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Complexity of Filtering and the FFT 

 

Welcome back to real time digital signal processing course. So, last class we discussed about the 

Discrete Fourier Transform. In this today's class, we will see the complexity of filtering, and then 

how FFT is going to be derived.  
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So, how we represent our digital filtering, we know that equation for our FIR filter for simplicity 

what we will take it here. So, 𝑥(𝑛) is our input and ℎ(𝑛) be real signals that is 2 signals, if we want 

to take it or the impulse response of the filter, what we will consider it as ℎ(𝑛). So, if we assume 

the coefficients, it becomes 𝑣(𝑛)in FIR filter, so 𝑥(𝑛) is we representing it as 0 to 𝑁 −  1, then 

we have to compute our 𝑦(𝑛) using the as we can see here, the star indicates the linear convolution.  

 

So, how we can represent k will be varying between -∞ to ∞, 𝑥(𝑘) ∙ ℎ(𝑛 − 𝑘) or we can represent 

k = 0 to 𝑁 −  1, because this is what our length of sequence input sequence, then what we will 

show is 𝑥(𝑘) ∙ ℎ(𝑛 − 𝑘) or we can as you know that, since this is a LTI system, so we can have 

𝑥(𝑛 − 𝑘) for my x and then ℎ(𝑘) for my coefficients, what we have seen in our DSP 



 

 

implementation, so both the ways are correct. Here, we will be assuming at present to derive 𝑥(𝑘) ∙

ℎ(𝑛 − 𝑘).  
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So, what is it? So, we have to say that what is the complexity of computation of this linear 

convolution, to make it simpler, instead of convolution, we will assume it as multiplication at 

present, k will be varying between 0 to N - 1 and then 𝑥(𝑘) ∙ ℎ(𝑛 − 𝑘). So, how many real 

multiplications I am going to do it because it is 0 to N - 1 and N real multiplications. And with 

𝑥(𝑘) ∙ ℎ(𝑛 − 𝑘) and then we have to have the summation which is going to be 1 less we will be 

assuming that N - 1 real additions are required.  

 

For all n varying between 0 to N - 1, then if we assume that my n is also length of 0 to N - 1, then 

total number of multiplications for filtering required is 𝑁 ∙ 𝑁 = 𝑁2, we say order of N square real 

multiplications are required. And then addition we know (𝑁 − 1) ∙ 𝑁 additions which is nothing 

but this also results in order of N square real additions. So, total number of multiplications and 

additions are required is order of 𝑁2, which we consider it as very high. So, how we can do filtering 

in the frequency domain which can reduce or complexity what we will be looking in a few slides.  
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So, what is it? We will say discrete Fourier transform we say it is a frequency analysis of discrete 

time signal. It is how we can perform it on the DSP that is what we will be looking at. So, both 

time domain and frequency domain, the signals must be in the discrete format. So, 𝑥(𝑡) is our 

analog input. After sampling, I will be getting 𝑥(𝑛) in the digital domain, and 𝑋(𝜔) which is 𝜔 is 

continuous after sampling it, we will be getting 𝑋 (
2𝜋𝑘

𝑁
), or we call it as 𝑋(𝑘). So, we will be 

representing 
2𝜋𝑘

𝑁
 as K in this case, that is K.  

 

So, we will be seeing some of the duality of the Fourier domain thing one is in the time domain, 

what it is represented in the frequency domain, if it is a sine function in time domain, which is 

going to be rectangle in frequency domain. So, if it is rectangle in our distinct time domain, it 

becomes a sine function in our frequency domain. So, I think some of you would have heard sine 

square function, it becomes triangle and frequency domain vice versa.  

 

And we will be seeing that it becomes a ringing in case of time domain, then it becomes a 

truncation in the frequency so, the other way around. So, if it is discrete in time domain, which 

becomes periodic in our frequency domain, and if the input signal is periodic, then it becomes 

discrete in our frequency domain. So, if it is continuous, it becomes aperiodic in frequency and if 

it is aperiodic in time domain it will be continuous and then you can have many more like this in 

the duality, what you can consider. A few of it which is required for our derivation what we will 

be using it here.  
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So, coming to DFT so, we know that, if the signal is aperiodic plus discrete in time domain, then 

if I take the Fourier transform of this, so that means to say if 𝑥(𝑛) is aperiodic and my ℎ(𝑛) is 

discrete in time domain, what I will be getting the result is continuous time signal in Fourier 

domain plus periodic in frequency what I will get it So, by doing the sampling, I can reach this 

discrete signal what I can get plus periodic in frequency what I can achieve from this stage.  

 

Or I can have a periodic signal in the time domain plus dst in this think discrete time signal here, 

then I can get discrete plus periodic in frequency when I do the Fourier transform, or if the signal 

is periodic plus discrete, then if I take the discrete time Fourier series, basically, if I convert it, then 

the output is going to be periodic plus discrete. So, we will be seeing that one period of our say 

discrete sample DFT, I will be getting one period of discrete samples here. So, here 𝑛 = 0,1 ⋯ 𝑁 −

1, in this case, we will be having k will be varying between 0 to N - 1.  
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So, now, how to represent it both in time and frequency domain relation what it is shown here. So, 

you will be seeing that this is a periodic plus discrete time sample what it is taken in the time 

domain. So, you are seeing that this is my 𝑥(𝑛)and then, when I take the DFT so, I will be getting 

𝑋(𝐾) here, if I take the discrete time Fourier series, then what you will be seeing is periodic plus 

discrete in this thing time domain.  

 

So, this is how the samples have been represented in that, so, this will be x axis will be k and then 

our y axis will be representing periodic plus DST in frequency domain.  
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So, coming with the think how we are going to do the frequency domain sampling what we are 

going to achieve. So, that is we have already said sampling in time domain we said it is going to 

result in periodic repetition in frequency. So, when I represent 𝑥(𝑛), so, we say that it is a repetition 

of it 𝑥𝑎(𝑡) we represent 𝑡 =  𝑛𝑇, then take the Fourier transform we result in 𝑋(𝜔) which is 

nothing but 
1

𝑇
∑ 𝑋𝑎 (𝜔 +

2𝜋

𝑇
𝑘)∞

𝑘=−∞ .  

 

So, similarly, sampling in frequency results in periodic repetition in time what we will be seeing 

it this is the periodic signal what we are representing as 𝑥𝑝(𝑛)  in the time domain, then it is going 

to result 𝐼 = −∞ to ∞, 𝑥(𝑛 + 𝐼𝑁) and then I will be taking the Fourier transform which is 

equivalent into 𝑋(𝑘), which is nothing but 𝑋(𝜔)|
𝜔=

2𝜋

𝑁
𝑘
.  
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So, now we will see the thing how the sampling is going to happen. So, we know that N ∝  𝜔  that 

is sampling rate. So, that is N samples per 2𝜋, what we are going to have it in this region is 0 to 2 

𝜋, we will have N samples. So, we know that 𝑥(𝑛) when we take the Fourier transform, we will 

be getting 𝑋(𝜔). So, the periodic representation 𝑥𝑝(𝑛) if we take it Fourier transform, we will be 

getting 𝑋(𝑘) in this case. So, we are seeing that is samples of 𝑋(𝜔) used in the reconstruction of 

𝑥𝑝(𝑛).  

 



 

 

And from 𝑥𝑝(𝑛), we can get 𝑥(𝑛) can be reconstructed in this fashion. So, we will be seeing that 

this is what we are varying 0 to N - 1. Next one will be the N sample k is going here. And this is 

our omega x axis. So, here it is, you are seeing when 𝑁 = 2𝜋, this is the axis and then N - 1 point 

will be 2𝜋- 2𝜋/N. So, this is the resolution what we will be calling depending on our N samples.  
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So, coming to the how we can do the reconstruction, because we have gone from time domain to 

frequency domain, but my output I want it in the time domain. So, how we can do the 

reconstruction? So, this is shown with 𝑁 =  4 in this case. So, you can see that this is my 𝑥(𝑛), 

which has 4 samples, the magnitude, you will be seeing that this is 0101, what you have taken rest 

of them are zeros, both the sides negative and then positive side, this is my n basically.  

 

And then we will see that we are assuming because I have N = 4. So, we do not have any temporal 

aliasing in this case. So, this is my 𝑥(𝑛) basically, this is the periodicity what I have taken. So, you 

will be seeing that the magnitude sorry, at x is 0 it is 2 and then 𝑥 =  1 it is 1 and then 𝑥 =  2 it 

is 0 and then this is 1, so you will be replicating them on both the sides as you can see it. So, these 

4 samples, you will be seeing that it becomes 2 1 0 1 2 again, so on the negative axis also what 

you will be doing the repetition, so we do not have any aliasing.  

 

Because they are distinct in nature. So, you will be seeing that x of n is a unit step response, all of 

them are 1 then what happens in that time domain. So, we said that if it is a rectangular window, 



 

 

it should result in your sine function. So, here you can see that what is the happening is in the 

periodic if I take the thing, then you will be seeing that these 2 are 1s and then that is magnitude 

is 2 and then 1 and then which is not equivalent to my 𝑥(𝑛). So, the sampling rate, if you have 

𝑁 =  4 you have kept it.  

 

But x of n is what you have given more than n so I would not be able to reconstruct the signal. So, 

you are seeing that aliasing happening instead of 1 magnitude of what I have supposed to get it. 

So, 2 of the samples which have got alias and then which has gone to pick magnitude 2 in this 

case.  
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So, what is sampling and then reconstruction how they are related in the frequency domain, we 

will see it so 𝑥(𝑛) can be recovered from our periodic 𝑥𝑝(𝑛), if there is no overlap when taking 

the periodic repetition. So, if 𝑥(𝑛) is finite duration and then non zero in the interval 0 to 𝐿 −  1, 

then what we say is 𝑥(𝑛) = 𝑥𝑝(𝑛) in this domain 0 to 𝑁 −  1 when N is greater than or equal to 

L. So, if it is less than then we know that aliasing is going to happen for the periodic signal.  

 

So, if N is less than L, that is what it says cannot be recovered from our periodic 𝑥𝑝(𝑛). Also 𝑋(𝜔)  

cannot be recovered from its samples that is 𝑋 (
2𝜋

𝑁
𝑘) due to time domain aliasing what has 

happened, as the previous slide shows that, what was the initial thing but here all of them are 1. 

So, we are not getting back in this case.  
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So, now, what is the relation between our DTFT, DTFS and then DFT. So, 𝑥(𝑛) for all n if I take 

the DTFT then it becomes 𝑋(𝜔) for all omega and then the periodic signal in the time domain 

𝑥𝑝(𝑛) for all n and if you take a discrete time Fourier series, then it is going to become 𝑥(𝑘) for 

all k. So, we say that 𝑥̂(𝑛)   that is periodic DFT if I take it results in the periodic 𝑋(𝑘). So, here 

𝑥(𝑛) periodic what we are represented instead of 𝑥𝑝(𝑛) so, for 𝑛 =  0 to 𝑁 −  1 it will be 0 

otherwise.  

 

And then what happens in the frequency domain 𝑋̂(𝑘) will be 𝑋(𝑘)  in this 0 to 𝑁 −  1 other thing 

is 0. 
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So, what we have seen the DTFT pair. So, now, we will see the DFT pair. So, that is we have taken 

the example and we took the IDFT so, we call them as pair. So, this is the analysis function and 

this is the synthesis what we call it that is 𝑋(𝑘) is given by 𝑛 =  0 to 𝑁 –  1 𝑥(𝑛)𝑒−𝑗2𝜋𝑘
𝑛

𝑁 whatever 

way you are represent it k will be varying between 0 to N – 1. The N was what we have seen it as 

x of n is nothing but 1 by N. So, 𝑘 =  0 to 𝑁 –  1 𝑋(𝑘)𝑒𝑗2𝜋𝑘
𝑛

𝑁, instead of negative here it becomes 

positive. In this case 𝑛 will be varying between 0 to 𝑁 −  1.  
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• So, what is the complexity of DFT what we have seen the thing. So, with respect to our 

signal processing hardware, we will see what is the complexity of our DFT, complexity of 



 

 

filter what we have seen the thing we have to see the complexity of our the discrete Fourier 

transform 𝑛 =  0 to N - 1. So, we know that 𝑥(𝑛)𝑊𝑁
𝑘𝑛 will be varying between 0 to 𝑁 −

 1. So, we know that a straightforward implementation of DFT to compute 𝑋(𝑘) for 𝑘 =

0,1, ⋯ , 𝑁 − 1 requires just like our filter order of N square here it is not real multiplications.  

It is going to be complex multiplications because 𝑥(𝑛) has to be multiplied with cos and 𝑥(𝑛) has 

to be separately multiplied with our sine with his imaginary part and they have to be kept 

separately. So, that is why he needs complex multiplications in this case, and then we need one 

complex multiplication is equivalent to what we call it as (𝑎𝑅 + 𝑗𝑎𝐼) × (𝑏𝑅 + 𝑗𝑏𝐼), if I do it, this 

is what, what I am doing. So, both 𝑥(𝑛) and then my coefficients are we call it as complex 𝑥(𝑛) 

is also complex, we have assumed.  

 

When we do this multiplication, you will be seeing that it is nothing but (𝑎𝑅 × 𝑏𝑅 − 𝑎𝐼 × 𝑏𝐼)+j 

(𝑎𝑅 × 𝑏𝐼 + 𝑎𝐼 × 𝑏𝑅). So, what does it show? 1 2 3 and then 4 real multiplications so, one complex 

multiplication is equivalent to 4 multiplication plus, I had to have even we take it as subtraction or 

addition, because we do in 2's complement if you call back your number system, so, we have 2 

additions, real additions.  

 

So, what happens to our total computation time which is equivalent into 4𝑁2, which is nothing but 

𝑂(𝑁2) real multiplications what we need it, so, which is same as that of our filtering.  
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So, we will see that how we can reduce or take that forward. So, in this case, we said only 

multiplication we covered the thing. Now, we have to see from the addition point of view. So, 

what is it our filtering was needing 𝑁(𝑁 − 1) real time additions, but in this case it is going to be 

𝑁(𝑁 − 1)  complex additions. How do we represent one complex addition? That is (𝑎𝑅 + 𝑗𝑎𝐼) this 

is what we say is plus (𝑏𝑅 + 𝑗𝑏𝐼). So, this is my equation, (𝑎𝑅 + 𝑗𝑎𝐼) + (𝑏𝑅 + 𝑗𝑏𝐼). So, it will be 

(𝑎𝑅 + 𝑏𝑅)+j (𝑎𝐼 + 𝑏𝐼). So, that is how we will be resulting in 2 real additions.  

 

And then when I want to do the total complex multiplication, and then we take that 2𝑁(𝑁 − 1), 

so we will be deriving it once again, when we take up the problem. So, it will be coming it 

2𝑁(𝑁 − 1) + 2𝑁2, that is, which is arriving from my complex multiplication. So, some of the 

additions taken from there so, this many number of what I need is real additions. So, what does it 

mean? So, this is the complex addition. So, 2 times because each complex multiplication we are 

taking it as 2 real additions.  

 

So, which results in 2𝑁(𝑁 − 1) from this stage and then we know that from the complex 

multiplication, we have addition which is resulting so, which comes to 2𝑁2. So, that is what, what 

it is rendered from complex multiplication, I have to take this also into account. So, this is what 

our total number of additions required for computing my DFT. So, in that case, the maximum is 

2𝑁(𝑁 − 1) if I take it if we observe this also inside. So, additions also what we need is 𝑂(𝑁2), 

that is the complexity of DFT both real multiplication and real additions are 𝑂(𝑁2).  

(Refer Slide Time: 21:59) 



 

 

 

So, we know that already we have pointed out in the filtering, it is too high. So, linear increase in 

the length of the DFT increases the complexity by a power of 2 basically. And if you are given 

them this thing, what is it? The multitude of applications that is number of them where Fourier 

analysis is employed. That is, we will call it as linear filtering or correlation analysis, which will 

be taking it up little later, and then do the spectral analysis, what are the intention of our 

applications, then, we will say that how many this thing what is the complexity of it.  

 

That is efficient computation is required. So, that is, reduce the complexity by exploring the 

symmetry property of our complex exponential. So, how we can do that? We have that twiddle 

factor, we saw that 𝑊𝑁

𝑘+
𝑁

2 = −𝑊𝑁
𝑘. So, we will see the left hand side is nothing but = 𝑊𝑁

𝑘+
𝑁

2 =

𝑒−𝑗2𝜋 substituting k with 
𝑘+𝑁 2⁄

𝑁
 which is nothing but 𝑒−𝑗2𝜋

𝑘

𝑁𝑒−𝑗2𝜋
𝑁 2⁄

𝑁 . So, this results in -1 that is 

what, what is shown here 𝑒−𝑗2𝜋
𝑘

𝑁𝑒−𝑗𝜋.  

 

Which is nothing but this (cos(−𝜋) + 𝑗 sin(−𝜋)) when we expand = 𝑒−𝑗2𝜋 and then we know 

that cos(−𝜋) is -1 and sin(𝜋) is going to be 0, 𝜋 and −𝜋  is 0 so, which will be - 1. So, when we 

represent this is nothing but −𝑊𝑁
𝑘. So, that is how the derivation between the 2 has been arrived 

at so, LHS = RHS. So, whatever we are representing that is symmetry property is true.  
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So, now, how we can extend this usually we call it as decimation in time basically, that is 𝑋(𝑘) =

∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑁−1

𝑛=0  and this is our normal DFT equation 𝑘 will be varying between 0 to 𝑁 −  1. So, 

now, what happens? So, if 𝑛 is even then 𝑛 =  0 what will be taking it 𝑥(𝑛)𝑊𝑁
𝑘 plus that is we 

are considering even and then odd parts next 𝑛 is odd 𝑥(𝑛)𝑊𝑁
𝑘. So, here it is going to be, we are 

changing the little bit of notation from 𝑛 actually ∑ 𝑥(2𝑚)𝑊𝑁
𝑘(2𝑚)(𝑁 2⁄ )−1

𝑚=0  because it is a even and 

𝑊𝑁
𝑘(2𝑚)

, 𝑛 is substituted with 𝑚 in this case.  

 

And this is our odd part ∑ 𝑥(2𝑚 + 1)𝑊𝑁
𝑘(2𝑚+1)(𝑁 2⁄ )−1

𝑚=0 . So, this is how we can split our DFT 

equation into even and then odd parts. So, when you can see that we represent 𝑥(2𝑚) as 𝑓1(𝑚) 

and we are seeing that this has become already 𝑊𝑁
2𝑘𝑚 and then this we call 𝑥(2𝑚 + 1)  as  𝑓2(𝑚) 

equivalent to and then this is 𝑊𝑁
2𝑘𝑚𝑊𝑁

𝑘.  
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So, we are going to split like this decimation in time and then we know that 𝑊𝑁
2 is nothing but by 

substituting  𝑘 = 𝑒−𝑗
2𝜋

𝑁
∙2

. So, which is nothing but 𝑒
−𝑗

2𝜋

𝑁 2⁄  what I can take it so, the twiddle factor 

it is going to be 𝑊𝑁 2⁄ . So, then we will represent 𝑋(𝑘) = what we have is 𝑓1(𝑚) and then 𝑓2(𝑚). 

So, by putting substituting this 𝑓1(𝑚) and then we are substituting our 𝑊𝑁
2 actually with respect to 

this, it becomes 𝑊𝑁 2⁄  into km plus we know that 𝑊𝑁
𝑘 is independent of 𝑁.  

 

So, which we will be taking it out 𝑊𝑁
𝑘 and this is our ∑ 𝑓2(𝑚)𝑊𝑁 2⁄

𝑘𝑚(𝑁 2⁄ )−1
𝑚=0 . So, you will be seeing 

that this is 
𝑁

2
− 𝐷𝐹𝑇 𝑜𝑓𝑓1(𝑚) that is what, what we have it then if we represent this as this is 

𝑁

2
−

𝐷𝐹𝑇 𝑜𝑓𝑓2(𝑚) if we substitute that as 𝐹1(𝑘) + 𝑊𝑁
𝑘𝐹2(𝑘), 𝑘 will be varying between 0 to 𝑁 –  1.  
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And then we know that 𝐹1(𝑘) and 𝐹2(𝑘) are 
𝑁

2
 DFTs. So, you will be seeing that 𝐹1 (𝑘 +

𝑁

2
) and 

𝐹2 (𝑘 +
𝑁

2
) and 𝑋(𝑘) is going to be that is DFT of it will be 𝐹1(𝑘) + 𝑊𝑁

𝑘𝐹2(𝑘). So, now, what we 

are going to represent that 𝑘 also will be taking the symmetry property, we will do it as 𝑘 +
𝑁

2
. So, 

we can have it as 𝐹1 (𝑘 +
𝑁

2
) + 𝑊𝑁

𝑘+
𝑁

2 𝐹2 (𝑘 +
𝑁

2
). So, here it is  𝐹1 (𝑘 +

𝑁

2
) + 𝑊𝑁

𝑘+
𝑁

2 𝐹2 (𝑘 +
𝑁

2
), 

so, which is nothing but 𝐹1(𝑘) − 𝑊𝑁
𝑘𝐹2(𝑘).  

 

So, how this has come you will be seeing that 𝑊𝑁

𝑘+
𝑁

2  what we have to solve the thing which is 

nothing but 𝑒−𝑗
2𝜋

𝑁
(𝑘+𝑁 2⁄ )

 which you solve the thing. So, which is nothing but 𝑒−𝑗
2𝜋

𝑁
𝑘(−1)

, so, this 

is our W N k. So, you can see that 𝑘 + 𝑁 2⁄  results in 𝑊𝑁
𝑘.  
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So, we can split this decimation in time further. So, that is 𝑋(𝑘) is nothing but 𝐹1(𝑘) + 𝑊𝑁
𝑘𝐹2(𝑘), 

𝑘 also we will be going between 0 to 1 to (𝑁 2⁄ ) − 1 and then 𝑋 (𝑘 +
𝑁

2
) is given by this equation 

as we have already computed −𝑊𝑁
𝑘𝐹2(𝑘) 𝑘 = 0,1, ⋯

𝑁

2
− 1. Now, this is what we call it as radix 2 

FFT that is decimation in time what is happening step by step till we go up to last stages too. 
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So, you will be seeing that repeating decimation in time 𝑓1(𝑛) and 𝑓2(𝑛). So, we will be obtaining 

𝑓1(2𝑛) and 𝑓1(2𝑛 + 1), we call it as 𝑣11(𝑛) and 𝑣12(𝑛) so, you will be going 𝑛 = 0,1, … ,
𝑁

4
− 1 x 

stage and then 𝑣21(𝑛) is nothing but 𝑓2(2𝑛) and then 𝑓2(2𝑛 + 1) . So, which will be going by 
𝑁

4
−



 

 

1 when 𝑘 is equal to divided by 2 further. So, that is how you will be continuously going on 

splitting the thing that is 𝐹1(𝑘) is nothing but 𝑉11(𝑘) + 𝑊𝑁

2

𝑘𝑉12(𝑘)   so, which is going between 

this then 𝐹1 (𝑘 +
𝑁

4
) if you take the thing.  

 

This is what, what you will be resulted and then that is the next 𝐹2 what is split into this so, which 

has 𝑁 4⁄  DFTs in this case.  
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How we can represent in decimation in time, this is my for 𝑁 = 8 it is a simple one to consider, 

we have considered it. So, the first one is 𝑥(0), the next value is what we need is 𝑥(4)so, we will 

be doing the 2 point DFT and then 𝑥(2) and 𝑥(6) we will be doing that 2 point DFT which is 

going to be combined with 2 point DFTs here. And then the other 2 odd part what you can see it 

𝑥(1) and 𝑥(5), 𝑥(3) and 𝑥(7) other 2 point DFT what you can do it and then combine them and 

then finally, you will be combining as a 4 point DFT.  

 

So, you will be getting output as 𝑋(0) to 𝑋(7). So, you can see that input is bit reversed, what we 

have considered in the number system and DSP architecture we said we need input in the bit 

reverse format, output will be in in-order. So, we have seen the example how to generate the bit 

reversed also using hardware adder.  
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So, when we represent this as the, from the previous thing, in terms of what we call it as this is the 

butterfly structure, so this is my 𝑥(0) and 𝑥(4). So, this will be my weight 𝑊8
0 , and this is my 

minus 𝑊𝑁
𝑘 what we have it here it is going to be -1, and then we will be combining these 2 and 

which goes to the stage 2 this is stage 1, this is stage 2, this is stage 3, where all the things are 

combined. Whereas in the second stage my twiddle factors, what do I need is 𝑊8
0 and 𝑊8

2. So, in 

both the cases, and we know that 𝑊8
0 is 1.  

 

I had to compute only this twiddle factors 𝑊8
2. Whereas in the last stage, we need 3 twiddle factors, 

that is 𝑊8
1, 𝑊8

2 and 𝑊8
3 has to be computed and then we as usual, 𝑊8

0 = 1. So, we will be getting 

the output in order. So, to do FFT computation for 𝑁 =  8, we know that 𝐥𝐨𝐠𝟐(𝑵) 8 is nothing 

but 3, we need 3 stages. So, we will be seeing that how we are going to reduce the thing 

computation?  
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So, we will be seeing that with respect to this what we have given computational efficiency of 𝑁 

point FFT, we will see it, we know that it is 𝑵𝟐 complex multiplication and addition what we 

needed and FFT, we need (𝑵 𝟐⁄ ) 𝐥𝐨𝐠𝟐(𝑵). So, we said that for 8 point it was 3 stages. So, if it is 

𝑁 point, then we need 𝐥𝐨𝐠𝟐(𝑵)and we can use a symmetry property it is going to be (𝑵 𝟐⁄ ) 

complex multiplications what we need it using FFT. So, you will be seeing some N points and 

then what is the DFT multiplication and FFT multiplications with respect to 𝑁.  

 

So, if it is 256, we see that 65,536, here what we need is 1024. So, FFT efficiency, we compute it 

as 64 is to 1 for our DFT so as in when our 𝑁 point increases, so you will be seeing that computation 

of DFT increasing very much. And then FFT you will be seeing low and you will be seeing that 

683 is to 1 is the ratio for 4096.  
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So, this is how we do the computation of FFT. So, in the next class, we will be seeing quantization 

of FFT, how it is going to effect our word length and then even the coefficient has to be quantized. 

So, number of stages is going to increase. So, it is pipeline structure what we are going to have it. 

So, we will see what are the quantization effects in FFT in the next class. Thank you. 


