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Welcome back to real time digital signal processing course, today we will discuss about 

continue with our FFT. So, in the last class, we discussed about FFT for fast computation, how 

it is going to help us in speeding up our computation from DFT. And then we saw that what 

are the quantization effects of our FFT in computation and then how we are going to do the 

scaling.  
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So, today we will talk about a little bit on now computation aspects of DFT and then FFT with 

examples. So, we call discrete Fourier transform pair as analysis and synthesis equations. So, 

analysis equation is given by 𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑘(𝑛 𝑁⁄ )𝑁−1
𝑛=0 , 𝑘 = 0,1, ⋯ , 𝑁 − 1. So, we can 

represent this with that twiddle factors and inverse DFT. As we know it is IDFT, which is given 

by 𝑥(𝑛). 

 

We have the scaling function 
1

𝑁
∑ 𝑋(𝑘)𝑁−1

𝑘=0 𝑊𝑁
𝑘, here it is 𝑊𝑁

𝑘, here it is going to 𝑊𝑁−𝑛
𝑘  what 

we will be taking it according to the twiddle factors. To derive this 𝑥(𝑛), what we can do is we 

can substitute our 𝑋(𝑘) with this equation, and then derive the thing. So, for this derivation that 

𝑥(𝑛) becomes 𝑥(𝑛) and why we have the 
1

𝑁
 scaling function also, you can refer to any of the 



digital signal processing book. So, which will give you how to derive our, that is analysis, 

substitution in synthesis get our 𝑥(𝑛) back.  
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So, now we will see with a few examples, so, we first will determine the endpoint DFT of the 

following sequence for 𝑛 ≥ 𝐿, what we call it. So, 𝑥(𝑛) = 1 in this 0 ≤ 𝑛 ≤ 𝐿 − 1 and which 

is going to be 0 otherwise, so, then we can represent our DFT of 𝑥(𝑛) up to length 𝐿 − 1. So, 

that is 𝑋(𝜔) or 𝑋(𝑘) what we can take it, which is going to be, in this case we are assuming 

𝑋(𝜔) that is DTFT discrete time Fourier transform, here, the amplitudes are discrete, and then 

our frequency is continuous. That is the reason why omega is there, which 𝜔 is going to vary 

0 to 2𝜋 basically, then DTFT is given as 𝑥(𝑛)𝑒−𝑗𝜔𝑛. And then when we substitute that we have 

got 𝑥(𝑛) is equal to all one’s. So, then what happens to that ∑ 𝑒−𝑗𝜔𝑛𝐿−1
𝑛=0 , so, this what will be 

represented with 
𝑠𝑖𝑛(𝜔𝐿 2⁄ )

𝑠𝑖𝑛(𝜔 2⁄ )
𝑒−𝑗𝜔(𝐿−1)/2.  

So, what happens to our 𝑋(𝜔)? So, this is what our equation is, I think something it must be 

boggling in your mind basically, we call this as a sine function. So, 𝑋(𝑘), if we calculate that 

in the DFT domain, this was in the DTFT. So, then what happens to this equation 𝑠𝑖𝑛 (
2𝜋𝑘

𝑁
𝐿 2⁄ ) 

and then here also 𝑠𝑖𝑛 (
2𝜋𝑘

𝑁
2⁄ ) and then there is 𝑒−𝑗

2𝜋𝑘

𝑁
(𝐿−1)/2

. So, this is what, what we will 

be getting it if our 𝑥(𝑛) is we call it as a unity step function basically here you are for N 

basically n is, in this case L - 1 length.  
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So, then we will take a simple example to see that how we are going to compute our DFT from 

a small example. So, what it says is we have to do the plot and now calculate the magnitude 

plot the magnitude and phase spectrum of the sample data sequence it is just 2, 0, 0, 1 4 point 

of what we have to calculate, so, which was obtained using a sampling frequency of 20 

kilohertz, and verify the DFT result using IDFT also whatever DFT values, we have got it, how 

to verify it, so, we have to do IDFT, then we have to get back the signal.  

 

So, we will see with that, because it is the small value what we have taken the thing 4 bit, so, 

our 𝑋0 what we will calculate first, so, for that ∑ 𝑥(𝑛)3
𝑛=0  because our 𝑘 = 0 in this case, 

correct? So, 𝑒−𝑗 will be one so, it is 𝑥(𝑛). So, it is nothing but 2 + 0 + 0 + 1 which is equal to 

3, which is |3|∠0° and then we will calculate X of 𝑋1 basically, ∑ 𝑥(𝑛)𝑒−𝑗3
𝑛=0 .  

 

So, which is equal to what is it 𝑥(𝑛)𝑒−𝑗
𝜋

2  because it is n capital N = 4 so, which comes down 

to −𝑗
𝜋

2
𝑛 basically. So, when you substitute the values for expand your summation it is going 

to be a first one is 𝑋0 is 2. So, it is going to be 2 and the other 2 values what we have taken for 

simplicity is 0 and then the last one is when n = 3, so, this becomes 𝑒−𝑗
3𝜋

2 .  

 

So, if you substitute for 𝑒−𝑗 in cos and sine you will be seeing 2 + cos
3𝜋

2
− 𝑗 sin

3𝜋

2
. So, you 

will be getting this as 2 + 𝑗. So, this is 0 and this is −1 so, it will be plus 2 + 𝑗 so, when you 

calculate your magnitude it is going to be 2.236∠26.57°. So, magnitude is computed with the 

square root of real square plus imaginary square.  

 



So, that is the value you will get it and then the angle will be tan inverse what you can see 

imaginary divided by your real. So, now calculate the 𝑋2 next page. So, here also you will be 

seeing that 3 components are left out it is going to be 𝑒−𝑗3𝜋, so, it is going to be cos 3𝜋 −

𝑗 sin 3𝜋. So, this comes out as you can see that it is going to be minus one and this j term is 0.  

 

So, it becomes a 2 − 1 = 1∠0°, there are 2 ways of computing your 𝑋3. So, one is here what 

is shown is direct computation. So, what you arrive at is 2 − 𝑗, so, this is added 2.236 at an 

angle of minus 26.57° , this is one method. The other one is you can use the periodicity property 

basically, and we know that 𝑋3 is equivalent to 𝑋1 conjugate. So, then what happens I will be 

taking 2 and −𝑗. So, this is the way what you will be substituting. 
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So, now we will see how the magnitude and phase response is going to look like. So, we have 

been given the sampling frequency 𝑓𝑠 is 20 kilohertz and then our 𝑁 = 4. So, if I substitute 
𝑓𝑠

𝑁
 

is nothing but 5 kilohertz, so, we will be seeing that 𝑓 in the thing x axis will have points of 0, 

5, 10 and then 15 are the sampling frequencies so, 4 points what we have to have our magnitude.  

 

Magnitude of our 𝑋𝑟 is going to be we know that first one is 3 what we have got it and second 

one is 2.236, 1 and then 2.236 and then we have calculated our angle also at these frequencies 

what you will be putting the ∠ so, first one is at 0 is 0 and here we have at 26.37° and then the 

at 10 kilohertz we have 0 and at 15 kilohertz it has minus 26.57°, this is how manually you can 

do the thing.  

 



So, we will seeing in the lab that how we can compute our magnitude and phase spectrum using 

either MATLAB or Code Composer Studio in using C language.  
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So, now comes the thing so, we have to verify whatever DFT values we have got it using the 

IDFT that is the inverse discrete Fourier transform we are going to get back. So, we saw our 

analysis and synthesis equation. So, we will be making use of our synthesis equation, which is 

one by n is nothing but 1 by 4 in this case, so, our r will be varying between 0 to 3𝑋𝑟 what I 

had to put the thing, so, 
1

4
[3 + (2 + 𝑗) + 1 + (2 − 𝑗)]0 .  

 

So, you are already seeing that we have got back our original signal 2 that is first signal. So, 

this is going to be 3 + 1, 4 by 4 is sorry, 3 + 1 + 4 plus, what is the thing we have it here, you 

can see that this is 2 + 2 is 4. So, 4 + 4 is 8, what we have it 8 by 4 is nothing but 2 + 𝑗 and −𝑗 

are getting cancelled in this case. So, now, we will say 𝑥(1) so, this is 
1

4
∑ 𝑋𝑟

3
𝑟=0 𝑒

𝑗
2𝜋

4
𝑟
.  

 

So, which by expanding we are going to get it as that is we will be getting it 
1

4
. So, we have to 

apply whatever DFT equation what we have got it values for them 3 + (2 + 𝑗)𝑋1 and then this 

is 𝑒
𝑗

𝜋

2 + 𝑒
𝑗

𝜋

2 + (2 − 𝑗)𝑒
𝑗

3𝜋

2  in this case, so, when we expand this, so, we are going to get it as 0. 

So, you can simplify this and you can see that the output is 0.  
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So, how about 𝑥(2) now, same way what we have to work it out, substitute all the values and 

then you will be seeing that that also comes in 0. So, we know that using the symmetry property 

we can calculate 𝑥(3) or manually by calculating to verify that you are going to get it 1 what 

you can see it, this case, we will not be able to compute the other value because it is 2, 0, 0, 1 

is our value.  

 

So, we had to go with manual computation and you will be seeing the last stage what you have 

it is these are the values by simplifying you will get it as 1. So, you will be seeing that what 

was the original case 2, 0, 0 here and 1 is the output. So, you will be seeing that DFT and then 

is analysis equation and IDFT is your synthesis. So, whatever value you have sent it you are 

getting it back basically so, no compression is happening.  
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So, why I am calling it as compression sometimes we use our DFT for compression also we 

can eliminate some of the low values and use in compression. Now we will see that how we 

can use the previous one was decimation in time what we have used it using the FFT that is 

fast Fourier transform using the butterfly structure. So, we have 𝑥(0) and next one is 𝑥(2), 

𝑥(1) and 𝑥(3) are the 4 inputs.  

 

What we have to give it so this you will be seeing that this is 𝑥(2) = 0, and 𝑥(1) = 0 , and 

then 1 is 𝑥(3) so it does not make the order reverse in this case because both of them we have 

0, then we have to calculate our this thing but twiddle factors since 𝑛 =  4. So, our 𝑊𝑟 what 

we call it or 𝑊𝑘 which of the one we are can converse and we will be using notations it may 

little bit vary from 1 to 1, so, you can have 1 notation to use the thing.  

 

So, it becomes 𝑒
−𝑗

2𝜋

𝑁
𝑟
. So, which will be equivalent to, it is 𝑒

−𝑗
2𝜋

4
𝑟
. So, which is nothing but 𝑒

−𝑗
𝜋

2
𝑟
. 

So, we will see that 𝑊0 always we know that it is 1 what is 𝑊1 is nothing but putting 𝑟 =  1 

it is going to be 𝑒
−𝑗

𝜋

2. So, which is nothing but cos (
𝜋

2
) − 𝑗 sin (

𝜋

2
). So, we know cos (

𝜋

2
) = 0 and 

sin (
𝜋

2
) = 1, so, we are going to end up with −𝑗.  

 

So, these are the only twiddle factors what we need in computation. So, you will be putting this 

is 1 and this is −𝑗 here. So, now, do the simple multiplication and addition. So, what is my 𝐸0 

is nothing but 𝑥(0) + 𝑥(2). Because we assume that this is 1 so, this is first one is 𝑥(0) +

𝑥(2), which is nothing but 2 + 0 = 2. And then same way we will calculate 𝐸1 here, which is 

nothing but 𝑥(0) − 𝑥(2).  

 

So, you can see that how we are going with the thing 2 - 0 = 2 and compute your 𝑂0 and then 

𝑂1 this is an even part what it is and this is the odd part. So, what you will be getting 1 and then 

−1 in this case. So, these are the 𝐸0 𝐸1 𝑂0 𝑂1, we have to calculate because it is in this thing 

in order output 𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) what we have it, so, what is 𝑥(0)? So, you will be seeing 

that 𝑥(0) is 𝐸0 + 𝑟𝑥(1) .  

 

So, it is 2 + 1 = 3 in this case and then our 𝑥(1) is nothing but what is what we have 𝐸1 and 

then next −𝑗𝑂1. So, that is what, what it is written. So, it is nothing but 𝐸1 what we have is 

2 + − 𝑗 into 1 is our thing is −1. So, this you will be getting it as 2 +  𝑗 and you will be seeing 



the last one if you substitute that thing you will get it as 2 −  𝑗 so, 𝑥(3). So, whatever DFT 

you have seen that.  

 

How difficult is to calculate here using the butterfly structure that is fast Fourier transform, we 

were able to do it in 2 steps to compute this values and 1 weight factor what we have to calculate 

and then put it in our butterfly structure.  
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Now, we have to see that, whether we are going to get back the results using FFT. So, what is 

it here, 𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) are in sequence and our output will be out of order 𝑥(0) that is a 

bit reversed output what we will be getting it 𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3), this we call it as 

dissemination in frequency FFT. So, you will be seeing that we use this dissemination in 

frequency which is nothing but 
1

𝑛
  

1

4
what we have to put a scale all of them. 

 

And then we have the butterfly or whatever we use for DFT which is going to be reversed in 

this case, as you can see the thing and you will be marking this as 𝑎0  𝑎1 𝑏0 and 𝑏1 and you are 

this thing, it is 1 coefficient here minus j conjugate you will be getting it as plus j in this case. 

So, at then rest of the butterfly, you will be multiplying with minus 1 at the second part of it, 

the top 1 is going to have plus 1 as you can see that thing here plus 1. 

 

And here also plus 1. So, to this computation, you will be seeing that you have to get back your 

output. So, we have 𝑎0  𝑎1 𝑏0 and 𝑏1 first computed and in the next case, you will be calculating 

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) so, you are seeing that you are getting back to 2, 0, 0, 1 as your output. 



This is how we are both of them decimation in time and decimation in frequency work for your 

analysis and synthesis equivalent of DFT.  
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Now, some of the important DFT properties we are seeing in this slide. So, the properties of 

the DFT are different from those typical, what we use it for discrete time Fourier series and 

discrete time Fourier transform, because they are circular in nature. So, that is they applied to 

the periodic repetition of the signal here you can have DTFS or DTFT it can be this thing 

continuous signal minus infinity to infinity whereas, this uses a circular property.  

 

So, the first one is your notation, what is it time domain is represented as x of n and frequency 

domain we represent it as 𝑋(𝑘). So, the first one is the periodicity. So, 𝑥(𝑛) = 𝑥(𝑛 + 𝑁) is 

nothing but the state of what we will be getting it 𝑥(𝑛) itself. So, which is equivalent to 𝑋(𝑘) =

𝑋(𝑛 + 𝑁) in the frequency domain and what is our linearity property. So, if 𝑥1 is multiplied by 

any coefficient 𝑎1 and 𝑥2 multiplied by 𝑎2. 

 

And if you add them the result in frequency domain also it should be pre multiplied by 𝑎1 with 

respect to your frequency domain conversion that is 𝑎1𝑋1(𝑘) + 𝑎2𝑋2(𝑘). So, you can have the 

time reversal in your time domain. So, here it is going to be in the frequency domain it is with 

respect to k what you are going to get the time reversal and then you can have this circular time 

shift with respect to n.  

 

So, which is going to be reflected in your frequency domain as 𝑋(𝑘)𝑒−𝑗2𝜋𝑘𝑙/𝑁  and complex 

conjugate 𝑥∗(𝑛) is nothing but 𝑋∗ of delayed function that is (𝑁 − 𝑘). And if we do the circular 



convolution in the time domain, it is circular multiplication as you will be seeing 𝑋1(𝑘)𝑋2(𝑘). 

So, with respect to multiplication here, it becomes the convolution circular convolution divided 

by scaling factor 
1

𝑁
.  

 

So, we know the Parseval’s theorem. So, it is 𝑥1(𝑛) into 𝑦∗(𝑛) in the time domain, so, which 

is represented as 
1

𝑁
∑ 𝑋(𝑘)𝑌∗(𝑘) 𝑁−1

𝑘=0 .  
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So, now, we will see that how our, hardware complexity using DFT and FFT in processor is 

going to reflect. So, as an example, DSP system is based on a floating point processor we have 

considered and we say that it is capable of performing multiply and add instruction in 1 machine 

cycle, which is going to take 15 nano second. So, we have ignored in this case, all IO 

operations.  

 

So, only we are looking into the computation aspects of our hardware. So, and we have next 

one what it is defined is that is suppose that the system is used to implement the DFT directly 

and is required to output the DFT of 512 input sample points within an interval of 64 samples, 

that is chunks of 64 samples are going to come out and then what we have to do it that is 

estimate the maximum sampling frequency if sine and cosine function are pre computed and 

stored in the lookup table.  

 



So, we are not going to use the library function so, we are saving little time. So, we will be 

calculating for 512 points both sine and cos is computed and then kept in the table. So, we are 

using that to compute our DFT values.  
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So, what is it? Using the DFT means, we know that are either 𝑋𝑟 = ∑ 𝑥(𝑛)511
𝑛=0 cos (

2𝜋

512
𝑟𝑛) −

𝑗 ∑ 𝑥(𝑛)511
𝑛=0 sin (

2𝜋

512
𝑟𝑛) that is we have split out e - j into cos and sine function, so, we can see 

that this involves what is it? 512 possible sine values and 512 possible cosine values are pre 

computed.  

 

So, we are not taking the computation time of it, because we have kept it in the lookup table 

and then what happens to this now, so, frequency point requires 512 multiplications what we 

need it here and then we need 511 additions as you think something it should be coming and n 

multiplications and n - 1 additions what we need it for real and then imaginary part separately 

what we have to do it then it is order of n if I take it 2 into 512 times what we want it, but what 

we have is k our r is going to go between 0 to 511.  

 

So, then what happens to this it is 2 into 512 square is our computation time to do our endpoint 

DFT. So, and then we have been given we are ignoring because multiplication and addition we 

are combining it which is order of n square. So, which takes 50 nanosecond what we have been 

given with so, then this comes to about 26.21 millisecond. And we have been given that 64 

samples chunks are going at a time.  

 



So, we will divide this 26.21 by 64 which gives us 0.4095 milliseconds to do DFT for 512 

length. And we know that maximum frequency what we can operate this circuit with this 1 by 

4095 millisecond, which comes to about 2442 hertz or 2.442 kilo hertz so, this is what with the 

DFT.  
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So, we will see with the FFT how we are going to compute it, except for stage 1, which is going 

to have only additions. So, each stage we had to do n by 2 complex multiplications that is 256 

complex multiplications and we have discussed in the last class that each complex 

multiplication is going to take 4 real or ordinary multiplication. So, it becomes 4 into 256 

multiplications and we said addition is going to cause us 2 into 256 additional subtractions.  

 

So, each complex addition is going to take 2 additions. So, that is the reason why 2 into 256 

number of additions for the rest of the stages what we need it. So, if each complex 

multiplication is implemented by executing the multiply and add instructions, 4 times the 

number of multiply and add instructions required to execute at each stage that is 4 into 256 

what we want, it has to be executed.  

 

Further the complex additions at each stage except stage one also require an addition of 2 into 

512 times we said additions. So, what happens is the total number of computation stages log 2 

512 which is nothing but 9 stages what we have it and we set stage 1 we do not need any 

complex multiplication in the thing. So, we only need 5 additions in this case. So, if the 

execution time of addition instruction is assumed to be same as the multiply and add 

instruction.  



 

So, although we know that multiply may take little more time, but we are assuming at present 

it is going to have addition also same time, then the computation time required for 512 point 

FFT what we are putting it so, this is 4 into 256 + 2 into 512, what we have it our additions as 

you can see the thing complex additions is nothing but 2 into 512 into because the first stage 

we are having only additions which is assumed here 512 stages.  

 

So, n - 1 stages here 9 - 1 is going to be 8. So, these are the ones which are causing our complex 

multiplication and then complex addition which is separately taken into account. And then now 

whatever complex addition with multiplication is coming we are assuming that it is consumed 

in this, this is the other additions what we are showing it here. So, into 50 nanoseconds is going 

to give us 0.8448 millisecond.  

 

And then we said that it is 64 samples in this time period what we are outputting it. So, divided 

by that will give us 13.0 microsecond and the maximum sampling frequency is going to be 1 

by this, which is going to be 75.757 kilohertz, as you can see, 2 point some kilohertz and using 

DFT using FFT we are going to have 75.75 kilohertz so, that is the comparison. So, you will 

be seeing that it is equal to 31 fold increase in the computation speed.  
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So, now, we will see that how we can implement FIR filter using FFT. So, we will be taking 

the DFT of our input signal and DFT have our coefficient and then we have to do complex 

multiplication here 𝑋𝑟𝐻𝑟 and then we are going to take IDFT so, this is what our circular 



convolution which is going to happen. So, how we are going to calculate this, if we are taking 

a 4 point. 

 

Then we know that 4 square is 16 what we are going to get the thing and then multiplication 

and 4 into 4 - 1 12 additions, why in the direct circular convolution for 4 point now, we are 

assuming the same thing and then now, trying to see that, whether we are going to have 512 

multiplications. So, here will require 512 multiplications and 512 into 512 - 1 whatever we said 

that additions for using DFT.  

 

So, we will be seeing that add instruction we can do it as 512 square basically what we are 

going to have it as it sees 512 square here it is 512 square. So, what we say is 512 square into 

50 nanoseconds, so it is going to be 13.11 millisecond what we need it.  
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So, now we will see using FFT, although I am going to take it DFT and this thing, so, previously 

we calculated each FFT needs 0.8448 millisecond and then how many times I have to do it here 

1, 2, and then 3 of them what I have to do it because even IDFT is equivalent to DFT. So, we 

can now compute it as 3 into 0.8448 millisecond plus we have to do this complex multiplication 

here.  

 

So, each complex multiplication as we know we have it as 4 normal multiplication 4 into 512 

into 50 so, this is the additional. So, which runs at 2.6368 millisecond and then we are 

calculating that is 3.11 milliseconds in the thing here it is 2.6368 millisecond so we are still 



using all this complex method our FFT method is still 4.97 faster than that direct DFT and one 

more thing one can keep in mind that. 

 

Because this is a pre define coefficient basically so I will not be recomputing every time only 

our input signal which is coming continuously so if we apply for DFT and keep it pre computed 

values here so we can avoid one of the DFT online so then it becomes this one 2 into 0.8448 

so which reduce the so 1.792 millisecond compared to our 2.6368 millisecond so still we will 

be gaining the thing.  
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So, we will see in the next class the next class because we say that our 𝑥(𝑛) is continuous how 

we will use the overlap add or save method to compute our FFT. Thank you. 


