0. 

 So, for the autocorrelation function, so how we are going to calculate the thing which is 

nothing but 𝑟𝑥𝑥(𝑘) = 𝐸[𝑥(𝑛 + 𝑘)𝑥(𝑛)] . So, here we have taken 𝑥(𝑛)  here which is 

nothing, but = 𝐴2𝐸[cos(𝜔0𝑛 + 𝜔𝑘) cos(𝜔0𝑛)]  this is the function what we have to 

solve. So, when we solve with respect to [cos(𝜔0𝑛 + 𝜔𝑘) cos(𝜔0𝑛)] when you expand 

the thing then it becomes as we know that it is 
𝐴2

2
𝐸[cos(2𝜔0𝑛 + 𝜔0𝑘)] +

𝐴2

2
cos(𝜔0𝑘) =

𝐴2

2
cos(𝜔0𝑘). So, that is what is left out from that other the terms are going to get 

cancelled. So, you can expand it and then look at them. 

 So, that what is the thing that autocorrelation function of a cosine wave is the cosine 

function of the same frequency 𝜔0. So, as we started with cos(𝜔0𝑛). So, we will be  

seeing that it is a function of 𝜔0 itself. So, coming with how we are going to calculate 

power spectrum and then cross correlation next function we will see the thing. So, we are 

using the widely used random signal for many applications  which is we said it is white 

noise what we will be considering 𝑣(𝑛) with zero and variance as 𝜎𝑣
2. 

 Then its autocorrelation function is given by 𝑟𝑣𝑣(𝑘) = 𝜎𝑣
2𝛿(𝑘). So, is we know that 𝛿(𝑘)  

is a delta function with amplitude what we call it as 𝜎𝑣
2  at lag 𝑘 = 0. And its power 

spectrum is given by 𝑃𝑣𝑣(𝜔) = 𝜎𝑣
2, |𝜔| <= 𝜋 . So, this shows that the power of the 

random signal is uniformly distributed over the entire frequency range. 

 So, now defining the cross correlation function between two wide sense stationary 

process 𝑥(𝑛) and 𝑦(𝑛) which is defined by 𝑟𝑥𝑦(𝑘) = 𝐸[𝑥(𝑛 + 𝑘)𝑦(𝑛)]. So, this function 

has the property that is 𝑟𝑥𝑦(𝑘) = 𝑟𝑦𝑥(−𝑘). So, what we said here it is a even function. So, 

even the cross correlation is a even function what you can look at it. So, then what 

happens to 𝑟𝑦𝑥(𝑘) is simply the folded version of what we call it as 𝑟𝑥𝑦(𝑘). 

 So, now take an example to see that what will be the cross correlation of FIR filter with 

input output equation what it is given by equal to 𝑦(𝑛) = 𝑥(𝑛) + 𝑎𝑥(𝑛 − 1) + 𝑏𝑥(𝑛 −



2). So, you can assume this is small 𝑦(𝑛) equal to  So, we assume the white noise with 0 

mean and variance 𝜎𝑥
2⁡in this case as the input signal 𝑥(𝑛). Find the mean that is 𝑚𝑦 and 

the autocorrelation function 𝑟𝑥𝑦(𝑘) of the filter output 𝑦(𝑛). what we have to do it. So, 

for the mean what we are going to substitute 𝑚𝑦 = 𝐸[𝑦(𝑛)]  what we are going to take it 

which is nothing, but we will be putting it on the right hand side 𝐸[𝑥(𝑛)] +

𝑎𝐸[𝑥(𝑛 − 1)] + 𝑏𝐸[𝑥(𝑛 − 2)] = 0. Now the autocorrelation function, so what happens 

to the thing? So, we will be seeing (1 + 𝑎2 + 𝑏2)𝑟𝑥𝑥(𝑘) + (𝑎 + 𝑎𝑏)𝑟𝑥𝑥(𝑘 − 1) +

(𝑎 + 𝑎𝑏)𝑟𝑥𝑥(𝑘 + 1) + 𝑏𝑟𝑥𝑥(𝑘 − 2) + 𝑏𝑟𝑥𝑥(𝑘 + 2) 

so on we will be substituting for these functions. So, which is given by what is the thing? 

So, =

{
 

 
(1 + 𝑎2 + 𝑏2)𝜎𝑥

2,   if 𝑘 = 0

(𝑎 + 𝑎𝑏)𝜎𝑥
2,         if 𝑘 = ±1

𝑏𝜎𝑥
2,                    if 𝑘 = ±2

0,                        if otherwise

. 

So, you have substituted this and then calculated our 𝑟𝑥𝑥(𝑘) using the equation what we 

had looked in the previous slides. So, now how we are going to calculate for a finite 

length sequence mean and then autocorrelation. 

 So, what we have is we call it as 𝑚̄𝑥⁡equal to the average value of it what we will be 

taking 
1

𝑁
∑ 𝑥(𝑛)𝑁−1
𝑛=0 . So, where 𝑁 is the number of samples available for the short time 

analysis. So, this is mean is defined with respect to this equation. And then how we are 

going to take for the same sample, what will be the autocorrelation function which is 

defined as 𝑟̄𝑥𝑥(𝑘) =
1

𝑁−𝑘
∑ 𝑥(𝑛 + 𝑘)𝑥(𝑛)𝑁−𝑘−1
𝑛=0 ,    𝑘 = 0,1, … ,𝑁 − 1. 

 So, the next is we will take up an example for to see that what will be our mean and 

autocorrelation and cross correlation with respect to finite length signal. Here we have 

assumed 𝑥(𝑛) = 𝐴 cos(𝜔0𝑛) + 𝑣(𝑛) is the error signal what we have put the thing is 

signal is given by 𝑚𝑥 = 𝐴𝐸[cos(𝜔0𝑛)] + 𝐸[𝑣(𝑛)] = 0. So, from the previous example 

we know that for cos(𝜔0𝑛) it is nothing, but 
𝐴2

2
cos(𝜔0𝑘) + 𝜎𝑣

2𝛿(𝑘). So, what happens to 

its power basically 𝑃𝑥𝑥(𝜔) =
𝐴2

2
𝛿(𝜔0) + 𝜎𝑣

2 

 

 So, this one should be |𝜔| < 𝜋 in this case. So, now we will see how to look at the 

adaptive noise cancellation. So, what is that adaptive noise cancellation? We will first 

derive it and then we will see that how we can do the cancellation of it. So, the adaptive 

noise cancellation is nothing, but this is an effective method to remove additive noises 

from the contaminated signals. When do we say that it is additive along with the input 

sequence you have the noise that is what we consider we often hear. 



 So, with the desired signal if there is a noise then we call in the added fashion we call it 

as a adaptive sorry additive noise. So, it has been widely used in the fields of what are the 

applications in telecommunication, radar and sonar signal processing. So, 

telecommunication we know that communication channel  basically has the noise. So, it 

depends on which channel you will be using it. So, how to eliminate or cancel the noise 

we know about it and we have looked in the little bit of examples of radar and sonar I 

discussed in the previous classes. 

 So, radar when it is sending the signal when it comes back. So, you know the medium 

may affect the signal. So, how we are going to adapt to the different noises that is what it 

is going to be. And, even in the sonar we know that it is in the sea. So, there will be 

different signals which is going to be refractive in nature. 

 So, those how you will be getting it and then from along with the rest of the noises how 

you will be separating it. So, we have to cancel the noise and then take the signal that is 

what we call it as it is going to happen in adaptive way. So, we say that one more 

example is most of you use ear earphones and then headphones. So, what it says is your 

earphone and then headphone if they fit perfectly. Then what you say is you are unable to 

hear any outside noise. 

 So, they have to be filtered out and then you will say that high frequency noise is coming 

from your co-worker which has to be cancelled out. So, you call them as chatty co-

worker I do not want to listen to them. Then if nothing is going to come when you are 

wearing your earphone or headphone then you say that you have cancelled the noise 

perfectly. So, this we call it as active noise cancellation in this case it can be there are two 

noises what we call it one is passive noise and the other one is the active noise. Here we 

call it as if you are unable to hear from outside as a passive noise. 

 So, we will define it in a while basically and then in the active noise cancellation. So, 

what is the thing is going to happen? Your headphones are here, but neutralize the 

ambient noise. So, you will be seeing that in an aeroplane this thing engine noise or in a 

car engine noise is going to cause. So, if you are outside noise when you are driving or 

whatever may be the thing if you want to cancel it out. You can use the noise cancelling 

technology basically, but still you will be left out with noise not completely gone. 

 So, this we call it as a active noise. So, what is it active noise work by incorporating 

microphones into your headphones. which listen to the outside noise and generate a phase 

inverted sound that effectively cancel out your ambient noise before it reaches your ears. 

So, exactly we want to cancel it which is may not be possible. So, that is the reason why 

in the active noise cancellation you may hear little bit of noise presented it most of it is 

suppressed. That is what it says in other words your adaptive noise cancellation or active 

noise cancels noise by creating equal but opposite noise. 



 So, when it will be desirable not desirable one can look at the literature and then work 

out what you want to design that is what it is going to depend on. So, in the active noise 

cancellation it is best suited for real time implementations because when you are using 

the microphone recording some of the open air what you will call it as speech or music or 

whatever may be the thing. So, if you can take with the one more  mic the surrounding 

noise and use it as a noise and you want to suppress that you can do that. This is how real 

time is going to work. So, we will see some examples how we will be doing this 

cancellation. 

 

 So, we will ask the question whether the which has better sound quality, whether 

whatever you have used the earphones and then earbuds or when you do the active noise 

cancellation which one will be good. So, we will see 2 sets of earbuds when you will say 

quality I have to compare 2 sets basically of earbuds. So, in this case we will say it is 

from the similar build and tuning quality what we have it is also similar. And then the 

earbud with better passive noise isolation will be sounding better than the ones that rely 

on active noise cancellation to block out ambient noise. So, you will be seeing that 

sometimes passive noise cancellation is better compared to active noise. 

 So, passive noise cancellation what we call it as PNC or isolation is when your 

headphones, earbuds or earphones or your monitors in ear monitors naturally block 

outside noise. So, in other words in your earbuds are isolating you from ambient noise 

instead of actively using technology to cancel it out that is why you will hear this 

technique called both passive noise isolation  and passive noise cancellation. So, that is 

what the name given to it when you are fully disconnected from the external noises. So, 

now we will see why we need adaptive filters. So, we have discussed about the linear 

filters. 

 

 So, it should be triggering in your mind that both FIR and IR filters we used in the 

previous classes we have a they are called linear filters. It is not linear phase filters, they 

are linear filters. Output is linear function of the filter input. So, what are the design 

methods that are available? So, we will see the classic approach one is we can use the 

frequency selective filters such as we can use low pass band pass or notch filters as you 

know low pass if I want to eliminate higher frequencies. band pass is only the frequency 

of interest what I want to pass it. 

 And notch filters you know certain single tone or multi tone you know the this thing 

frequency of them you can use the notch filters to suppress that. As an example we had 

taken it as a line this thing frequency that is our electric lines 50 hertz what it is. So, we 

can use the notch filter to eliminate it. The other one is what we can design is the optimal 

filter basically. So, how we are going to use this we will see it in a while and then this is 

mostly based on minimizing the mean square value of the error signal. 



 So, from the desired signal so will be this thing subtracting from the original signal and 

see how much error is left out whether we can try to minimize that error what we look at 

it and then design an optimal kind of filter. So, there are 4 aspects involved with our 

adaptive filters which are they. The first one is the signals being processed by the filter. 

So, whatever input signal you are going to feed it how the filter structure is going to 

behave with it. The other one is the structure to design this filter defines how the output 

signal of the filter is computed from its input signal. 

 The third one is the parameters within the structure that can be iteratively changed to 

alter the filters input output relationship. So, usually we call this as weights by modifying 

the weights whether my input and output structure can be changed that is what we will be 

looking at it. So, the next one is the adaptive algorithm that describes how the parameters 

are adjusted from one time instant to the next times. So, these are the 4 aspects of 

definition what we are going to follow. So, now we will compare with the real world 

signals basically. 

 So, what we want we are looking at is it is desired to extract a certain component of we 

call it 𝑑(𝑛) as the desired signal from the 𝑦(𝑛) whatever we have the output from that we 

want to extract our desired signal. So, that this was contained in our input signal what we 

call it 𝑥(𝑛) or it may be to isolate a component of 𝑑(𝑛) within the error 𝑒(𝑛). that is not 

contained in 𝑥(𝑛). So, whatever error which was introduced in between whether we can 

minimize that or isolated from that desired signal what we are looking at. So, what does it 

look like here it is input is contaminated with noise. 

 So, we are trying to extract the desired signal. The other one is if we know the error then 

we can model it and then get the thing here. What is it from the it is not contaminate input 

is not contaminated with the noise, but the channel make have a noise just like your 

communication channel is going to introduce the noise any of that for that matter. So, 

whether we know the thing whether we can extract from that the desired signal. So, then 

what happens to get these things only we may vary the weights 𝑤(𝑛). and we may not be 

interested in what is my input, what is my output or even desired this thing input what I 

am going to have or a function. 

 So, I want to see the weights so that if I can match 𝑥(𝑛) and 𝑦(𝑛) I know that what I 

want to have it as a result. So, there are situation with in which what we say in the real 

time 𝑑(𝑛) is not available at all basically. So, then what is the what you are looking at is 

also one of the important thing if you do not know what you have to look for it. In such 

situations adaptation typically occurs only when 𝑑(𝑛) is available. So, if you know only 

𝑑(𝑛) or you pinpoint something what why I want to look at it then I can apply adaptive 

algorithm. 

 

 So, when 𝑑(𝑛) is unavailable then how we are going to deal with this kind of signal. We 



typically use our most recent parameter estimates to compare our 𝑦(𝑛) in an attempt to 

estimate the desired response signal 𝑑(𝑛). So, I know in the previous case I have got this 

output 𝑦(𝑛) and this output similarly looks like the previous one. So, then I will try to see 

that this is what I wanted to have because in the previous one I had the desired signal 

basically. So, then I will be looking in the present situation this is what I am looking at. 

 So, in some more real world situations what is it? 𝑑(𝑛) is never available, there it was 

not available, it will be never available. In such cases use your hypothetical blind that is 

predefined statistical behavior or amplitude characteristics. to form suitable estimates of 

your 𝑑(𝑛)  from the signals available to the adaptive filter. So, such methods are 

collectively called blind adaptation algorithm already I have told you hypothetical 

basically blind. 

 So, that is what you will be applying to get the desired signal. So, these algorithms there 

are two varieties, one is the steeped descent algorithm, the other one is the maximum 

likelihood optimization. In this present situation we will be covering steepest descent 

algorithm, those who are interested can look into the literature for maximum likelihood 

optimization algorithm to get the signal from the real world. So, we will see now what is 

the generic block diagram for adaptive filter. So, the signal  along with noise or without 

noise characteristics are often non-stationary and the statistical parameters vary with time 

that is what we define our signal basically. And then adaptive filter has an adaptation 

algorithm that is meant to monitor the environment and vary the filter transfer function 

accordingly. 

 

 So, based on the actual signals received, so what we are going to do? Attempts to find 

the optimum filter design is going to be considered. So, you are given the generic block 

diagram of an adaptive filter here, what does it contain? 𝑥(𝑛) is an input and then what 

we have is the digital filter here, how these weights are going to be altered is from the 

adaptive algorithm. As you can see dotted line which is going to change the weights of 

this filters. Based on what this algorithm is going to work on, it is going to take the input 

and then it is going to take we know in this case desired signal is known and then we will 

be subtracting our output from the filter and then the desired signal which we call it as 

error 𝑒(𝑛). 

 These are the two inputs to our adaptive algorithm. So, based on the thing, so we will be 

minimize the error by varying our weights. So, that is what error minimization here what 

we are going to do it. So, how we are going to apply this adaptive filter for our FIR filter 

as an example we will see it. So, this is our block diagram of FIR filter. So, our data flow 

diagram what you can call it x(𝑛) is the input and earlier in a FIR case we had taken it as 

𝑏0(𝑛) 𝑏1(𝑛) and then 𝑏𝑛−1(𝑛). So, 𝐿 length filter what we have considered here we will 

call them as weight function because we are going to vary these weights 𝑤0 𝑤1 and 𝑤𝐿−1. 



And our input 𝑧−1 we know that in the 𝑧 domain it is going to delay our input. So, we 

will be delaying 𝑥(𝑛) as 𝑥(𝑛 − 1) and then last one will be 𝑥(𝑛 − 𝐿 + 1). So, this is the 

𝐿 length filter. So, we know that convolution theorem 𝑦(𝑛) = ∑ 𝑤𝑙(𝑛)𝑠(𝑛 − 𝑙)
𝐿−1
𝑙=0 . 

 So, instead of giving 𝑥's input  And this is our source signal what we call it 𝑠 and 𝑤 will 

be weight of the filter what we will call it. Now, represent this in terms of equation what 

we call it as a vector basically notation. So, which is given by  𝑥(𝑛) ≡ [𝑥(𝑛)𝑥(𝑛 −

1)…𝑥(𝑛 − 𝐿 +)]𝑇 what we will have it. So,  and the coefficients vector also represented 

in this format, 𝑤(𝑛) ≡ [𝑤0(𝑛)𝑤1(𝑛)…𝑤𝐿−1(𝑛)]
𝑇 , l length coefficients what we are 

taking its their transpose what will be looking at. 

 So, now how we are going to represent now our 𝑦(𝑛) = 𝑤𝑇(𝑛)𝑥(𝑛) = 𝑥𝑇(𝑛)𝑤(𝑛). So, 

you can see our summation in terms of vector multiplication is going to be represented in 

this fashion. So, the filter output 𝑦(𝑛) is  compared to the desired signal 𝑑(𝑛) to obtain 

the error signal. So, we said from this equation we know that 𝑒(𝑛) is given by or 𝑦(𝑛) 

will be equal to what is it error function is nothing but desired signal 𝑑(𝑛) − 𝑦(𝑛) So, 

which is equal to 𝑑(𝑛) by substituting 𝑦(𝑛)⁡with this it is going to be 𝑤𝑇((𝑛)𝑥(𝑛) then 

what we call it as error as in terms of our this thing random variable 𝜉(𝑛) what we call it 

as error function. 

 Which is equivalent to our expectation of 𝐸[𝑒2(𝑛)] basically what we represent  what is 

the thing here are 𝜉(𝑛) is given by. So, expected value of we are taking the square error 

squared what we want to minimize basically. So, we are taking the square on both sides 

of these 2 sides. So, it will be 𝜉(𝑛) is nothing, but 𝐸[𝑑2(𝑛)]. 

 So, it is nothing, but what I am putting from here is. we are calculating 𝑒2(𝑛) which is 

nothing but (𝑑(𝑛) − 𝑦(𝑛))
2

what we will be taking it by substituting 𝑦(𝑛)  and then 

expanding it. So, you will be getting this equation. So, what is it? 𝐸[𝑑2(𝑛)] −

2𝑝𝑇𝑤(𝑛) + 𝑤𝑇(𝑛)𝑅𝑤(𝑛) because why we have called it as 𝑝𝑇𝑤(𝑛) + 𝑤𝑇(𝑛)𝑅𝑤(𝑛). 

So, expand this where 𝑝 is the cross correlation vector defined as 𝐸[𝑑(𝑛)𝑥(𝑛)]. which is 

nothing, but the sequences [𝑟𝑑𝑥(0)𝑟𝑑𝑥(1)⋯𝑟𝑑𝑥(𝐿 − 1)]
𝑇 what we will have it and then 

𝑟𝑑𝑥(𝑘) ≡ 𝐸[𝑑(𝑛 + 𝑘)𝑥(𝑛)] and then 𝑅 is our autocorrelation matrix which is given by 

𝐸[𝑥(𝑛)𝑥𝑇(𝑛)] . So, when you equate it here you will be seeing that (𝑑(𝑛) −

𝑤𝑇((𝑛)𝑥(𝑛))2. So, which comes down to you will be seeing that equal to [𝑑2(𝑛)] −

2𝑑(𝑛) + 𝑤𝑇(𝑛)𝑥(𝑛) and then what is the thing, (𝑤2)𝑇𝑥2(𝑛). So, when you take the 

expectation on both the sides we have represented 𝐸[𝑒2(𝑛)] = 𝜉(𝑛) 

 So, you will be substituting it here in this equation. So, you are seeing that 𝑟𝑑𝑥 =

𝐸[𝑑(𝑛 + 𝑘)𝑥(𝑛)] that is our desired and then n what will be taking combining with the 

thing ok. So, that will be our desired signal and then 𝑅  is the autocorrelation matrix 



which is given by you will be seeing that which is nothing, but 𝑅 ≡ 𝐸[𝑥(𝑛)𝑥𝑇(𝑛)]. So, 

which is given by  [

𝑟𝑥𝑥(0) 𝑟𝑥𝑥(1) … 𝑟𝑥𝑥(𝐿 − 1)

𝑟𝑥𝑥(1) 𝑟𝑥𝑥(0) … 𝑟𝑥𝑥(𝐿 − 2)
⋮ … ⋱ ⋮

𝑟𝑥𝑥(𝐿 − 1) 𝑟𝑥𝑥(𝐿 − 2) … 𝑟𝑥𝑥(0)

] 

So, you will be filling up this matrix in this way, this is 𝑟𝑥𝑥(0). 

 So, what is this matrix? We call this is a symmetric matrix and topology matrix. since all 

the elements on the main diagonal are equal. So, you will be seeing that all the things are 

equal here also you will be seeing that they will be equal ok. So, then consider the 

optimum filter with a fixed coefficient 𝑤1 as which was illustrated in figure which will be 

shown here. So, we say 𝑤0 = 1 and 𝑤1 is the weight of the filter that is what shown in 

this figure we are assuming that. And if the given signals 𝑥(𝑛)  and 𝑑(𝑛)  have 

characteristics given by this that is expected value of 𝐸[𝑥2(𝑛)] = 1  and then 

𝐸[𝑥(𝑛)𝑥(𝑛 − 1)] = 0.5. and then expected value of our desired signal 𝐸[𝑑2(𝑛)] = 4 and 

then the cross 𝐸[𝑑(𝑛)𝑥(𝑛)] = −1 and the this thing. what we call it as 𝐸[𝑥(𝑛)𝑥(𝑛 −

1)] = 1. Then what is the problem to solve? Find the minimum square error function eta 

based on the fixed coefficient vector. So, what are the coefficient vector we are going to 

have it. 

 So, in this case R has to be [
𝑟𝑥𝑥(0) 𝑟𝑥𝑥(1)

𝑟𝑥𝑥(1) 𝑟𝑥𝑥(0)
] So, which is given as  one is 1 the other one 

is going to be 0.5 as you can see the thing. 𝑥(𝑛) and 𝑥(𝑛 − 1) is 0.5 are 𝐸[𝑥2(𝑛)] = 1 

substitute this in the  as a matrix form. 

 So, this is [
1 0.5
0.5 1

] and your cross correlation matrix as you will be seeing it what is 

given as your 𝑟𝑑𝑥(0), 𝑟𝑑𝑥(1) that is what we are going to have it. So, after substituting it 

is going to be −1 and then 1. And then 𝜉 = 𝐸[𝑑2(𝑛)] − 2𝑝𝑇𝑤 + 𝑤𝑇𝑅𝑤 So, substitute all 

the values. So, we have been given = 4 − 2[−1 1] [
1
𝑤1
] + [−1 𝑤1] [

1 0.5
0.5 1

] [
1
𝑤1
]. 

So, now substitute the optimum the equation boils down to 𝑤1
2 − 𝑤1 + 7. How we are 

going to calculate optimum filter we call the name as 𝑤0 basically. Minimizes the mean 

square error function this 𝜉(𝑛) that is by substituting 𝑅𝑤0 = 𝑝 basically. So, we will say 

that it is expected value of sorry 𝜉[𝑑2(𝑛)]𝑇
0

min
 what we have to compute. Thus, the 

optimum filter can be computed as 𝑤0 = 𝑅−1𝑝 

 So, something is going to trigger in your mind. So, we have to calculate the inverse of a 

matrix in this case. So, you know the challenges will be facing in hardware 

implementation. To give an example for the optimum filter, so we are going to consider 

an FIR filter with two coefficients 𝑤0  and 𝑤1 . The desired signal 𝑑(𝑛) =

√2 sin(𝑤0𝑛) , 𝑛 ≥ 0 and the reference signal 𝑥(𝑛) = 𝑑(𝑛 − 1) delayed function of it. 



Find 𝑤0 and 𝜉𝑚𝑖𝑛 what it is been given. So, as we calculated with the previous example 

𝑟𝑥𝑥(2) = 𝐸[𝑥
2(𝑛)] = 𝐸[𝑑2(𝑛)] = 1, 𝑟𝑥𝑥(1) = cos(𝜔0), 𝑟𝑥𝑥(2) = cos(2𝜔0), 𝑟𝑑𝑥(0) =

𝑟𝑥𝑥(1), and 𝑟𝑑𝑥(1) = 𝑟𝑥𝑥(2).. So, by substituting these values so we know that 𝑤0 =

𝑅−1𝑝 this is nothing but [
1 cos(𝜔0)

cos(𝜔0) 1
]
−1

[
cos(𝜔0)

cos(2𝜔0)
]. 

 and then you will substitute your other parameters. So, then by simplifying it. So, what 

you will be getting is 𝜉 is going to be with this function minimum what you have to 

calculate. So, in practical applications what we call it as the computation of the optimum 

filter requires continuous estimation of our 𝑅 and 𝑝 when the signal is non stationary. So, 

in addition if the filter length 𝐿 is very large. The dimension of the autocorrelation matrix 

that is (𝐿 × 𝐿) is large, thus the calculation of inverse matrix is going to come it becomes 

a bottleneck which requires intensive computation. 

 So, coming with the other example. So, if the length of the filter if it L is assumed as 2, 

the error surface forms a 3 dimensional space called an elliptic paraboloid. So, now, if we 

cut the paraboloid with planes above 𝜉𝑚𝑖𝑛 that are parallel to 𝑤0 − 𝑤1 plane. We have 

obtained concentric ellipses of constant mean square errors values to give you a flavor of 

it this is how it will be when you cut into the thing you will be getting the concentric 

circles what you can see it. Then these ellipses are called the error contours. So, that is 

what was written there also and then we are going to consider an FIR filter with 

coefficient 𝑤0 and 𝑤1 and the reference signal 𝑥(𝑛) is the zero-mean white noise with 

unit variance. 

 So, we have derived the thing this is our desired signal 𝑑(𝑛) = 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1). 

So, the coefficient 𝑏0 and 𝑏1 have been given as 0.3 and 0.5. So, you have to calculate the 

error surface at the error contours basically using this equation as the derived signal. 

Because, it is a second order with the previous example and this example combined 

actually your autocorrelation matrix is going to become [
1 0
0 1

] and then your p vector is 

going to be 𝑏0  and 𝑏1  and we have this is the error function 𝜉  what we are going to 

calculate. 

 

 So, put it in this equation and then substitute all the values then you will be combining 

(𝑏0
2 + 𝑏1

2) − 2𝑏0𝑤0 − 2𝑏1𝑤1 + 𝑤0
2 + 𝑤1

2 and substitute  𝑏0 =0.3 and  𝑏1 = 0.5 then your 

𝜉 = 0.34 − 0.6𝑤0 − 𝑤1 + 𝑤0
2 + 𝑤1

2. So, the error function is given as this fine and if you 

calculate the contour for that using Matlab function defining giving these are your 𝑤0 are 

the 2 coefficients. and then 𝑤 other one coefficient what you will give it and error for 15 

that is your 15 contours what you want to have it and then you calculate right plot the 

surface function. So, using the steepest decent algorithm what you will be. putting the 

thing ok. So, when you calculate using the MATLAB what is it descent method is an 



iterative recursive technique that is starts from some arbitrary initial weight vector  𝑤(0) 

and it is going to descends to the bottom of the bowl. 

 So, somewhere here you will be selecting it and you will be moving on the error surface 

basically in the direction of the negative gradient what you are going to go down. So, that 

is estimated at that particular point and then go down. So, examples of the error surface 

and error contours for 𝐿 = 2  what it is shown. So, we will consider the what is it 

𝑤(𝑛 + 1) is the future weight vector is going to be computed by this equation. How we 

are going to derive and then how we are going to calculate the steepest descent algorithm 

technique we will see in the next class. 

 So, we will be deriving the least mean squared error algorithm also using this technique. 

So, happy learning and thank you. We will meet you in the next class. 


