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Lecture — 18

IR Filters 4
Back to real time digital signal processing course. So, you can see that we are going to discuss the
fourth part of IIR filters today. So, why FIR has not taken so much of time why IIR is taking you
will be seeing in a while although we have already seen that quantization how it is going to effect.
So, in today's class we will work out and then see how the center frequency is going to move from
with the coefficient quantization from one value to the other one.

(Refer Slide Time: 00:52)

Recap

+ IR Filters

I

So, as a recap, so we have been seeing the theory of IIR filters and how to design them and then
how the cascade filter section is going to aid us to implement in DSP processor just to comment
on it so, we know that cascade section is nothing but it is a multiplication. So, in DSP processor
we have seen in the number system that when we do multiplication of 2 numbers, the overflow is
not going to happen, only if we have to do the addition we had to take care of overflow and then

underflow. So, the parallel section is equivalent to addition.



So, that is the reason why we will not use parallel structure in case of IIR filter design for these
hardware units. So, usually we go with the cascade realization, although both cascade and then
parallel section have the same effect on the design.

(Refer Slide Time: 02:00)

Problem | e

A bandpass digital IR filter to be used in digital clock recovery for a 48 kbit's modem is
characterized by the following transfer function:

1 e ,
 H(z) = Py where @, = —1.957558, a, = 0.995813

+ Assuming a sampling frequency of 153.6 kHz. assess the effects of quantizing the coefficients to 8
bits on the pole positions and hence on the centre frequency.

L

Coming to the thing, so, we will see that, how we will be seeing what happens, what is our transfer
function is going to look like? So, we are going to design a bandpass IIR filter to be used in our
digital clock recovery for a 4.8 kilobits per second modern what we are using it which is
characterized by the following transfer function. So, you have been given your impulse response

H(z) = ! ~. S0, it should be triggering in your mind that this is just a second order

1+a,z 1 +ayz~

design what we are doing it.

So in this case, you have been given the values of a, and then a,, a, is given as -1.957558 and a,
is given as 0.995813. So, this is your a, and a, can be designed from using MATLAB or this value
has been computed and then you have been given in this equation. So, assuming in this case,
because we are using the clock recovery sampling frequency of what we are telling is 153.6
kilohertz to assess the effects of quantizing the coefficients what we are going to do to 8 bits that

also you have to keep it in mind.

So, if you want to increase it to 16 bits, you can do it and then verify what will be the center

frequency which is going to remain that is what one of the assignment what | will be putting it for



you. So, then we had to say that how the pole positions is going to affect our this thing center
frequency. So, we will do that.
(Refer Slide Time: 03:56)
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Solution

First, we find the pole positions of the unquantized filter. The pole position Equation

py =1l p, =re—8,
Where i
r=a'?6=cos ‘(—“—') [ohils
2 ! ” r

1= 0.995913 = 0.99795,0 = cos ! (o) = 1125’ Q;s’
e AT Mo Aty
+ This corresponds to a centre frequency of 47999 kHz (153.6 x 107 x 11.25/360) .
+ Next, we quantize the coefficients to 8 bits.As one of the coefficients is greater than unity, we will M'
assign | bit as the sign bit, | bit for the integer and 6 bits for the fractional part of the coefficients.
Quantizing the coefficients, we have ) %
ay = ~1.957558 x 2° = 125 = 10000011 ¢= ’ﬁ”ﬂ
"y =—0995913 x 2° = 63 = UUllllll(_
L)\M'l ‘1

So, as we know that we have the equation how to calculate our p; and then p, values. So, p; is my
this thing pole position of the first one, which is given r at an angle of theta and then p, is given r

at an angle of minus theta because we are designing the complex conjugate poles in this case. So,

we had the equation that 7 = a2/? and then 6 = cos™! (— Z—;) So in this case, how do we compute

r?

So, we have been given the value of a, as you can see, a, is given as 0.995813 which we are going
to take it as square root of it, because that will give me a, value. So, we are going to get 0.99795

what I will be getting it here so that is r squared is a,, so r will be v/a, what you are going to have,

s0, 8 = cos™ ! (— Z—;) So, we know that a 1 is negative. So, that is the reason why you will be

seeing positive here this is (w)

2r

2r is going to be whatever what you have computed here, so we will be putting into that, which
gives me in terms of degrees as 11.25°. So, this corresponds to your center frequency of 4.799
kilohertz. So, what do we mean by that, so, we know that this is my unit circle. So, this is my

centre. So, we are calculating  here. So, this is r it is an angle of what we call it as 11.25" you



have the pole, this is 11.25". So, when I calculate center frequency that what we are going to do is

this is my sampling frequency what it has been given.

And | know its degrees, 11.25/360 which is going to give me the center frequency. So, for this,
it is at 4.799 kilohertz is the center frequency, it is in the original state what we will call it. Now
what you have been given in the problem is we have to quantize the coefficients to 8 bits that is
what our constraint as one of the coefficients is greater than unity. So, you will be seeing that a; =

—1.957558. So, we need at least 1 bit to represent my coefficient in the integer format.

So, what will be the representation here? So, in the normal case, we say that it is Q 15 format is
1.15 format for 16 bits number here, you have been given 8 bits, basically. So normally, if we
allocate all the 7 bits, 1 is the sign bit and rest of the 7 bits, then I will be talking about 1.7 format,
but since my integer value is greater than 1, so | need 1 bit for my integer. So, what happens to
this, we will be representing it as 2.6 format, this is the format what I need to represent this value.
Then what happens | have 6 bits for my fractional representation, which I had to convert it. So, my
coefficient from a 1 it is going to be a 1 dash what | will be putting it —1.957558 x 2°, which is
equivalent to, I will be rounding of or truncating one of the thing what you can do it so which
comes out as -125. So, if you are present in binary, this is the value of what you will be representing
it. So, coming to a 2 dash so which is given as —0.995913 x 2° which comes out as 63, so it may

come as 63.5 or 63.6 exact value, you can check the thing.

So, why we are representing this also in 63 1 will hold on for a while we will come to that this is
your binary representation basically.
(Refer Slide Time: 08:51)
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Solution (2) ‘2

* In fractional notation, the quantized coefficients values are
; a
B P R | 1
a, "0 =cos (— —)
T 3 o "2
' 12 e ' A3
N —9— 1963125 a, = e 0.984375

+ The new pole position becomes

= 099215687 = 10.171833°

1
BY
and the centre frequency now becomes & ‘E'b h?]
o= (M) x 1536 x 10° = 43399k Hz 494
« lfr = Lthen ' = 1243, f, = SR 4.5
Cim i .iT__ N - U;
¢ o P

So, now we will go back and then recalculate what are the values we have got it. So, my maximum
value what is it 125 for a, what | have represented in with 8 bits, then we said that it is 2°is nothing
but 64. So, | can re-divide the value and calculate what | am going to get it? So, it becomes
1.953125 so, what was the original this thing 957558. So, you will be seeing that there is a

quantization which has already happened.

Even a, you can see that we are doing 63/64 which comes down to 0.984375. So, what was the
original one was 0.995913. So, now with this modified, calculate your center frequency, apply the
same equations as the previous one we call that as r' and 8’ what we will be calculating. So, you
are seeing that from 11.54° it has come down to 10.17. If you want to round it off to 2 digits it is

going to be that degree.

So, now calculate is your f, that is the center frequency, this is what you will be getting it

(10.171853

2e0 ) x 153.6 x 103 because it is in kilohertz. So, you can see that this is going to be 4.3399

kilohertz. So, what was our original thing, it was 4.799 kilohertz, so, you will be seeing that your
center frequency has moved, what we call it as center frequency in this case is where |1 am dropping

down this is we usually call it as my cutoff frequency f.

So, you will be seeing that your thing from 4.799 it has got move to 4.3399 so, you will be seeing

that your thing has moved to left. So, you are allowing more whatever we call it as in the stopband



region, so, that if there are going to be some aliasing, so, it may creep into the thing. So, this is the
effect of moving quantization basically. So, now, | said | can take r = 1 what happens in that case,
so, we recalculate this. So, we have calculated and only we are giving the final thing, so, you will

be seeing that what happens to your theta dash.

It becomes 12.43" and f, = 5.303 kilohertz actually in this case. So, what happens this is f, this
is I call it as £." and this I can call itas f.". So, this will be coming to 5.303 kilohertz here if it is
represented in kilohertz. So, my f ¢ double dash, so, you will be seeing that more frequency will
be coming into your input and then you will have a problem here you are going to reduce the thing

if there are any frequency component present in this thing is going to be cut off.

Whereas, here more frequency has come in so, you will be having the aliasing effect. So, that is
the reason why we choose r = 63 in this case, so, which is almost nearer to our 4.799 compared
to going beyond the frequency. So, this shows that how your number of bits is going to effect. So,
now you can calculate n = 16. So, what is the frequency how much difference you can get it you
can calculate and then give the result.

(Refer Slide Time: 13:15)

Coefficient Word Length Requirements for Stability anEi’*}

WL W

Desired Frequency Response

+ Qur stability discussions will be restricted to second-order filter sections since these are the
basic building blocks of any fileer. Consider a second order section characterized by the familiar
equations

bythyz " +hy2
*HE) ez ayz e

2 2
¥(n) = Z byx(n - k) - Zaw(n -k)
=0 k=1
+ The poles (or the roots of the denominator) are located at

p = %[—al + (of - 4a,)"?]

*h= %I o, - (af - 40,)'"?]
\

Continuing with the thing, how the next one is what is the word length requirement for stability
and desired frequency response what we have to say. So, our stability discussions will be restricted

to second order filter sections, because each individually if they are stable then we say the complete



IIR filter is stable, since these are the basic building blocks of any filter and consider our second

order section characterized by the familiar equation what you are seeing it here.

b0+b12_1+b22_2
1+a.z 1+a,z—2

Thatisa H(z) = so, a, and a, our pole position. So, in the equation what you will
be getting is y(n) = Y.%_, bx(n — k) this is our 0 representation minus our pole position this is
the feed forward section and this is the feed backward section. So, we know that poles are the roots

of the denominator are located at what we call it p; = %[—a1 + (a? — 4ay)Y?| and p, =

N |-

[—a, — (a? — 4a,)*/?]. So, of p,, what we will be representing it.
(Refer Slide Time: 14:51)
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Problem 2 *2

+ A digial filter is required to satisfy the Passhand 205-235 kHz
following frequency response specifications Stopband " 0-19 kHz, 25-50 kHz

Passband ripple < (.25dB

|. Determine a suitable transfer function for
the filter,

2. Determine a suitable coefficient wordlength Stopband_ attenuation | >45d3

2. to maintain stabiity and Sampling frequency | 100 kHz

b. to satisfy the frequency respanse
specifications.

3. Obtain and plot the frequency response of
the unquantized filter and those of quantized
filters corresponding to part (2).

e wr o
.E—C: 5.

So, what happens in this case, a digital will take up an example, a digital filter required to that is
satisfy the following frequency response specifications determine a suitable transfer function for
the filter and then determine a suitable coefficient word length to maintain stability and satisfy the
frequency response specification. So, you will be taking obtain and plot the frequency response of
the unquantized filter and those of quantized filters corresponding to this part basically how you

will be number of bits what you will be considering.

So, what is the specification what we have? Passband region is given by 20.5 to 23.5 kilohertz and
then stopband is given. So, you will be seeing this is a bandpass filter basically, so, how it is

represented, this is the way | represent it. And then this is given as 20.5 to 23.5 is my passband



region, this is in kilohertz I will put it. So, then what are the stopband so, we will call it as this as

fe1 = 19 kilohertz sorry, it is becoming little small and then here f,, = 25 to....

Because it is sampled at 100 kilohertz as you can see, till /2 it is going to be your stopband region
in this case 25 to 50 kilohertz and then the ripple what you want is less than or equal to 0.25 dB
and then stopband attenuation what | want is greater than 45 dB. So, as you know that it is better
to design this filter using MATLAB and then get the values of your coefficients basically.

(Refer Slide Time: 16:57)
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Solution A

(1) Using the design program (available on the €D in the companion handbook - see the Preface for
details) it was found that al elliptic filter characterized by the following transfer functien is suitable:

+ H(z) = Hy(2)H,(2)Hs(2)Hs(2)

where
13392 42
1-0756r " g2
(7)) = — e —
1-05586z ll_u‘-.le-_slz 2 (t wlay Hg\(a}
14053317 1472 U" !

* Hiz)=

1-02711r 4090262~

CH(2) = 1-1.1488 12
BT Lenaadr 0004522

So, when you do that, this is from the book | have taken the example. So, you can refer to the book
and then see CD of the book is going to give you this example, this is basically from Ifeachor what
| have taken the thing, digital signal processing book. So, in this case what happens, it generates
as in the lab we will be seeing it that how many sections it is going to create. So, here there are 4
second order sections which has been created and then using their zeros and then poles, you will

be representing your impulse response like this H,, H,, H; and H,.

So, you will be seeing that this is in a cascade form, basically, there will be 4 sections what | am
going to have, this is my H,(z), H,(z) and then this is H,(z). So, these are the values what you
will get it. So, you have to take each second order section, and then see whether there is going to
be over flow or underflow or what is the number of bits what you needed, so that you are going to

have the stable filter.



(Refer Slide Time: 18:27)
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Solution (2) 4

* (2) 2The denominator coefficients of each of the second-order sections were each quantized by
rounding to B bits (B = 2,3,..., 29) including the sign bits. For cach value of B, the quantized
coefficients and the pole location in polar form were computed. To illustrate, consider the first
second-order filter section. H, (z). For B = 8 bits, the denominator coefficients are quantized by
rounding as follows:

v, =—(01743 % 27 +0.5) = -22.8104 = =22
¢ty = 09662 X 27 +05=1241736 = 124

* In fractional notation, the coefficients are

¢ ay =-22/128 = -0.171875

v a, = 124/128 = 0.96375

As you can see in this case, so you will be varying your number of bits, that is 2 to 2, 3 like that
you can keep on changing and then you can go up to 29 bits. So that is what the theory gives
basically. So, we will work out for H, (z). So, what is the number of B bits we will assume, because
even in the previous example, we had taken the 8 bits, we will see whether it is going to give us a

stable filter. So, you will be seeing that a; will be because all the coefficients are less than 1.

Now what | can represent this as a 1.7 format, that is why you will be seeing multiplication by 2’
is happening and then we are doing the rounding that is the reason why we are adding 0.5 to that.
So, the value is going to be -22.8104. After that we will be truncating the value. So, which is going
to give us -22 same things will calculate a,. So, it will be giving us 124.1736 so, you we will be

truncating here, it is going to give us 124,

So, the fractional notation the coefficients are nothing but —22/128. So, this is in decimal value.
So, when | represent it in fraction, so it will be giving out as -0.171875. So, you have seen | think
something triggering in your mind. So, the coefficient quantization has already happened with 8
bits, 0.174 to 0.171 what it has got reduced in this case. So, a, will be becoming 0.96875 so,
original was 0.9662. So, you have seen that it has got because we have taken around off it has got
a little bit increased compared to the original one.

(Refer Slide Time: 20:37)
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From Equation py = 128, p, = 2 — 0, the pole radius and angle for the section for 8 = R bits are
given by

+ r=+0.96875 = [].9?4-3.

. a=cos"(—:’—;] = cos~ ' (0.087308) = 84.99°

+ All the quantized coefficients and polar coordinates were computed using an analysis program. If,
for any coefficient wordlength, the pole radial distance of a filter section is equal to or greater
than unity then there is potential instability. It was found that for all the filter sections, as few as B
=5 bits are required to maintain stability. In general, if the ple of an unquantized second-order
section is at a radius r < 0.3, instability is unlikely if a coefficient word length of 8 bits or more is
used.

So, with this you can go back and then calculate your r and theta value and see that what we are
going to get is 84.99° what we are getting it so, what it says is the all quantized coefficients and
polar coordinates were computed using an analysis program and if for any coefficient word length
the pole radial distance of a filter section is equal to or greater than unity, then there is potential

instability that is what the literature gives. And then it was found that all the filter sections as few

as B = 5 bits are required to maintain our stability.

So, in general if the pole of an unquantized second order section is at radius less than r, r < 0.9.
So, what it says is instability is unlikely. So, if itis = 0.9 you may say that the system may become
unstable then you have to take care of designing the proper stable filter. So, as with the word length

8 bits we see that it is 0.96875 what we have is 0.9843. So, is more used in this case.

(Refer Slide Time: 22:15)
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* (2) bThe coefficient of the second-order [ Al
sections were each quantized to various
wordlengths as described above. For each

Ideal SNy 16biy Ideal Shin 16

1000000 1000000 1000000 1.000000 1,000 000 1.000 000

wordlength, the quantized coefficients were CLIBN0 125000 -LIMIES LHEN0  -1AVK0 L4482
JMETIT AT07031 3M06TO0 4483 108 43554690 443071

A
0
1
; : H
then comblneldtol yle.ldanoverall quantized 3 Yedse Ve S AW A0eW <Deel
transfer function in direct form. Examples for 4 sa01m  saoms  sami08 asn 102 s215%  6s0n

rdlensth of § andl6 bi eninTable 3 THSNT MO sens WS A6 M8
wordiength ol s andlb bits are given in1able ¢ smgmy  amion  3meN0  A9KIK)  ASHaEe 39183R
below. The passband ripples and stopband :

L3N0 -125000 X816 -LIREI0 L0 -1IRSS
: ; 000 L0000 00O Q763302 067912 076333
attenuation of the quantized filter for the

various coefficient wordlengths were (3) The frequency responses, scaled to have a maximum of 0
obtained. It was found that, to satisfy the dB, for the unquantized and quantized (8 = 5 bits) filters are
frequency response specifications in both depicted in Figure

Visually, the response for the 16-bit quantized filter was the
same as that of the unquantized filter and Is therefore not
shown.

passband and stopband, 16 or more bits are
required. We note that this is more than the
wordlength required for stability.

So, to see that b coefficient of second order section were each quantized to various word lengths,
S0, you have to use your MATLAB code to do these things. And then you can vary your word
length 5 to 16 bits, and then how they are going to be represented is given in the table here, this is
my poles that is A coefficients and this represent zeros that is a B coefficient for 5 bits, what we
want is ideally is this one and then with 16 bits, how almost closer what we are as you can see that

most of the 16 bit is closer to the original one what we say it.

So, this is how we will be calculating and then fixing our number of bits that is the, something
should be triggering in your mind all DSP processor, most of them are 16 bit defined.
(Refer Slide Time: 23:18)
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Addition Overflow Errors and their Effects b’ 4

+ In 2's complement arithmetic, the addition of two large numbers of a similar sign may produce an
overflow, that is a result that exceeds the permissible wordlength, which would cause a change in
the sign of the output sample. Thus a very large positive number becomes a very large negative
number and yjce versa (Figure), Consider the canonic section in Figure . Because of the recursive
nature of the [IR filter, an overflow w(n) is fed back and used to compute the next output where
it can cause further overflow, creating undesirable self-sustaining oscillations. Large scale overflow
limit cycles, as they are called, are difficult to stop once they start and may only be stopped by
reinitializing the filter.

+ Large-scale overflow occurs at the outputs of the adders and may be prevented by scaling the
inputs to the adders in such a way that the outputs are kept low, but this is at the expense of
reduced signal-to-noise ratio (SNR). Thus, it is important to select scale factors to prevent
overflow while at the same time maintaining the largest possible SNR .



And then we have to this is one of the distinct quantization of our coefficients how it is going to
vary the thing. Next is, we have to take care of overflow errors and their effects based on it what
we have to decide on it. So, we know that in 2's complement arithmetic, the addition of 2 large
numbers of a similar sign may produce an overflow, if it is beyond our representation, we are going

to have an overflow so that it exceeds the permissible word length.

And then very large negative number if you are adding them negative numbers you may have an
underflow in that. So, these are the 2 things what you have to look at it what is that?
(Refer Slide Time: 24:08)

Overflow characteristic in 2's component An illstration of the effects of
arithmetic. At instants when the input exceeds addition overflow. Large inputs of the
the permissible range (- 1.1) overflow occurs same sign at adder | will cause win) to

become too large. As win) is fed back,
the effect is self-sustaining

We will see in the figure, what is the thing happened? So, the value is getting added here, from
here to here, it has gone to the positive value we will assume and then what happens. So, when my
number of bits are not sufficient immediately drops down to the negative value. And then again it
starts building up once it reached the peak value it is going to drop down. So, this is how it will be

oscillating between -1 and then 1.

If this overflow or underflow is not taken care off. So, what it says is large scale overflow occurs
at the outputs of the adders and may be prevented by scaling the inputs to the adders in such a way
that outputs are kept low, but this is at the expense of reduced signal to noise ratio, because you

are bringing down your amplitude of the signal, then my signal to noise ratio is going to



have a effect on it. So, that is how it is important to select scale factors to prevent overflow while

at the same time maintaining my largest possible signal to noise ratio.

So, coming to the thing you will be seeing that overflow illustration is shown in this figure. So,
you have by, b, b, are the forward coefficients and then a, and a, are the feedback coefficients.
So, those both —a; and —a, and what is the scaling factor we will be providing it one of the section
if 1 am correct, taking it up, it is going to be scaled by 1 by s; at the input there are different places
where you can do the scaling whether at the input or at the output or if you are providing any of
these sections, you have to integrate into all the arms basically, to take care of that you have scaled
everything fine. So, as you we will be seeing using the MATLAB when you are doing it the scale

factor is given in the beginning itself. So, that has to be used and then your filter has to be designed.

(Refer Slide Time: 26:29)
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Principles of Scaling in

+ Canonic section

+ Consider the second-order canonic section in Figure, The scaling factor, s, at the filter input is
chosen to avoid or reduce the possibility of overflow at the output of the left adder. To keep the
overall filter gain the same, the numerator coefficients are multiplied by s,.

W

\{ Z\_.‘
|

So, what is the principle of scaling? So, first we will consider the canonic section because this is

the one most widely used in all hardware implementation that is what we are seeing it as | said that
it is scaled by 1 by s;. And when we want to get back of our y(n) either I can scale up here or

provide at this legs. So, if | take the scaling factor inside, as | was mentioning in the original thing,

22 \when we are loading our coefficients itself, if we want we

S1

this is going to be 5—;’ and Z—i and then

can scale them if their power of 2, if they are not then you will be having a little computation



involvement in designing your IR filter. So, you will be seeing that in the end what you can do is
| can scale the output by s, value.
(Refer Slide Time: 27:45)
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Principles of Scaling (2) vice

* There are three common methods of determining suitable scale factors for a filter. In method I,
often called the L; norm, the scale factor is chosen as follows:

¢ 81 = Yieal f(k)| where f(k) is the impulse response from the input to the output of the first
adder, that is w(n).

* In the second method, often called the L, norm, the scale factor is:

* 5 = [ZE ]

+ Alternatively, the the L; norm scale factor may be obtained using countour integration via the
relationship

dz

o Yo flk) = %J’ F(z)F(z ’)7 where F(z) is the z-transform of f(k) and § i indicates a
contour integral around the unit circle |z] = 1.

So, you will be seeing that what are the principles to use the scaling? So, most of you would have
heard of what we have norms basically, it can be L; norm, L, norm or L, are the 3 norms what
we have in literature. So, what is that first we will see the L; norm we call it a scaling by as s;. So,
here it says k = 0 to infinity. So, | am going to take the frequency response of my input and take

the magnitude of it and then calculate the summation of all of them.

So, as it says f (k) is the impulse response from input to the output of the first adder, that is w of
n in our figure here, this is what | will be taking the impulse response of that and then in the second
method, often we usually call it as L, norm the scale factor is calculated this way. So, if you want
you can call it as s 2 here or we can have it as s, is the scaling factor what notation what we are
using it. So, in this case, you will take the impulse response, but you will be taking the square root

of the value what you have some value what you have calculated.

So that is what, what it says scale factor may be obtained using contour integration via the
relationship. The last one L, norm what you are going to do is k = 0 to infinity, what | have to
calculate f of k impulse response, so which is given as 1/2mj, this is the L, norm what we are

doing with the contour integration as you can see it integral of F(z)F(z™1) this is a complex



conjugate what | have taken the thing %, where we are F(z) is the z transform of f (k) impulse

response. And this is a represents our contour integral on around the unit circle |z| = 1 basically.
(Refer Slide Time: 30:08)
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Principles of Scaling (3) vite

Evaluating

=30 F) = 1 1 1 dz 1

amj by vz 1ragz eyt 2 1-ag-af(1-a,){(1+ay)

In method 3, known as the L., norm, the scale factor is obtained as
s, = max|F(w)|

where F' f*w) is the peak amplitude of the frequency response between the input and (i

So, evaluating this is much easier. So, if you want you can go to the book and then refer to the

steps involved in deriving this final equation in terms of your poles basically what it is calculated,
so, you will be calculating the contour integral of your poles in conjugate form %. So, if you do

the simplification of it, what then simplest one you will be getting it is 1— a2 —

a?(1 — ay)/(1 + ay). So, this is how one can manually calculate our L, norm using this.

So, in method 3, we calculate peak amplitude of the frequency response between the input and
then w(n), that is we will be taking the Fourier transform, and then the peak amplitude whatever
it has it, so, we will be giving that as our scaling factor.
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The underlying assumption in method I is that the input is bounded, that is [x(n)| <

|. The scaling scheme is such that regardless of the type of input there will be no averflow. This is a
somewhat drastic scaling scheme, as it caters for situations which are unlikely to happen in normal,
real-werld situations. The L, norm corresponds to placing an energy constraint en both the input
and the transfer funetion. lts main ateraction is that finite word length effeet anajysis requires the
evaluation of L, norms (compare for example Equation 13.8 and Equation 13.14). It is also possible
to derive closed form expressions for a variety of filler structures. Method 3 ensures that the filter
does not overflow when a sine wave is applied and offers the best compromise. It is the scaling
scheme often preferred, especially as it allows the effects of sealing to be verified experimentally
using sine waves.

+ A compact way of expressing the ith scale factor is:
5 =Fllp

+ where the symbol || indicates the norm, and p = 1,2, co denates the type of norm. Scale factors
obtained by the three metheds satisfy the fellowing relationship:
L <L <ly

So, these are the underlying methods what we have it. So, you can read the theory compact way
of expressing the scale factor what we call it as s; is our L, norm what we have it with p. So, you
will be seeing that this is represented as norm and the method what we are going to have it is L,
norm, L, norm and in L, norm. And then how the scaling factors are going to get themselves
aligned or compare what we will be seeing it. So, L, norm is the minimum and then next comes
the L, and then L, is the maximum what you would have scaled. So, the value of L, is less than
your Lo, which is less than L.
(Refer Slide Time: 32:05)

Direct structure 4

Consider the direct structure in Figure 13.9{b). Since the filter has one accumulator internal
overflows are not a problem, and so input scaling is not strictly necessary. This is one of the
attractions of the direct structure. Intermediate overflows may occur in the output of the adder in
the course of computing y(n). Provided that the final output does not overflow, they do not matter.
The scaling arrangement in Figure 13.9 may be used if scaling is required

Example:

Determine a suitable scale factor to prevent or reduce the possibilicy of overflow in an IIR lowpass
filler characterized by the following transfer function:
142871 +272
H(z) = TS ERTT =
1- 10581359271 +RU'3385MZ




So, we will take up an example and then see how we are going to calculate this. So, in the book
itself where it says that the figure whatever in 13.9 is being used, and then we have this is our
second order section for the example.

(Refer Slide Time: 32:28)
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The block diagram representation of the filter using a second-order canonic section, is shown in
Figure 13. 10. Using the FWA program (available on the CD in the companion handbook - see the
Preface for details) to evaluate Equations 13.12.13.13 and 13.16, the scale factors for the three
methods were computed. These are summarized below:

| . | 5L | L]

5 nn 17352 3.5663

X ;
Just as an illustration, we will also compute the Ly no]rm using Equation 13.15

2 —
S

~ 1-(03385)% + (L058)%((1 - 0.3385)/1 + 0.3385]
=1/03322 = 301
5, = 17350

Then, what is the thing is going to happen. So, either using flow diagram what you can flow
analysis, you can use the thing or you can use the book if you are using the thing CD which is a
companion which is going to have it so, you will be getting these codes for this program and then
you can run it. So, you can evaluate all the equations in your book and then get the scale factors
for 3 methods, which it is computed and then you will be seeing it. So, for the L, norm it is 3.7112
and for L, norm it is 1.7352 and then L, 3.5863 what you will be getting it.

So, one of the thing what we can compute we know that we have the equation to calculate our L,
norm. So, which is given as s? = 1 by this you are a,; and then a, what you will be substituting
and calculate. So, when you calculate it s; is coming as 1.7350 so, which is closer to whatever the
software has calculated the thing so, this is how you can do that.
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win)

x{n) I_ST(%\ ;bu %l)
[]

win-1)

| s a, = 10581359
X a = 0.330544

-
Block diagram representat

»

1Yz,
on for Example 13,9

So, the thing is given us your by, b1, b, and then this is the diagram what you have it for the example

there and then see go and then look at them.

(Refer Slide Time: 34:03)

Scaling in cascade realization 4

+ In practice, filters are realized as cascades or parallel combinations of second-first order
sections.A scaling scheme for a sixth-order cascade realization is shown in Figure. As before,
the scale factors s;, [ = 1,2,3,are chosen to avoid or minimize overflow in the filter sections at
the nodes labelled w;(n). The scaling scheme for each second-order section is essentially the
same as for the single section considered before. The scale factors are obtained as

se= RN,
* Where p denotes the type of norm:
* p=1,2,@, F(z) is the transfer function
from the input to the node w;(n) and
is given by
Scaling in a cascade realization of 3 sixth-order IR filler

2 i),
F(2) = St i =123
‘( ) Tagz~tay? $

So, if you are realizing the scaling factor for cascade realization, so, you will be seeing that each
one has to be calculated and then have you will be at rescaling back in the in between what you
can see it one of the norms what you can use that.
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+ vy — 3 g
3 g = ' By

Scaling in a cascade realization of a sixth-order |IR filter (scaling factors absorbed
into numerator, that is feedforward coefficients).

So, this is how we will be selecting it. So, one of the way is either you can have the division done,
when you are storing your after multiplication before summation you can scale them and then do
the addition that way you will be avoiding your overflow instead of adding them and if there is a
overflow and then dividing it later. So, you can provide the scaling factor at this itself. So, this
shows for the 6th order IIR filter, how you will be doing the scaling part of it and then the final
one you will be multiplying only by s; whatever scaling you have done. So, you will be accounting
for s; and then you will be sending the output y(n).
(Refer Slide Time: 35:05)

MPTEL WSt

+ For the cascade realization, it is common practice to absorb the input scaling factor s, /s, into the
numerator of the first stage, 5,/s; into that of the second and so on.Thus the scaling factors in
Figure I3. 11 can be rearranged as shown in Figure 13 .12 It should be noted that the transfer
function of the filter after scaling as discussed above is the same as that of the unscaled filter
(theoretically at least)
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Compare the seale factars using the three methods above for the filter with the fellowing transfer
funetion, assutming cascade realization with seeond-order seetions:

s H(zZ) = Hy(2)H;(2)Hs(z)

where ’
Hyle) = e

So, this is what the s; and s5 for the figures you can compute. So, these are the cascades section
H,H,H5; using MATLAB you can calculate them and then you can get the thing.
(Refer Slide Time: 35:22)
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+ Using the FWA program, the scale factors s, to s, for the three methods were obtained. These
are summarized below.

| Ly L 1 Ly,
Sy 20,9608 3.0388 13,4098
5 19.0361 25358 101366
S 14.4467 29146 6.4087 A

+ As pointed out before, the Ly norm is always the largest and the L norm the smallest.

So, if you use your FWA program, so, the solution you will be seeing that L, L,, L., for the 3
sections what it is calculated as given in the thing L, is going to give you the minimum this thing,
scaling factor, and then the maximum is L,, L, lies in between. The simplest method to calculate
is L,. So, if your application is going to overflow and then you are going to get a results
malfunctioning then better to go with one of these norms L, or L., which is going to suit your

application.
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FIR and IIR: Comparison Chart "ﬁ}
Characteristic IR FIR (onrecursiv) |
Number of necessary multiplications ~ Least Most
Sensitivity to filter coefficient Can be high* (24 bit coefficients  Very low (I6-bit coefficients satisfy *These
quantization needed for high fidelity audio) ~ most FIR filter requirements) I’"”t’"‘
can be
Probability of overflow errors Can be high* Very low minimised
Stability Must be designed in Guaranteed ”"’“Y:;'
Cascade or
Linear phase No Guaranteed ** parallef
Can simulate prototype analog filters Yes No :"”p""“'”'“'
ons
Required coefficient memory Least Most "
Hardware filter control complexity ~ Moderate Simple G“l“”"“"""
0 long as
Availability of design software Good Very good the FIR
Ease of design, or complexity of Moderately complicated Simple “‘f“i“"""
design software e
symmetrical
Difficulty of quantization noise Most complicated » Least complicated
analysis '
Supports adaptive filtering Yes Yes

So, just the last slide to wind up our IIR filter so, we will be seeing the comparison between our
FIR and IIR filter, few of the parameters what you can see the thing 1 or 2 | will specify and rest
of it you can go through so, that is sensitivity to filter coefficient quantization. So, it can be as high
it says in Motorola they use the 24 bit coefficients for high fidelity audio function in their

processor. Otherwise, all ti are analog devices, they use 16 bit for their number representation.

So, in the case of we know that FIR filter it is very low, and it says 16 bit coefficients are safely
represented or computed using that. And then probability of overflow it can be very high in this
case, it is going to be very low. And coming with our linear phase we do not have IIR filter direct
method to implement it, but nowadays over the IIR filter, you can try to impose the linear phase

so using software techniques, so you can go through the MATLAB functions.

So, otherwise they do not provide the linearity of the phase whereas it is guaranteed and rest of the
thing what you will be seeing it one of the examples will be supports adaptive filtering what it
says. So, | have both of them support adaptive filter, so we will be considering it in the next after
a few classes later.
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+ We will discuss DFT and FFT in the nexc class

So, coming to the end of it which finishes our filter design. So, we will be taking our DFT and
then FFT in the next class. So, thank you for listening to this lecture and then happy learning

through this media. Thank you.



