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Welcome back to real time digital signal processing course. So, today we will discuss discrete 

Fourier transform in detail. So, coming to the previous class, so, we covered FIR and IIR filters in 

the previous module. So, we saw how quantization affects the frequency response for the IIR filter, 

and then how we have to do the scaling and other parameters what we have to take it into 

consideration to design our IIR filter.  
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So, coming to now, we will go to the frequency domain, why we have to go to the frequency 

domain? So, first of all what we have to say from analog time domain we have to move to 

frequency. So, the time domain the components which we are unable to see basically, so, whether 

the other domain that is in the transform domain, which is going to give us the parameters what 

we are looking for so, for that we go to the Fourier domain basically that is frequency domain.  

 

So, in this case today we will be discussing about discrete time Fourier Transform first and then 

we will see that how Discrete Fourier Transform thing is developed. So, that is what, what we are 

going to tell, that is we introduce the discrete time Fourier transform for the theoretical analysis of 

our discrete time signals and systems and the Discrete Fourier transform which can be computed 

by our digital hardware for practical applications.  
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So, coming to the definition, so, we know that discrete time Fourier transform DTFT is for the 

discrete time signal 𝑥(nT) is defined with this equation that is 𝑋(𝜔) = ∑ 𝑥(𝑛𝑇)𝑒−𝑗𝜔𝑛𝑇∞
𝑛=−∞ and 

we say 𝑋(𝜔) is periodic function with period π. So, the frequency range of discrete time signal is 

unique over the range that is -π to π or we can consider 0 to 2π. So, DTFT of 𝑥(nT) can also be 

defined using the normalized frequency.  

 

So, if it take that then it is going to be 𝑋(𝐹) = ∑ 𝑥(𝑛𝑇)𝑒−𝑗2𝜋𝐹𝑛∞
𝑛=−∞  where our F is a frequency 

is given by 
𝜔

𝜋
, which is nothing but 

𝑓

(𝑓𝑠 2⁄ )
, F is the signal what we are interested and 𝑓𝑠 is the 

sampling frequency. So, we say that normalized digital frequency in cycles per sample.  
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So, how we are going to represent the spectrum of discrete time signal? So, we said that it is 

periodic sampling imposes relationship between independent variables t and n as 𝑡 = 𝑛𝑇 = 𝑛 𝑓𝑠⁄ ,  

so, that we can show that 𝑋(𝐹) =
1

𝑇
∑ 𝑋(𝑓 − 𝑘𝑓𝑠) ∞

𝑘=−∞ . So, we will be seeing that 𝑋(𝐹)  is the 

sum of the infinite number of 𝑋(𝑓) what we are going to say, which is the Fourier transform of 

our analogue signal x(𝑡), it is scaled by 1 𝑇⁄ , and then frequency shifted to 𝑘𝑓𝑠.  

 

So, it also states that 𝑋(𝐹) is a periodic function with period 𝑇 = 1 𝑓𝑠⁄ . So, we will be seeing the 

spectrum here. This is our 𝑋(𝑓) what we are considering it and this is the maximum frequency in 

our input signal varies between −𝑓𝑀 to 𝑓𝑀, and then f is the x axis.  
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So, coming to the next one, if why we are going to have the replication? That is discrete time signal 

caused by sampling, basically. So, this sampling extends original spectrum, whatever we have a 

consider 𝑋(𝑓), repeatedly on both sides. So, we will be seeing this is extended on both sides. So, 

we call this as −𝑓𝑠 2⁄  and then 𝑓𝑠 2⁄ . So, we will be getting the images of the spectrum basically. 

So, what happens if our maximum frequency is less than or equal to our half the sampling 

frequency according to Shannon sampling theorem.  

 

So, then what happens so we will not be seeing any overlap in the thing. So that is what the theory 

says that our 𝑓𝑀 is going to be much away from our 𝑓𝑠 2⁄ .  
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So in the next case, if 𝑓𝑀 is what we say is more than our 𝑓𝑠 2⁄ , or f s sampling frequency is less 

than twice the maximum frequency component present in our signal, then what we are going to 

have is we will be seeing that overlaps of it. So, 𝑓𝑠 2⁄  is here, −𝑓𝑠 2⁄  is here, our 𝑓𝑀 has more than 

𝑓𝑠 2⁄ . So, you will be seeing that we will be getting the aliased signal. So, this we may not be able 

to reconstruct to the original signal, it may map it to some other signal as we have seen aliasing in 

our sine wave generation also.  
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Coming to discrete Fourier transform. So, what we have is it this is we call it as a finite duration. 

Whereas DTFT was discrete in time, but frequency was continuous in omega, here both frequency 

and then time have been discretized. So, 𝑥(𝑛)  of length N is defined as given by 𝑋(𝑘) =

∑ 𝑥(𝑛)𝑒−𝑗(2𝜋 𝑁⁄ )𝑘𝑛𝑁−1
𝑛=0 , 𝑘 = 0,1, ⋯ , 𝑁 − 1. And then we will be seeing that n is varying 0 to n - 

1. So, we call k is the frequency index.  

 

So, we will be saying 𝑋(𝑘) is the kth DFT coefficient, the summation bonds reflect the assumption 

that 𝑥(𝑛) = 0 outside the range 0 to 0 less than or n which is less than or equal to N - 1. So, we 

call DFT that is N samples of DTFT of 𝑋(𝜔) over the interval is 𝜔 in between 0 and then 2π at N 

equally spaced discrete frequencies that is 𝜔𝑘 what we call it 2𝜋𝑘 𝑁⁄  here k is going to be 0 to n - 

1 and the space between 2 successive 𝑋(𝑘) is nothing but 2𝜋 𝑁⁄ , we call it as a resolution of the 

DFT.  

 



So, we say the unit for this is radians, and then if we represent in terms of sampling frequency it 

is going to be  𝑓𝑠 𝑁⁄  hertz.  
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So, then what we can see that, as an example, if the signal n is real valued and N is even number, 

so, we can show that 𝑋(0) if we substitute that is n = 0 to n - 1 which is nothing but 𝑥(𝑛)𝑒−𝑗0, 

which is nothing but 𝑥(𝑛) and then 𝑋(𝑁 2⁄ ) any other N divided by 2 is represented as this way 

∑ 𝑒−𝑗𝜋𝑛𝑥(𝑛) 𝑁−1
𝑛=0 . So, this is we know that 𝑒−𝑗𝜋𝑛 is nothing but (−1)𝑛𝑥(𝑛) . So, what we observe 

from this is the DFT coefficients 𝑋(0) and 𝑋(𝑁 2⁄ ) are real valued.  

 

That means, if 𝑥(𝑛)  is real valued then output even the DFT coefficients are real valued. So, if N 

is an odd number, 𝑋(0)is still real, but 𝑋(𝑁 2⁄ ) is not available. 
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Now we will consider the sequence or signal of finite length, which is given by 𝑥(𝑛) = 𝑎𝑛, 𝑛 =

0,1, ⋯ , 𝑁 − 1 and then a is inbetween 0 and 1, then DFT of 𝑥(𝑛) is computed as that is 𝑋(𝑘), 

substitute 𝑥(𝑛)  with 𝑎𝑛𝑒−𝑗(2𝜋𝑘 𝑁⁄ )𝑛. So by simplifying, so what we will be getting is 1 −

(𝑎𝑒−𝑗2𝜋𝑘 𝑁⁄ ), and k is going to vary between 0 to n - 1. So, we can represent this DFT as 𝑊𝑁
𝑘, we 

call this as a twiddle factor, which is given as 𝑒−𝑗(2𝜋𝑘 𝑁⁄ )𝑘𝑛. 

So, we know that we can split our exponential into cos and sine function. So, 

cos (
2𝜋𝑘𝑛

𝑁
) − 𝑗 sin (

2𝜋𝑘𝑛

𝑁
) ,  0 ≤ 𝑘, 𝑛 ≤ 𝑁 − 1. So then, if we substitute 𝑊𝑁

𝑘 in our equation, so 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛𝑁−1

𝑛=0  k is varying between 0 to N - 1.  
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So, that is what, what I said twiddle factors of DFT 𝑊𝑁
𝑘𝑛 are called, and then we know that N roots 

of unity is a clockwise direction on the unit circle, we will see it in a while hold on. So, then what 

we call 𝑊𝑁
𝑁 is nothing but 𝑒−𝑗2𝜋, which is equal to 1 which is nothing but equal to 𝑊𝑁

0. So, we can 

see that the DFT is periodic in nature. So, that is the reason why we take 0 to N - 1 when we 

substitute 𝑥(𝑛)is equal to N basically, that is N is N, then what happens.  

 

𝑘𝑛 becomes N becomes 𝑒−𝑗2𝜋, which is 1 which is nothing but 𝑊𝑁
0. So, and then the central point 

what we will check it up  𝑊𝑁
𝑁 2⁄

, which is equal to 𝑒−𝑗𝜋. So, which is nothing but −1 and 𝑊𝑁
𝑘, 

what we call it between the other values as 𝑘 = 0,1, ⋯ , 𝑁 − 1. So, if we extract the symmetry 

property, then what happens we can split this into 2 parts, that is 𝑊𝑁

𝑘+
𝑁

2  which is equal to −𝑊𝑁
𝑘. 

So, k is in between 0 to 𝑁 2⁄ − 1 and if we consider the periodicity property, then what happens 

𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘.  

 

So, we know that the inverse discrete Fourier transform we call it as IDFT. So, is used to transform 

the frequency domain coefficients 𝑋(𝑘)back to time domain signal 𝑥(𝑛), the IDFT is defined with 

this equation 𝑥(𝑛) is equal to 
1

𝑁
∑ 𝑋(𝑘)𝑒𝑗(2𝜋 𝑁⁄ )𝑘𝑛𝑁−1

𝑘=0 . So, if we represent with twiddle factor, it 

will be 
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑘𝑛𝑁−1
𝑘=0  in this case, n will be varying between 0 to N - 1.  
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So, we can see that how the twiddle factors of DFT in case of 𝑁 = 8 is assumed, so on a unit circle, 

so, we will be seeing that this is 𝑊8
0 which is equal to 1 and then what we have is 𝑊8

1 and then 

𝑊8
2, 𝑊8

3 and then 
𝑁

2
 what we just now saw that 𝑊8

4 which is nothing but minus 𝑊8
0 which is equal 

to -1. And then we know 𝑊8
5 is equal to −𝑊8

1, and then 𝑊8
6 will be equal to −𝑊8

2. And we know 

that when we come to 𝑊8
7, it comes out to be −𝑊8

3, you will be seeing that this is what it is −𝑊8
3.  

 

And when it becomes 𝑊8
8, just now we said any 𝑊𝑁

𝑛 = 𝑊𝑁
0, here it is 𝑊8

8 which is equal to 𝑊8
0 = 

1. So, these are the twiddle factors, depending on power of 2, if you are considering it, it will be 

on the unit circle this way, and then it is going to be repeated after a period. In this case, we have 

assumed 𝑁 = 8. So, the equation again repeated for DFT, what it is shown, and then in terms of 

twiddle factors, W what we call it 𝑊𝑁
𝑘𝑛 where 0 is less than or equal to k, and then n is less than or 

equal to N - 1, both k and then n are in 0 to N – 1.  

 

How we can write the in a matrix form? That is, all these coefficients are first row is 1, and first 

column is 1. After that, we will have 𝑊𝑁
1. And then the last one in this row is 𝑊𝑁

𝑁−1. So that way, 

what you are represent it. So last row, what you can see, 𝑊𝑁
𝑁−1 𝑊𝑁

(𝑁−1)2

.  
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So, just to show that how twiddle factors are represented with 𝑊𝑛 weight, we will assume given 

𝑥(𝑛) = {1,1,0,0}. So, I think it should be striking to your mind that here we have assumed 𝑛 =

 4. So, we will see the DFT 4 point sequence what it is going to be. So, we represent 𝑥 is equal to 

all 4 1s here, and then 4 1s in the column, then this is 𝑊4
1, 𝑊4

2, 𝑊4
3, and 𝑊4

2, 𝑊4
4 and 𝑊4

6, so on 

in the last line all you will be seeing it when you expand them.  

 

So, in terms of e power, then you will be seeing that 𝑊4
1 is nothing but −𝑗 and 𝑊4

2 is −1, and 𝑊4
3 

is −𝑊4
1, which is +𝑗. So, here also you will be seeing the thing, this is how we will enter the thing. 

And we have been given 𝑥(𝑛) is this value. So, this is our coefficient. And then these are our 𝑥(𝑛) 

when we do the matrix multiplication. So, the DFT of the sequence is nothing but 2, 1 − 𝑗, 0 and 

1 + 𝑗, to see that whether our DFT is correct or not, we will take the IDFT. So, we assume that 

𝑓𝑘 = 𝑘
𝑓𝑠

𝑁
, k will be varying between 0 to N - 1.  

 

So, then what happens to our X, which is nothing but 
1

4
, that is 

1

𝑁
 in this case, so we will substitute 

our matrix is going to be just our DFT matrix, but you will be seeing that the twiddle factors are 

negative in this case. So, we will be substituting all this values when we do that. So, 
1

4
 this is our 

DFT coefficients in the IDFT basically. So, you will be seeing that it is a complex conjugate of 

this DFT coefficients which you will be resulting in. what is it? After multiplication with our 𝑋(𝑘) 

that is 2, 1 –  𝑗, 0 and 1 +  𝑗.  



 

So, we will be getting back our 𝑥(𝑛)  that is 1 1 0 0 so you will be seeing that this is the DFT and 

IDFT with an example how they are what I will call it as analysis and then synthesis equations 

what we call them. 
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So, what is the frequency resolution in this case? So, we said identical to DFT, with exception of 

the normalizing factor 
1

𝑁
, and the opposite sign of the exponent of the twiddle factors, that is what, 

what we said. So the DFT coefficients are equally spaced on the unit circle, we saw that usually 

we call it as the z plane at frequency intervals of 
𝑓𝑠

𝑁
, or it can be 2𝜋 𝑁⁄ , because that is what we 

map in the 𝜔, that is in the frequency domain, 0 to 2𝜋. And then here sampling frequencies 𝑓𝑠 up 

to 2𝜋. 

 

And we say that frequency resolution of our DFT delta is nothing but 
𝑓𝑠

𝑁
  this is the samples, or the 

period between 2 samples. Frequency sample 𝑋(𝑘) represented discrete frequency. So, where 𝑓𝑘 

is given by 𝑘
𝑓𝑠

𝑁
 for k = 0 to 𝑁 − 1. So, we assume that if I do not know what is the frequency I am 

getting at the output, if I know that k is equal to I will put it as 1. And we have assumed 𝑓𝑠 sampling 

frequency is 8 kilohertz.  

 



And then I am going to pass it through 𝑁 =  8. To be simpler to calculate this, then what is the 

frequency f k component in this case is going to be k is 1. And I have chosen 8 kilohertz as my 𝑓𝑠 

divided by number of samples is 8. So, then you will be seeing that 𝑓𝑘 is what I am representing at 

𝑘 =  1 is 1 kilohertz. So, if I draw the thing, so this will be my magnitude, x of 𝑥(𝑒𝑗𝜔), what I 

can put the thing magnitude of it, and this is the 𝑓𝑠 in kilohertz what I will put it, and this is my 0, 

this is 1, 2, 3, I will put it as 8.  

 

So, I will be getting the peak here, which is my 𝑓𝑘 in this case, what I am representing. So, this is 

how you will be calculating depending on k value is going from 0 to here 7, in this case, 8 will be 

𝑓𝑠 by 2 point, so it will be repeated. So, this is how you calculate. And then, we know that DFT 

coefficients X, is complex variable. So, it can be expressed in polar form as 𝑋(𝑘) = |𝑋(𝑘)|𝑒𝑗∅(𝑘). 

So, this represents my phase and this represents my magnitude.  

(Refer Slide Time: 23:00) 

 

So that is how we will be representing it here, how we can compute our magnitude and phase 

spectrum for a given signal. So, the first is the magnitude spectrum, we will be calculating 

|𝑋(𝑘)| = √{𝑅𝑒[𝑋(𝑘)]}2 + {𝐼𝑚[𝑋(𝑘)]}2, so will give me the |𝑋(𝑘)|. And then the phase spectrum 

always be represent in terms of a tan inverse. So, ∅(𝑘) =

{
tan−1 {

𝐼𝑚[𝑋(𝑘)]

𝑅𝑒[𝑋(𝑘)]
} , 𝑖𝑓  𝑅𝑒[𝑋(𝑘)] ≥ 0

𝜋 + tan−1 {
𝐼𝑚[𝑋(𝑘)]

𝑅𝑒[𝑋(𝑘)]
} , 𝑖𝑓  𝑅𝑒[𝑋(𝑘)] < 0

.  
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So now, how we are going to represent our DFT and then z transform, what is the relationship we 

will see in this slide. So that DFT coefficients can be obtained by evaluating the N sequence 𝑥(𝑛)  

on the unit circle, we have seen it already at N equally spaced frequencies 𝑤𝑘, which is given by 

2𝜋𝑘 𝑁⁄ , 𝑘 = 0,1, ⋯ , 𝑁 − 1. So, what is it? 𝑋(𝑘) = 𝑋(𝑧)|
𝑧=𝑒𝑗(2𝜋 𝑁⁄ )𝑘 ,   𝑘 = 0,1, ⋯ 𝑁 − 1.  

 

So, some of the terms have will be going from one domain to the other domain, what is shown in 

this figure, what is it x of t is my time domain by doing the sampling of the signal, I will be entering 

into digital domain that is 𝑥(𝑛𝑇). And then if I take the Laplace transform for in the time domain, 

then I will be going into Laplace domain which is represented as 𝑋(𝑠), and then how I can traverse 

to my digital zee domain by substituting a simplest impulse invariant method that is that is equal 

to 𝑒𝑠𝑇.  

 

I can enter into zee transform basically in the digital domain, or from the digital signal, I can use 

the z transform to calculate my 𝑋(𝑧). And if I calculate the Fourier transform, I will be entering 

into the Fourier domain that is 𝑋(𝜔). And then how these 2 are related as you can see, by 

substituting 𝑧 = 𝑒𝑗𝜔, I can get the frequency component from zee domain, so the sum of the units 

and then variables and relationship and ranges shown in this table.  

 



So, if we represent it as 𝛺, we call it as radians per second. So, we say that 𝛺 = 2𝜋𝑓, and this is the 

range for our 𝛺 that is −∞ to ∞ and f we call it as cycles per second in hertz. So, which is 𝑓 =
𝐹

𝑇
 

which is f is assumed in this case as sampling frequency. As you can see cycles per sample that is 

𝑓

𝑓𝑠
  and then this also varies between −∞ to ∞ and 𝜔, usually we represent it in radians per sample.  

 

And 𝜔 = −2𝜋𝐹 which varies between −𝜋 to 𝜋 𝜔, or it can vary between 0 to 2π. And this is 

between −
1

2
≤ 𝐹 ≤

1

2
. So, this is what the relationship with respect to z transform and then DFT.  
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So, now we will assume that how to go with the; we said that DFT is a periodic function, we will 

see how to calculate the circular convolution. So, all of you must be conversant with your linear 

convolution and circular convolution, usually DFT will be represented as circular convolution. So, 

we have 𝑥(𝑛) and ℎ(𝑛) are real valued N periodic sequences, y of n is a circular convolution of 

𝑥(𝑛) and ℎ(𝑛). So, which is represented 𝑦(𝑛) = ℎ(𝑛) ⊗ 𝑥(𝑛).  

 

Which is given as ℎ(𝑚)𝑥((𝑛 − 𝑚)𝑚𝑜𝑑 𝑁) N what we will be taking it that means to say 

(𝑛 − 𝑚)𝑚𝑜𝑑 𝑁  non negative modular N operation will be considering it n is varying between 0 to 

𝑁 −  1 in this case. So, how we represent in the, this is what we have in the time domain and in 

the frequency domain. So, it results in the multiplication of 2 Fourier transform of that is discrete 



Fourier transform of x and then h. So, 𝑌(𝑘) = 𝑋(𝑘)𝐻(𝑘), where k will be varying between 0 to 

𝑁 −  1.  

 

So, that is what, what it says if the shorter sequence must be padded with 0s in order to have the 

same length for computing circular convolution. So, what do we mean by that, so, 𝑋(𝑘) and 𝐻(𝑘) 

are of different length. So, to make them equal length, one of them had to be padded with 0s. So, 

we will see that linear convolution in slide 21 so, how we have padded with 0s and then made 

power of 2 and then used in our circular convolution.  
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So, how we are going to compute our circular convolution, so, usually it is represented with 2 

concentric circles. And we will be seeing that this goes in the clockwise direction 𝑥(𝑛) and ℎ(𝑛) 

are aligned actually, then we will be moving ℎ(0) in this direction 𝑛 −  𝑁 +  1 and then so on. 

And then next last one will be ℎ(𝑛 − 2)  ℎ(𝑛 − 1)  , whereas you will be seeing that 𝑥(𝑛) goes in 

this direction anticlockwise, 𝑥(𝑛 − 𝑁 + 1) and then we will be coming to 𝑥(𝑛 − 2)  and 𝑥(𝑛 −

1). So, this is how we will represent. We will see with an example how we are going to compute 

this.  
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So, as an example, as I have been mentioning 𝑥(𝑛) is given as 1 2 3 4 and our h of n is 1 0 1 1. In 

this case, as you can see, both are of the same length we will do the circular convolution. So, the 

steps have been written here. So, how to arrive at these steps using our concentric circles we will 

see the thing. So, my 𝑥(𝑛)  is 1 2 3 4 it is written in this way anti clockwise and then ℎ(𝑛) is 1 0 

1 1 is in the anti clockwise sorry, this is in the clockwise the 𝑥(𝑛) is in the anti clockwise.  

 

o, when I do the first time, we have aligned the 𝑥(𝑛) and then ℎ(𝑛) together and we multiply these 

2 numbers and then all of them we multiply you will be seeing 1 × 1 is 1, 2 × 1 is 2, 0 × 4 is 0, 

and then here 1 × 3 is 3. So, when you add it up, this is what the step what it is given at 𝑛 = 0, 𝑦(0) 

is given by 1 × 1 + 1 × 2 + 1 × 3 + 0 × 4 = 6. So, then what we are going to do is, I can move 

this as the arrow shows 1 step each time my ℎ(𝑛) in this thing, and I keep this one as it is.  

 

So, when I do that next value is going to be 0 × 1 + 1 × 2 + 1 × 3 + 1 × 4 = 9. So, this is 6 9 8 

7 when I do the circular convolution. So, you will be seeing that how we can implement linear 

convolution just if you have done the thing. So, just I will write it here most of you would have 

used this method to compute your linear convolution. So, when I put the thing, all of us know that 

we put 𝑥(𝑛), I can put it here 1 2 3 4.  

 

This is 1 0 1 1 what I can represent, then I will be multiplying with the 1 into this number, this is 

2 0 2 2 and then 3 0 3 3, 4 0 4 4. So, how we are going to get the thing, so, you will be knowing 



that this is the way we will be adding it up and then result in the linear convolution. So, you will 

be seeing that this is 1 2 3 7 and then 5 7 and then 4, this is the equivalent of linear convolution. 

So, whereas circular convolution, you can see that 6 9 8 7, can I use this method to implement 

linear convolution that is what we will check in the next slide.  

(Refer Slide Time: 33:09) 

 

So, you will be seeing that, what we have done is we have these are the 2 values. So, that is for the 

linear convolution using circular convolution, we have to do 0 pad of 𝐿 + 𝑀 − 1 is the length of 

the sequence what the result is going to be. So, we have to pad both of them with these 0s 𝐿 +

𝑀 − 1, L is the length of 𝑥(𝑛), M is the length of ℎ(𝑛). In this case, we have both of them are 

equal 4 + 4, 8 – 1, 7 will be the length, what we have is 4 lengths, so we will be padding with 3 

zeros. And then the other one also will be padding with 3 zeros.  

 

So, now we have although we have the equal length, to simplify, if I want to compute power of 2, 

then what I have to do is I had to make them 8, as you will be seeing that 2 concentric circles I 

have divided into 8 parts. So, we will be putting 1 2 3 4 and then 4 zeros, what will be padding 

instead of see 3 zeros. Here also we will be doing 1 0 1 1 and 4 0s same way as the previous one, 

you can now shift the thing the resulting value with circular convolution, you will be seeing that 1 

2 4 7 5 7 4 is achieved, which can be evaluated verified using MATLAB.  

(Refer Slide Time: 34:42) 



 

Or the next slide shows that how it has been implemented. So, I showed you how it has been done 

in the previous example, same way, if you do the thing, you will be resulting with this value the 

last one will be 0 which you can discard and then keep these 𝐿 + 𝑀 − 1 values for your result.  

(Refer Slide Time: 35:06) 

 

So, you can see that we have taken little bit of DFT in to show that circular convolution property, 

other properties, you can look into the book and then come out with it. In the next class, we will 

be seeing the complexity of filtering and how we will be deriving from DFT, FFT equation. Thank 

you. 


