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Welcome back to real time digital signal processing course, today we will discuss continue with 

our fast fourier transform. So, in the last class, we discussed about how to derive the equations 

from our DFT and then we drew the butterfly structure and then said that how our computation 

can be improved using FFT.  
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So, today we will see that what is the finite wordlength effects in FFT. So, what are the first one 

is we can have we are going to have roundoff errors. So, which are produced when the product 

𝑊𝑘𝐵 as we can see is truncated or rounded to the system wordlength, we have been seeing that 

when it is getting multiplied by this butterfly structure will be going to be truncated or rounded. 

Next one is what we have is the addition so, which is going to cause overflow.  

 

So, error so, which results when the; output of a butterfly exceeds the permissible wordlength. As 

you can see there is an addition. So, when it exceeds the limit, then we will have the overflow. The 

other one is our 𝑊𝑘 that is coefficients quantization errors; this is the third one what we have it 

which result from representing the twiddles factors using a limited number of bits. So, because we 



cannot represent 𝑊𝑘 itself for an infinite number of bits are not available depending on number of 

bits. 

 

So, we have to truncate our twiddle factors. So, that will be causing us coefficients quantization or 

sine and cos function what we are going to store them.  
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So, we will see first roundoff errors. So, what is it we have taken here 𝑥0 + 𝑗𝑦0 instead of 

representing it as A we have taken split as 𝑥 as input and this is 𝑥1 + 𝑗𝑦1. So, this we have our 

twiddle factor is cos ⬚ − 𝑗 sin ⬚ function. So, you are seeing the multiply sign and this is going 

to be multiplied by -1 and our output is going to be 𝑥0
′ + 𝑗𝑦0

′. So, what we are going to assuming 

that each butterfly generates identical but uncorrelated errors. 

 

The maximum noise power at each FFT output is approximately given us equivalent to 𝑊𝑁 which 

is nothing but 𝑒−𝑗
2𝜋

𝑁  nothing but cos (
2𝜋

𝑁
) − 𝑗 sin (

2𝜋

𝑁
). So, we represent cos function as 𝐶 and then 

a sin function as 𝑆 and we are taking the negative sign inside so, it is going to be 𝐶 + 𝑗(−𝑆) and 

then we know that our 𝐴 = (𝐶)𝑥1 − (−𝑆)𝑦1 same way our B is going to be represented in this 

fashion. 

And then we know that 𝑥0
′ = 𝑥0 + 𝐴 what we have it A is given by this equation and 𝑦0

′ = 𝑦0 +

𝐵 given by this equation and 𝑥1
′ = 𝑥0 − 𝐴 and 𝑦1

′ = 𝑦0 − 𝐵. You can verify whether we have got 



these equations correctly or not, then what happens? Our butterfly computation requires for real 

multiplication what we have, as you can see the thing here what we needed. 

 

So 1, 2, 3 and then 4 real multiplications and 6 real additions. So, how many of them you can count 

here this is 1, 2, 3 and then 4. So, we have another 2 coming from your these two A and B here 4 

+ 2 what we needed. So, 6 real additions taking into account our subtraction is equivalent to 

addition that has to be kept in your back of mind whenever we do this additions and next what we 

say is then what happens to our round of noise power that is we call it as variance at the output of 

each butterfly is going to be given by.  

 

So, we have derived our noise power as q square by 12. So, because we have 4 real multiplication, 

so, it is going to be 4 ×
𝑞2

12
 which is nothing but 1/3 and then we are substituting 𝑞 = 2−(𝐵−1) in 

terms of how many bits it becomes 
1

3
2−2(𝐵−1) and then this is at each butterfly. So, then we have 

how many butterflies we are going to have.  

 

So, we approximate it as although we have 𝑁 − 1 is the thing, number of stages what we are going 

to have it, we have rounded it off to 𝑁. So, the noise power for 𝑁 stages is going to be 𝜎0
2 is nothing 

but 𝑁𝜎𝐵
2. So, when we substitute our butterfly 𝜎𝐵

2 which becomes 
𝑁

3
2−2(𝐵−1).  
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So, we need total number of butterflies required to produce an output sample is so, we will be 

seeing 
𝑁

2
+

𝑁

4
+ ⋯ + 2 + 1. So, when you take the series expansion, so, you will be seeing that it 

is nothing but 2𝑀−1 + 2𝑀−2 + ⋯ + 2 + 1. So, when you substitute it, so, which becomes 

equivalent to 𝑁 −  1 butterflies are required, so, which was approximated as 𝑁.  
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So, now, you will be seeing that how the error is going to have its impact. So, here you want to 

compute 𝑥(0). So, how many butterflies we need it we have to go back from here. So, I need one 

butterfly here and the previous stage to compute this and this output here one butterfly is required 

in the stage 2 and this is the other butterfly required to compute the output of this thing or we need 

𝑊𝑁
0 in this case.  

 

So, 3 butterflies and in the previous case, you will be seeing that we need all the 4 butterflies here. 

So, this is 4 + 2, 6 + 1, 7. So, it is nothing but 𝑁 −  1 butterfly contribute for one output. So, this 

is 𝑥0 if you take 𝑥4 also what you will be needing the same thing. So, as an further example, if you 

take 𝑥(2) this is 𝑥0 and this is going to be 𝑥1, this is going to be 𝑥2 and this is 𝑥6 will be the output. 

So, you will be seeing when you count how many butterflies are required, you will be needing 

𝑁 − 1 butterflies to compute one output.  
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So, that is the reason why what we call it as that is when we increase N that is doubling N, which 

is equivalent to adding a stage to FFT. So, that is what is going to happen doubles the noise power 

to retain the same noise power, we increase the word length by 1 bit. So, we will be seeing that 

sigma naught square is nothing but we are doubling the 
2×𝑁

3×22𝐵 and then increasing 1 bit.  

 

So, it becomes to be -1 +1 which is going to be 22𝐵, then what happens the real and imaginary 

parts of our input sequence are uncorrelated and that each has an amplitude density that is uniform 

between -1 and 1, then our 𝜎𝑥
2 in our input noise power is nothing but 

22

12
 which is nothing but 

1

3
. 

So, we can equated to signal to noise ratio 𝜎𝑥
2 = 𝑁𝜎𝑥

2. This is 𝜎0
2.  

 

So, then signal to noise ratio 
𝜎𝑥

2

𝜎0
2 = 22(𝐵−1). So, what the note we are going to carry from here for 

FFT algorithm. A double length accumulator does not help us reduce roundoff noise, since the 

outputs of the butterfly computation must be stored in B bit registers at the output of each stage. 

That is what the note what we will be carrying from this, just like in FIR filter by increase then the 

length of our accumulator, we could hold on to the result till the end of it. But here, we would not 

be able to do it because we have to use it for the next stage.  
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So now, we will see how the overflow is going to cause error. So, how we can avoid it overflow 

cannot be avoided. So, how you can by scaling and other things, how we can avoid the overflow 

errors, there are 3 methods one is we can do a static scaling that is dividing the input at first stage 

by N that is a maximum this thing or division what we are going to do it or any stage by 2. So, that 

way we can incorporate the static scaling. 

 

The other method what we have is that is basically based on the dynamic scaling that is dividing 

the input at any stage by 2 if the largest absolute input values greater than or equal to 0.5. So, then 

what happens that is we are taking the norm of magnitude of 𝑋[𝑘] which is less than 1. So, 0 ≤

𝑘 ≤ 𝑁 − 1. So, how you will be taking the thing to find the norm, so, we will be equation is nothing 

but ∑ 𝑥[𝑛]𝑁−1
𝑛=0 ∙ 𝑊𝑁

𝑘 .  

So, we have to take the norm of it, which is less than or equal to, so, we have assumed that twiddle 

factors have been scaled and then that within the limit, then it becomes the magnitude of x of n by 

scaling my input then that is 0 ≤ 𝑘 ≤ 𝑁 − 1 I can overflow error can be avoided just like our FIR 

filters. So, if we have more than 𝑁 − 1 stages, the addition what we can take care of in our 

accumulated by having gaurd bits and then later on, we have to do the scaling.  
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So, the first one that is what we said is static scaling that is dividing the input at any stage by N. 

So, what happens to the noise to signal ratio increases as 𝑁2 or we call it as one bit per stage. That 

is, if N is doubled, corresponding to adding one additional stage to the FFT, that is what we just 

now saw it, then to maintain the same signal to noise ratio, one bit must be added to our register 

length.  

 

So, this is our equation what we have it, so, we will be adding one more bit to that. So, we say our 

𝑥[𝑛] we say that it is scaled by 
1

𝑁
 then what happens to our sigma noise 𝜎𝑥

2 input basically 
(

2

𝑁
)

2

12
 

which is nothing but 
1

3𝑁2. So, we call it as this is our signal power 𝜎𝑥
2 is approximately equal into 

N and then signal to noise ratio will be our signal is 
𝜎𝑥

2

𝜎0
2, which is going to be 

22(𝐵−1)

𝑁2 .  

So, what in this case the assumption of a white noise input signal is considered in that case it 

becomes 
(

2

𝑁
)

2

12
 is our signal power, for a variety of other inputs, the noise to signal ratio is still 

proportional to what we call it as N square with only the constant of proportionality is going to 

change as you can see the thing here.  
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So, if we do dividing the input at any stage by 2 what is the thing is going to happen? So, I think 

there should be some trigger in your mind, because why we call it by 2 is we have a barrel shifter. 

So, we can shift the dividing is nothing but right shift by one bit is going to give us divide by 2. 

So that we need not have to spend any time in shifting our input, what happens? Very little noise 

only a bit or 2 what we are going to get affected is present in the final array and most of the noise 

has been shifted out of the binary word by the scalings.  

 

So, you will be seeing that 𝜎0
2 ≅ 4𝜎𝐵

2 just we saw that because of the 4 butterfly, which is nothing 

but 
4

3
2−2(𝐵−1) and then we are assuming our |𝑥[𝑛]| <

1

𝑁
 in this range, then what happens to our 

input noise power, so, which becomes 22 assumption here also it is white noise signal what it is 

assumed, then it will be 
22

12
.  

 

And then this is 
1

3
 which is equivalent to 𝜎𝑥

2 =
1

3𝑁
. And so, the result of an increase of half a bit per 

stage holds for a broad class of signals with only the constant multiplier in this equation being 

dependent on the signal. So, what happens to a signal to noise ratio in the final sigma x square by 

sigma naught square, you will be seeing that 
22(𝐵−1)

4𝑁
 in this case after substitution.  
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So, the other one is we call it as dynamic scaling. That is, we use the block floating point. So, what 

is it definition you may be wondering what is that thing, what we say is the original arrays 

normalized to the far left of the computer word with the restriction that our |𝑥[𝑛]| < 1 and the 

computation proceeds in a fixed point manner, except that after every addition there is an overflow 

test, fine. If there is a overflow detected, the entire array can be divided by 2 and the computation 

is going to continue.  

 

So, the number of necessary divisions by 2 are counted to determine a scale factor for the entire 

final array, then we will be calculating the signal to noise ratio depends strongly on how many 

overflows occur and at what stage of the computation they occur. So, the positions and timing of 

overflows are determined by the signal being transformed. Thus, to analyze the signal to noise 

ratio, in a block floating point implementation of the FFT, we will need to know the input signal.  

 

So, when we call the block floating point is because each stage, we have different stages. So, we 

know each stage, what is the input required. So, we will scale this input 𝑥[𝑛] what we will call it 

the first stage, or I can call it as 𝑥1[𝑛] and then keep those values here. Do this in the fixed point 

mode operation, then when we are coming out of it, either take these values and scale back so we 

will call it as 𝑦1[𝑛] which goes as input to the next stage, which we call it as 𝑥2[𝑛]. 

 



We can multiply and then do the rescaling of this or in the end, what we can do is if there is a 

overflow, then we will be dividing it by 2 in these cases, if it is not, so then we will keep these 

values till the end. And when I come out of here, whatever final I will put it stage, I will multiply 

with these values and bring it back into floating point value. So that is one value where I know that 

just as an example, so we have 0.0011, and the next one is 0.00111 or the next value may be 

0.00011.  

 

So, I know that these 2 bits, I can call it as a left shift and then keep it as 0.11 and then I will be 

working that is block floating point I will calculate whichever the common take it out and then use 

the rest of them to for my computation of FFT here, stage one or whatever may be the thing, this 

is how our block floating point is going to work in our case.  
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So, coming to the what are the real time FFT considerations, we are going to have it so, one of the 

thing is we have to consider the signal bandwidth, sampling frequency, number of points FFT N 

what we wanted and what is the resolution? So, we have seen the DFT resolution, so, what we 

need it 𝑓𝑠 𝑁⁄  and maximum time to calculate our endpoint FFT. So, that is 𝑁 𝑓𝑠⁄  what we are going 

to have it whether we want to do fixed point versus floating point DSP.  

 

So, in the lab, we have done floating point implementation to do the fixed point implementation, 

we may have to consider the block floating point and then do it. So, whether we want the Radix 2 



FFT or Radix 4 FFT. So, if it is power of 4 whatever input it is advantageous to use Radix 4 

because it is going to be −1 or −𝑗 coefficients what we have to compute in Radix 4 you can refer 

to the literature's to how to do the Radix 4 implementation.  

 

So, we have seen the Radix to here, but divide that is even and odd parts what we have taken and 

then how we have computed. So, the next one is because most of the application is going to be, 

we will be using in the windowing filtering. So, what are the windowing requirements one has to 

consider, so, we saw an example in the lab that is a case a window and then the rectangular window. 

So, how our output is going to get affected with the thing.  
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So, now, to put the thing different Radix implementation can be done. So, if it is power of 2 all of 

them what is taken is power of 2 some of them are power of 4, some of them are power of 8 what 

you will be seeing it so, if it does not fit into any of this category, and you are taking some Radix 

format, how we can do the split Radix format also one can be 8 and then if it is order is 212 if we 

take the thing, I can have Radix 8 one and Radix 4 what I can combine and then how I can do the 

Split Radix. 

 

So, that is what, what is shown in this table. So, as an example, this is the least 𝑁 = 16 what is 

considered and Radix 2 needs real multiplications of 24 whereas, as you can see it has come down 

to 20 because this is power of 4 number of multiplications real multiplications has come down to 



20, in the Split Radix it needs also 20 in that case, whereas real additions in case of Radix 2 we 

need 152 additions in Radix 4 it is 148 and Split Radix is 148. Just we will see the last one 1024 

rest of it you can look at yourself.  

 

So, what we Radix to as you can see that it needs 10248 real multiplications and 7856 in the case 

of Radix 4, so, you will be seeing that how much difference we are going to have with Radix 4 

with Radix 2 and then we cannot implement this in Radix 8 so that is why no nothing has been 

given. And in this Split Radix still you can come down to 7172. And then same thing with respect 

to your real additions it takes 30728 whereas Radix 4 takes 28336 and then Split Radix is still 

lesser.  

 

So, depending on your application, which Radix format, what you want to have it that is the 

application may need 1024 or 2048 or 4096 or if you want to implement much more than that, you 

can see which Radix format or different Radix format at each stage what you can have it and then 

combine and then take the output if it is not power of 2 also.  
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So, we will see that how the butterfly structure is represented in a flow graph that is Radix-2 8-

point decimation in time what algorithm what it has been taken. So, you will be seeing each point 

what we have it, so, you will be seeing that, here you are seeing the 4 butterflies here, and in the 



next stage also 4 butterflies. And then in the last stage also what you have the butterfly and 

multiplication and other things are represented with your weight factors as it is shown. 
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And then we said that to contribute for any of the two 1 input, we need 𝑁 − 1 butterflies. So, there 

we have drawn everything with the flow graphs, it is easy to see that we need 𝑁 − 1 butterflies.  
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So, we saw just now the signal to noise ratio. So, you can go through the thing, we have number 

of bits is equal to B bits. And then we have seen that noise generated by a butterfly at one stage is 

fed into the subsequent stages that is in this case 𝑁 − 1 stages, what we call it. So, then are we said 



that our noise is represented in this way that is (𝑁 − 1)𝜎𝐵
2. And now we will be realizing for large 

N we can represent it as (𝑁)𝜎𝐵
2 with assumed in the previous case. 

 

And then we have signal to noise ratio in this case is approximately given by this equation that is 

2

𝑁

2(𝐵−1)
. So, if I want to this thing signal to noise ratio, we call it as proportional or inversely 

proportional to N and directly proportional to number of bits, as you can see that N is in the 

denominator and B is in the numerator.  
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So, that is how by increasing one bit you can nullify on whatever signal to noise ratio what you 

want to get it. So, we said that overflow errors and scaling in FFT what it has to be done maximum 

what we call it as that is now you will be making it 𝐴′ = 1 and 𝐵′ = 1 in that case it will be ≤

2𝑚𝑎𝑥[|𝐴|, |𝐵|]. So, this implies that the maximum modules of the butterfly output increase from 

stage to stage by a factor of 2.  

 

So, if the inputs of butterfly of each scale by 0.5, the output should not overflow provided the 

magnitude of the input data is within the permissible wordlength what we call it.  
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So, as in this thing scaling, how we have considered 0.5 as the scaling factor and then deriving 

what will be the magnitude of it is illustrated by this example. So, we consider 𝐴′ = 𝐴𝑟 +

𝐵𝑟 𝑐𝑜𝑠(𝑋) + 𝐵𝑖 𝑠𝑖𝑛(𝑋) and this is our imaginary part and then we assume 𝐴′ = 𝑗[𝐴𝑖 +

𝐵𝑖 𝑐𝑜𝑠(𝑋) − 𝐵𝑟 𝑠𝑖𝑛(𝑋)]𝑗[𝐴𝑖 + 𝐵𝑖 cos(𝑋) − 𝐵𝑟 sin(𝑋)]. So, how we have got this if 𝑋 = 2𝜋𝑘 𝑁⁄  

which is 45∘, then our cos(45∘) = sin(45∘) = √2 2⁄ .  

 

So, without scaling and with real and imaginary parts of inputs each set to 1, the limiting case we 

have from the equations from these above what is it? 𝐴′ = 1.2071 + 0.5𝑗 and then 𝐵′ = −0.2071 +

0.5𝑗 if all of them are set to 1. This is what we will be getting it. So, we know that what will be our 

maximum output from this butterfly structures.  
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So, to see that by just in how many bits are required to keep our signal to quantization noise ratio 

required. We will see that processor one problem in this case so what it says a hardware FFT 

processor uses a fixed point arithmetic in its butterfly computations, so estimate the maximum 

wordlength required to perform a 1024 point FFT with an output signal to noise ratio of 40 dB, in 

this case you are lucky to have just 40 dB so assume that the input to each butterfly is going to be 

scaled by 0.5 which is nothing but 
1

2
  throughout the FFT. 

 

So, then signal to noise ratio become because we are scaling by 2 it is going to be 
1

2𝑁
22(𝐵−1). so 

we have been given signal to noise ratio in dB as 40 dB substitute this put it as 10 log on the right 

hand side so you will be solving this then I need 𝐵 − 1 = 12.14 bits which is nothing but 13 bits 

approximate it to the next higher number, then system wordlength for this is going to be 𝐵 =  14 

bits, so you can see if I want to have the CD quality which is 91 dB. 

 

So, if you are this thing scaling is 0.5 so you can see that how many bits are required you can work 

it out and then come back with the answer. So, this we have seen that how the quantization noise 

is going to affect our number of bits and then how many end points what we have to choose it. 
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And in the next class we will be covering overlap add and overlap save techniques to compute 

long input signal because as you are seeing in the present case the length of the input is also 

restricted to 𝑁 − 1 whereas in our real time application input is coming continuously so how we 

can apply this FFT using overlap add and then save in the next class thank you. 

 


