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Welcome back to real time digital signal processing course. So, we will discuss today 

correlation. To recap in the last class we have covered about overlap save method, both 

overlap previous to that we had covered overlap add method for continuous input signal, 

how we can calculate our FFT and then we had seen lab also. Coming to in today's class 

we will discuss about correlation. So, what is the definition of correlation or why do we 

need it we will look at it. So, basically a process of comparing two data sequences to 

obtain a measure of similarity between them. 

 So, most of you must be knowing that you will be trying to correlate one person with 

other either in terms of their habits or their look or their appearance that is what you will 

be looking at. In this case we will be looking with our signals whatever we are going to 

get the thing. So, one of it is in the application of voice recognition in audio signal 

processing. So, which requires comparison of different speech waveforms. 

 So, you are want to recognize somebody's voice and then you have stored originally and 

then marked it this is the original person's voice. And, some of the people their voice is 

recorded or from the same person, then you want to see that whether whatever stored is 

going to match with that particular person's voice. So, this is one of the application we 

need the correlation. Next, in the case of image classification in image processing which 

requires comparison of different image data. As I was telling, so you might have taken 

the image somewhere else and then you want to have it. 

 see that the current image whether there is any correlation or not. So, the other 

application one of the mostly used what we will call it in day to day life is object 

detection and location in basically sonar and radar systems. So, which require comparison 

of the transmitted signal and the signal reflected from the target objects. So, it you want 

to all of you know now drone is becoming mostly popular. So, if you want to identify if 

one of the drone is going to cross our border or whatever may be the thing. 

 So, you want to identify it is a foe and then you want to destroy it. So, lot of work is 

happening the same way in the sonar area is one of the sea area. So, submarines and other 

things so, they will be reflecting through the signals through radar basically and then the 

reflected wave which comes back you have to process it and then see that what 

correlation it has with the template what we have it and even you would be So, in case of 



aeroplanes basically, so you want to see that what kind of aeroplane which is running 

whether it is military or civil. So, that also reflection you will be catching through the 

radar and then you will be finding out. So, you know that correlation is used everywhere. 

 So, the fundamental measure of similarity between the two sequences we call it 𝑥(𝑛) and 

𝑦(𝑛)   is the sum of the products of the corresponding base of data values that is 

Σ𝑥(𝑛)𝑦(𝑛) what we represented. Then, what we are going to say so, we say if the is it 

positively correlated? when we are going to say this if there is some kind of 

proportionality relationship between 𝑥(𝑛)  and 𝑦(𝑛) . with positive or negative values 

generally occurring concurrently in both sequences then some of the products will be a 

positive value. Because even both of them are negative we know that the product is going 

to give us positive and both of them are positive then it will be giving the positive value. 

So, then we will be saying that as a positive correlation. 

 When we call that as negative if there is some kind of inverse proportionality 

relationship between 𝑥(𝑛)  and 𝑦(𝑛)  with positive values in one sequence generally 

accompanied by negative values in the other sequence. Then we know that sum of 

products will be a negative value indicating that is negative correlation between the two 

sequences. So, when we say there is no correlation between the two sequences, if the two 

sequences are independent with positive values and negative values equally likely to 

occur in both actually the sum of products will tend to towards 0. So, we call it as due to 

self cancelling of the product terms in summation. So, then we say that they are not 

correlated. 

 

 So, continuing with the thing so, we say if two sequences 𝑥(𝑛) and 𝑦(𝑛) the cross 

correlation function we call it as 𝑐𝑥𝑦(𝑝) is defined by this equation. What do we say 

𝑐𝑥𝑦(𝑝)= lim
𝑁→∞

1

𝑁
∑ 𝑥(𝑛)𝑦(𝑛 − 𝑝)𝑁−1
𝑛=0 . So, we say where ±𝑝   represent the number of 

sampling points by which 𝑦(𝑛) has been delayed or advanced in time with respect to 

𝑥(𝑛) . And 
1

𝑁
 is included as a normalization scaling factor to ensure that the cross 

correlation of two periodic sequences converge to the same result. as more and more 

sample pairs from two sequences are included in the cross correlation operation. 

 So, that we are trying to avoid the overflow by scaling it ok. So, how do we define the 

autocorrelation? When 𝑦(𝑛) = 𝑥(𝑛) , we have a special case whereby the cross 

correlation function becomes the autocorrelation function. The equation is given by 

𝑐𝑥𝑥(𝑝)= lim
𝑁→∞

1

𝑁
∑ 𝑥(𝑛)𝑦(𝑛 − 𝑝)𝑁−1
𝑛=0  in this case the maximum autocorrelation where we 

are going to get is when 𝑝 =  0. Since, two identical in phase signals are being compared 

and the autocorrelation value decreases as 𝑝 is going to increase. So, we will see how we 

are going to calculate our correlation as an example. 



 So, what we have it the same example for FFT what we have taken the thing here also 

we will be taking the same this thing. 𝑥(𝑛)  and then ℎ(𝑛) . Here it is 𝑥(𝑛) =

{2,  0,  0,  1} and ℎ(𝑛) = {4,  3,  2,  1}. So, now  cross correlation by writing the table. So, 

𝑛 will be varying between -3, -2 -1 this is and then 0 1 2 3 to ≥ 7 we know that it is going 

to be  0 because we know that like linear convolution we call it as linear correlation. 

 Here the length is going to be L plus M minus 1. So, that is what we needed even the 

negative side. So, 𝑥(𝑛) we are going to write it as this thing. So, we know that in the 

negative region it is 0 and if nothing is mentioned we assume the starts from 0. 

Sometimes if you want to say that it is starting from the negative side of it. 

 So, you may mark with an upper arrow here stating that this is our 0th location basically. 

So, it is 2 0 0 1 and then elsewhere it is 0 what we have assumed 𝑝 ok. And then we will 

be computing our correlation equation that is 𝑐𝑥ℎ that is cross correlation with respect to 

𝑝. So, first one is ℎ(𝑛 + 3) because 𝑝 is equal to − here basically −3 it is going to be 

𝑛 + 3. So, it will be 4, 3, 2, 1 what we assume the thing here and then rest of them 0s. 

 So, when you do the multiplication here. So, what you are going to get is. when 𝑝 = −3. 

So, you are doing the multiplication 2 × 1 = 2 rest of them are 0s and we have to scale it 

by 𝑁 is 4 because both the sequences are of length 4 in this case by 4 is going to give us 

0.5. So, same way what you have to do is next is 𝑛 + 2. So, you will be shifting ℎ(𝑛) 

sequence right by one place and then you will be computing your cross correlation here. 

Same way you do the thing when this thing 𝑥(𝑛) and ℎ(𝑛) at 0 we will be seeing that is 

𝑝 = 0. So, both will be coinciding with each other that is 2 0 0 1 and 4 3 2 1 and then you 

will be seeing that the correlation value at this is peak it is 2.25. So, then you will be 

moving away from the thing 𝑝 is equal to you will be giving it as 1, 2 and then 3 and then 

4. So, this is our output of linear cross correlation. So, what is the difference with respect 

to our convolution? So, here ℎ(𝑛) is not folded in the correlation process. So, we fold 

ℎ(𝑛) in the case of convolution, here it goes as it is, it is not folded that is the difference 

between our convolution and then correlation. So, coming with continuing with the 

correlation, so what is it? it is often desirable in practice to make the autocorrelation 

function values independent of the signal scaling by normalizing the autocorrelation 

function with respect to its maximum value at zero phase. 

 So, that it need not have to depend on the thing. So, what is that normalization results in 

an autocorrelation coefficient we call it as 𝜌𝑥𝑥 whose values always lie in a fixed range of 

±1. So, when we take the autocorrelation 𝜌𝑥𝑥(𝑝)  it will be 
𝑐𝑥𝑥(𝑝)

𝑐𝑥𝑥(0)
. So, similarly 

normalizing the cross correlation function results in cross correlation coefficient 𝜌𝑥𝑦 

which is given by 𝜌𝑥𝑦(𝑝) is nothing but our 
𝑐𝑥𝑦(𝑝)

√𝑐𝑥𝑥(0)𝑐𝑦𝑦(0)
 at the 0 autocorrelation value 



what you will be taking it here for one of the signal and then autocorrelation this thing 

coefficient 𝑐𝑦𝑦 of the second signal. 

 

 So, and a square root you will be doing it which will normalize our this thing cross 

correlation function. So, the note at this places are 𝜌𝑥𝑦 lies in the fixed range of ±1 with + 

1, 0 and -1 indicating 100 percent positive correlation. When it is 0 it is no correlation 

and 100 percent negative correlation respectively if it falls in this values. So, what is what 

does it say that our cross correlation magnitude of it should be less than or equal to 

square root of this function basically. As an example, we will take the same sequence 

𝑥(𝑛) and then ℎ(𝑛), we have already calculated their cross correlation coefficient. 

 Now, we will see the values of it that is autocorrelation 𝑐𝑥𝑥(0) =
1

4
∑ 𝑥(𝑛)23
𝑛=0 =

1

4
(22 + 02 + 02 + 12) = 1.25. And then autocorrelation of the ℎ signal that is we have it 

0 𝑐ℎℎ(0) =
1

4
∑ ℎ(𝑛)23
𝑛=0 =

1

4
(42 + 32 + 22 + 12) = 7.5. Now, we have computed cross 

correlation 𝑐𝑥ℎ(𝑝) in the previous table as you can see it 0.5, 1, 1.5. So, how we can 

normalize this using this equation. So, what is the first value what we have is 0.5 divided 

by square root of  are 1.25 into 7.5 will give us the value 0.16. Same way for all the 

autocorrelation values you can calculate are. So, normalizing the thing will give these 

values which have been put into table. 

 So, you can go and then compute for rest of them whether it is going to match or not. So, 

now just like our linear correlation and linear convolution. So, we have the circular 

correlation equivalent to circular convolution. So, how we are going to write our circular 

correlation in this case? We call it as 𝑐𝑥𝑦(𝑝)=
1

𝑁
∑ 𝑥(𝑛)𝑦(𝑛 − 𝑝) 𝑓𝑜𝑟 𝑝 =𝑁−1
𝑛=0

0,1,⋯ (𝑁 − 1) . So, in this case 𝑝 will also be varying between 0 to n minus 1. So, when 

we compute the circular this thing correlation between these two sequences as we had 

done it with linear correlation. So, what we have it 𝑥(𝑛) is we have 2 0 0 1 and ℎ(𝑛) is 

given as 4 3 2 1. and then the 𝑁 in this case is 4. So, we will be going between 0 to 3 after 

that it is going to repeat. 

 So, here when we calculate it. So, this is nothing, but 2 into 4 plus 0 into 3 plus 0 into 2 

plus 1 into 1 and then scaled by 4 what we are doing it 𝑁. Then you will be seeing that it 

is going to give us 2.25. The next one is 1 and then next one is 1.75 and then the last one 

in this case is going to be 2.5 is something going to strike to you. So, you can see that 

what was our earlier case. So, it is 2.25 in the thing it is matching and you will be seeing 

only one is going to match like a linear convolution. Here also circular convolution with 

linear convolution there is only one value which is the at 0 which is going to match rest 

of them are not going to match. So, to get again our  linear correlation how we are going 

to implement it. 



 So, this is one of the questions. So, how did we do linear convolution from circular 

convolution? By padding zeros here also you can pad zeros and then compute linear 

correlation from the circular correlation. So, this is going to be your assignment or take 

home  I will call it as problem solving thing. So, you can work it out and then come back 

and then tell me whether you have got the results correctly or not ok. So, now, we will 

see some of the DFT property of our circular correlation. Just we did it for the 

convolution, we will do it for correlation. 

 So, what is it say may be stated formally with this if 𝑐𝑥𝑦(𝑝) is given by this equation 

then we call it as correlation of 𝑥𝑦𝑟 we will put it which is equivalent to 
1

𝑁
(𝑋𝑟𝑌𝑟

∗). So, the 

multiplication is going to be 𝑋𝑟 with 𝑌𝑟
∗ and then scaled by 

1

𝑁
. So, here we say 𝐶𝑥𝑦𝑟, 𝑋𝑟 

and 𝑌𝑟  are the DFTs of 𝑐𝑥𝑦(𝑝), 𝑥(𝑛) and 𝑦(𝑛) are the inputs and 𝑌𝑟   is the 𝑌𝑟
∗  is the 

complex conjugate of our 𝑌𝑟 DFT of 𝑦(𝑛) basically. So, now we will see how we are 

going to compute our correlation output. 

 So, just like we did for the DFT. So, we will be using I will be putting it as DIFFFT. So, 

this is the butterfly structure what we have it. So, we have 
1

4
 is the here also because the 

length of the sequences  4 what we have taken the thing. So, 
1

𝑁
 is 

1

4
 in this and these are 

the points what we will be getting it in basically inverse of DFT basically. 

 So, this is 𝑎0, 𝑎1, 𝑏0 and 𝑏1. and then we will be getting out our 𝑥(0), 𝑥(2), 𝑥(1) and 

𝑥(3). So, we have calculated our DFT of 2 0 0 1 in the previous class. So, which gave us 

(3,  2 + 𝑗, 1,  2 − 𝑗), are the DFT of this sequence. So, I think we have not calculated DFT 

of ℎ(𝑛). So, you can calculate in the same way using DITFFT that is decimation in time 

for fast Fourier transform butterfly structure and compute the DFT of 4, 3, 2, 1. 

 In this case we have assumed that we have calculated previously and using the values 

what we have it. So, which gives us {10,  2 − 𝑗2,  2,  2 + 𝑗2}. So, these are the DFT of 4, 

3, 2, 1. Now, we will calculate the circular correlation 𝐶𝑥𝑦𝑟 what we have to calculate. 

 So, 
1

𝑁
(𝑋𝑟𝑌𝑟

∗). So, if we substitute the thing. So, this is our 𝑋𝑟. Multiplication with 𝑌𝑟
∗ this 

is the one conjugate what we have to take the thing. So, how we are going to represent 

this? this is  {10,  2 − 𝑗2,  2,  2 + 𝑗2} . So, when you take the conjugate of this, this 

becomes positive and this becomes negative and then calculate these values. 

 So, you will be seeing that it is going to be {7.5,  0.5 + 𝑗1.5,  0.5,  0.5 − 𝑗1.5}. So, this is 

our value for 𝐶𝑥𝑦𝑟. Now, how we will be calculating our 𝑐𝑥𝑦(0) as you can see the thing. 

So, you will be putting 𝑎0 + 𝑎1 which is nothing but 
1

4
[𝐶𝑥𝑦0 + 𝐶𝑥𝑦2]. So, these are the 

values what we have it. And then +
1

4
[𝐶𝑥𝑦1 + 𝐶𝑥𝑦3]. Here we have these are the values 



what we have it 
1

4
[7.5 + 0.5] +

1

4
[(0.5 + 𝑗1.5) + (0.5 − 𝑗1.5)] = 2.25 . So, how we 

calculated the circular convolution using a DFT property. So, we can calculate these 

values. So, the next one is 𝑐𝑥𝑦(1). So, you will be substituting these values and then 

calculate the thing. 

 So, you will be getting it as 1 in this case. Same with respect to the next two. So, you 

will be seeing that the DFT using DFT the circular correlation values resemble as that of 

the direct circular correlation what we have calculated. So, coming to the next topic we 

have to introduce little on random process. So, we know that real world signals such as 

speech, music and noise are time varying and  and we know that they are random in 

nature. The set of all possible outcomes in any given experiment is called a sample space 

𝑆. 

 Why do we need random process? So, you are seeing that some of the applications what 

we will be seeing later on. based on some of the speech and music already we have seen 

the thing, how a noise is introduced in the music or in the speech, how we are able to 

eliminate our noise if our noise is known in this case. In some of the cases noise may not 

be known ok, so we have to adapt to the  So, which requires our random process. So, the 

next topic we will be covering is adaptive filter. So, we need this basic knowledge of 

random process only little bit of it whatever required for deriving our LMS algorithm will 

be covering it in this course. 

 So, those who want to have more they can take up as a course and then complete it. So, 

this is the sample space what we have defined and we have to define the random variable 

x. How we are going to define it? This is a function that maps all elements from sample 

space S into the points on the real line. So, as an example considering the outcome of our 

rolling fair die ok. So, we have obtained the discrete random variable that can be any one 

of the discrete values from 1 through 6 all of us know that our fair die has 6 values it 

when we roll it. 

 So, we do not know what we this is the outcome, but it should live be 1 through 6. So, 

the cumulative probability distribution function we call it as CDF of a random variable 𝑥 

is defined as the that basically you can see that there is a repetition here that is 𝐹(𝑋) =

𝑃(𝑥 ≤ 𝑋), where capital 𝑋 is real number and 𝑃(𝑥 ≤ 𝑋) is the probability of (𝑥 ≤ 𝑋).. 

So, we call it as probability density function of a random variable 𝑥 is going to be defined 

with that, 𝑓(𝑋) =
𝑑𝐹(𝑋)

𝑑𝑋
. 

If the derivative exists. So, two important properties of probability density function is 

𝑓(𝑋) are summarized as this way that ∫ 𝑓(𝑋)
∞

−∞
𝑑(𝑋) = 1. and 𝑃(𝑋1 < 𝑥 ≤ 𝑋2) is given 

by our 𝐹(𝑋2) − 𝐹(𝑋1). So, which is nothing but we will be putting ∫ 𝑓(𝑋)
𝑋2
𝑋1

𝑑(𝑋). So, if 



𝑥 is a discrete random variable that can be any one of this discrete  That is 𝑖 = 1,2, …,  as 

the result of an experiment we define the discrete probability function as 𝑝𝑖 = 𝑃(𝑥 = 𝑋𝑖) 

 it belongs to this. As an example, so we consider a random variable 𝑥  that has the 

following probability density function, 𝑓(𝑥) = {
0,   𝑥 < 𝑋1  𝑜𝑟 𝑥 > 𝑋2
𝑎,            𝑋1 ≤ 𝑥 ≤ 𝑋2

. 

 

 So, that is we say it is uniformly distributed between 𝑋1 and 𝑋2 and constant value 𝑎 can 

be computed as with this equation that is ∫ 𝑓(𝑋)
∞

−∞
𝑑(𝑋) = ∫ 𝑎 ∙

𝑋2
𝑋1

𝑑(𝑋) = 𝑎[𝑋2 − 𝑋1] =

1 

as this can be seen that so the maximum value is 
1

𝑋2−𝑋1
. And, then we will be seeing that 

this is uniformly distributed between 𝑋1 and 𝑋2. So, 𝑎 =
1

𝑋2−𝑋1
 what it has been taken. 

So, that is the reason why we will be getting it as 1 here. So, what is it if a random 

variable 𝑥  is equally likely to be any value between two limits 𝑋1 and 𝑋2  and cannot 

assume any value outside that range, it is uniformly distributed in the range that is 

[𝑋1, 𝑋2] . 

 

 So, that is as shown in the figure it is uniformly distributed in this region then we call 

that is uniform density function is defined by this 𝑓(𝑋) = {
1

𝑋2−𝑋1
𝑋1 ≤ 𝑥 ≤ 𝑋2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. So, 

coming with some of the operations of random variables. So, the statistics what we call it 

as one is the first is the mean what will be defining it that is nothing, but expected value 

of 𝑥 which is given by∫ 𝑋𝑓(𝑋)𝑑𝑋
∞

−∞
. So, this is for the continuous time case is defined as 

this, for the discrete time case it is a ∑ 𝑋𝑖𝑝𝑖𝑖 , i is varying ok. So, we represent E dot 

denotes the expectation operation or ensemble averaging basically. 

 The mean 𝑚𝑥 defines the level about which the random process 𝑥 is fluctuates. So, you 

will be seeing that is linear operation. The useful properties of the expectation operation 

are 𝐸[𝛼] = 𝛼  and 𝐸[𝛼𝑥] = 𝛼𝐸[𝑥] basically where 𝛼  is a constant what we assume it. 

𝐸[𝑥] = 0, 𝑥 is  we call it as 0 mean random variable. So, you will be using a MATLAB 

function if you see the thing the mean calculation is given 𝑚𝑥 = 𝑚𝑒𝑎𝑛(𝑥) computes the 

𝑚𝑒𝑎𝑛(𝑥) of all the elements in the vector 𝑥 using the MATLAB function. So, as an 

example so, we said that our fair die rolling of a fair die. 

 So, we said 𝑁 times that is (𝑁 → ∞). So, the what will be the probability of outcome 

from this. So, you will be seeing that 𝑋𝑖 is we are taking 6 and then our probability is 1/6 

in all the cases. And in this case mean is calculated as 𝑚𝑥 is ∑ 𝑝𝑖𝑋𝑖
6
𝑖=1  So, 1/6 of this 

which is going to be 3.5 and the variance the measure of spread about the mean and is 

defined as 𝜎𝑥
2 = 𝐸[(𝑥 − 𝑚𝑥)

2]. 



 So, which is by substituting our expected value ∫ (𝑋 −𝑚𝑥)
2𝑓(𝑋)𝑑𝑋

∞

−∞
 for the 

continuous time case and it is going to be sigma pi xi minus mx whole squared for the 

discrete time case. So, these are the mean and then variance what will be defining it, 𝑋 −

𝑚𝑥 is the deviation of 𝑋 from the mean value 𝑚𝑥, the positive square root of the variance 

is called the standard deviation 𝜎𝑥. And MATLAB this thing function for the standard 

deviation calculation uses STD function ok. The various defined can be expressed as that 

is 𝜎𝑥
2 = 𝐸[(𝑥 − 𝑚𝑥)

2] = 𝐸[𝑥2 − 2𝑥𝑚𝑥 +𝑚𝑥
2].  So, you are taking the expected value 

inside which is nothing but 𝐸[𝑥2] − 2𝑚𝑥𝐸[𝑥] + 𝑚𝑥
2. So, this is the  value what we will 

be getting it that is this becomes 0. So, it will be 𝐸[𝑥2] + 𝑚𝑥
2. 

 So, we call this is the mean square value of 𝑥. So, variance is the difference between the 

mean square value and the square root of the mean value. So, this is the random variable 

definition some of it what we will be seeing it. So, we see that if what is it mean value is 

equal to 0 that is 𝑚𝑥 = 0 ,, then what happens to 𝜎𝑥
2 is nothing, but 𝐸[𝑥2]. So, which we 

call it as 𝑃𝑥 which is the power of 𝑥 basically. Consider the uniform density function, the 

mean of the function can be computed by this 𝑚𝑥 = 𝐸[𝑥] = ∫ 𝑋𝑓(𝑋)𝑑𝑋
∞

−∞
. 

 So, we have seen the uniform which is substituted at 
1

𝑋2−𝑋1
. So,  your ∫ 𝑋𝑑𝑋

𝑋2
𝑋1

=
𝑋2−𝑋1

2
 

what will be resulted in. So, variance of the function is defined 𝜎𝑥
2 = 𝐸[𝑥2] − 𝑚𝑥

2 this is 

what we had it 𝐸[𝑥2] − 𝑚𝑥
2. So, if we substitute the thing with 𝐸[𝑥2] with that and then 

by simplifying, so we will be getting it as 𝑚𝑥
2. So, in general if 𝑥 is the random variable 

uniformly distributed in the interval minus delta and delta. So, then we will be having 

𝑚𝑥 = 0 and then  𝜎𝑥
2 = ∆2

3⁄   by substituting in this you can calculate with −∆ and ∆ 

substituting it here you will be getting ∆
2

3⁄  as the value. 

This completes our on correlation and little bit on random process. In the next class we 

will be taking it up adaptive filter. So, how we are going to derive it. Thank you. 


