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Welcome back once again to real time digital signal processing course. So, today we will discussed 

about IIR filters. So, as a recap, in the last 2 classes we discussed about FIR filters, their linear 

phase and how we can represent them, how we can design using the window techniques?  
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So, today we will see little bit on recap of FIR filter that is we said it is a linear phase filter. So, 

the importance of it as you can see with an example in the speech signal, we use phase differences 

in arrival to locate the speaker. So, in this case it is we may not need the phase part of it if there is 

any delay in the thing. So, you locate them that is we call it  ∆𝑑 =  𝑐 ∆𝑡. So, this is how the speaker 

thing and then our ear automatically adjust to whatever there is a delay in the face of it.  

 

That is what it is shown here one speaker is located ears are relatively insensitive to phase 

distortion in speech from that speaker. So, this is used in speech compression in cell phones, where 

linear phase is crucial we will see in the audio signals in images and in communication systems. 

So, in these cases, we need linear phase response filters, FIR filters and then a realizable IIR filters 

cannot achieve this linear phase response over all frequencies.  
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So, coming to one more example of where the phase is important that is vital visual information 

in phase is shown with the MATLAB original image here. So, when you take the FFT of the image 

and set phase to 0 and take inverse FFT as you will be seeing only you will be seeing the blank 

that is a black in this case, no picture whatever was in the originally seen, whereas if you take the 

FFT of the image and set magnitude to 1 take inverse FFT keep imaginary part.  

 

So, this is how the imaginary part looks like when you take the FFT and this is with respect to real 

part if you take FFT, so, combine will give us the original image.  
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So, coming to representation of our finite impulse response filters, we know that duration of 

impulse response ℎ(𝑛) is in this case is finite. So, this is 0 value for n outside interval [0, 𝑀 − 1]. 

So, we say that 𝑦(𝑛) is nothing but 𝑥(𝑛) ∗ ℎ(𝑛), which is represented in the sigma notation in this 

way and then this is -∞ to ∞. So, in our case FIR filter is going to be because we will be designing 

order of the filter is m. So, the summation will be between [0, 𝑀 − 1].  

 

So, in this case output depends on current input and previous 𝑀 − 1 inputs and summation to 

compute our 𝑦(𝑘) reduces to a vector dot product between input 𝑀 input samples in the vector 

domain as it is seen here 𝑥(𝑛) is represented in vector and then our impulse response is represented 

in vector then it is going to be a vector multiplication, what we will call it.  
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So, we know that filters play many roles we have seen the thing just to give one more brief look 

at the thing is noise removal, signal and noise spectrally separated basically in that case, example 

is we can use bandpass filtering to suppress out of band noise and in the case of analysis, synthesis 

and compression. So, for we use a spectral analysis basically to see how much of data what we 

need it and which are the ones we can do the compression in the frequency domain.  

Other method is in the spectral shaping so, that is in basically for data conversion we use the filters 

and for the channel equalization, we know that in communication, input channel has to be 

reconstructed. So, we take inverse filter basically there and then do the channel equalization, 



whatever noise coming out of the channel. And then in the symbol timing recovery also will be 

using the filters and in carrier frequency and phase recovery we need filters.  
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Coming to next is infinite impulse response IIR filter. So, we see that impulse response of infinite 

duration, that is what we call it. So, what is that mean we will be seeing in a while. So, if I give 

the impulse response, ℎ(𝑛) = (
1

2
)

𝑛

𝑢[𝑛] that is the step function. So, the same thing in our 

frequency domain or in the zee domain, what we represent is 𝐻(𝑧) = ∑ (
1

2
)

𝑛

𝑧−𝑛∞
𝑛=0 . So, which 

will be representing it as change it to 0 to ∞.  

 

So, expand the summation, which becomes 1 +
1

2
𝑧−1 + ⋯. So, we will be getting 

1

1−
1

2
𝑧−1

. So, how 

to implement this IIR filter by computer what we will look at it? So, we say let 𝑥(𝑘) be the output 

signal and then 𝑦(𝑘) be the output signal, then what happens is the zee domain representation is 

going to be 𝑦(𝑧)  for our output and then 𝑥(𝑧), then the impulse response 𝐻(𝑧) in the zee domain 

is represented as 
𝑌(𝑧)

𝑋(𝑧)
.  

 

So or if we want 𝑌(𝑧), then we know that impulse response into our input 𝐻(𝑧)𝑋(𝑧), then what 

we have taken this as our impulse response, 𝑌(𝑧) will be becoming 
1

1−
1

2
𝑧−1

𝑋(𝑧), then, if we 

simplify the thing, it becomes 
1

2
𝑧−1𝑌(𝑧). That is 𝑌(𝑧) −

1

2
𝑧−1𝑌(𝑧) = 𝑋(𝑧). So, what happens 



when we take the inverse z transform what happens to our 𝑦(𝑛)   which is equal to 
1

2
𝑦(𝑛 − 1) that 

is a previous sample, which is equal to 𝑥(𝑛).  

 

So, if we transform this 
1

2
𝑦(𝑛 − 1) to the other side, we will be seeing that 𝑦(𝑛) will be equal to 

1

2
𝑦(𝑛 − 1) + 𝑥(𝑛). So, 𝑥(𝑛) is the current sample and 𝑦(𝑛) is 𝑛 − 1 is the previous output sample, 

which is used for calculating the current output sample. So, what we see is recursively compute 

output y of n for n greater than or equal to 0, given 𝑦(−1) and then 𝑥(𝑛).  
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So, how we can represent this filter in a different way, so we will be seeing the difference equation 

first. So, 𝑦(𝑛)  is given us 
1

2
𝑦(𝑛 − 1) +

1

8
𝑦(𝑛 − 2) + 𝑥(𝑛). So that is we are going to do the 

recursive computation needs. What are the input values, what we need is 𝑦 − 1 and then 𝑦 − 2 for 

the filter to be linear time invariant. So, we assume that 𝑦(−1) = 0 and 𝑦(−2) = 0. And the block 

diagram to represent this difference equation is shown in this figure, 𝑥(𝑛) is the input, and 𝑦(𝑛) is 

the output.  

 

So, with the delay, we will be generating 𝑦(𝑛 − 1) which is going to be multiplied by half. And 

then other unit delay will give us 𝑦(𝑛 − 2). So, which is multiplied by weight vector 
1

8
. So, all the 

3 are getting summed up and then we will be taking 𝑦(𝑛) as the output. So, the transfer function 



what we see is it assumes a linear time invariant system. So, 𝑦(𝑧) is represented as 
1

2
𝑧−1𝑌(𝑧) +

1

2
𝑧−2𝑌(𝑧) + 𝑋(𝑧) and impulse invariance response of this is given by 

𝑌(𝑧)

𝑋(𝑧)
 which is nothing but 

1

1−
1

2
𝑧−1−

1

8
𝑧−2

. So, we say that poles are at – 0.183 and +0.683.  
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So, how we are going to design this, we say it is designed with respect to Biquad zeros 𝑧0 and 𝑧1 

and poles will be represented as 𝑝0 and 𝑝1. So, always we use the Biquad section. So, in that case 

how it is going to represent it 𝐻(𝑧) is given by C is the weight factor what we have it, 
(𝑧−𝑧0)(𝑧−𝑧1)

(𝑧−𝑝0)(𝑧−𝑝1)
. 

So, how we represent the magnitude response, we will be taking in the frequency domain we 

substitute 𝑧 = 𝑒𝑗𝜔 then take the magnitude response. So, our 𝑧 = 𝑒𝑗𝜔 has to be put in here also.  

 

And this represents our magnitude response and then our, we say that magnitude of 𝑎 −  𝑏 is 

distance between our complex numbers a and b and ejw – p0 magnitude is a distance from our point 

on unit circle ejw and pole location at 𝑝0. So, that is how we represent the thing when poles and 0s 

are separated in angle and poles near unit circle indicate filters passbands and zeros on near unit 

circle indicate the stopband. So, we can see that how the poles and zeros have to be placed to 

achieve our passband response and then this stopband attenuation how we can arrive at.  
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So, coming to Biquad example continuing with the thing that transfer function is given by this 

equation and when transfer function coefficient are real valued, then poles we say x are conjugate 

symmetric or real valued and then zeros we represent with 0 or conjugate symmetric or real valued. 

So, filters below have what magnitude response one has to answer this. So, what you see is these 

are the 2 complex conjugate poles here and corresponding 0s are outside the unit circle, this is our 

real axis and this is our imaginary axis.  

 

So, as we say that zeros are on the unit circle basically, and here you will be seeing that poles and 

zeros are inside the unit circle and the other one you will be seeing it poles are inside whereas 

zeros are outside the unit circle. So, poles have radius r zeros have radius 1 by r that is what what 

we represented. So, we have what kind of filters we can design using IIR method or FIR method, 

lowpass filter, highpass, bandpass, bandstop or allpass or even notch filter what we can design the 

thing.  
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So, first we will see the direct form IIR realization how it is going to be represented. So, rational 

transfer function what we call it, so, our impulse response 𝐻(𝑧) is given by 
𝑌(𝑧)

𝑋(𝑧)
. So, we say that 

𝐵(𝑧) represents our zeros and 𝐴(𝑧) represents our poles. So, which is given by 𝑏0 + 𝑏1𝑧−1, 

𝑏𝑁𝑧−𝑁so, we have N zeros and we say M poles. So, 1-𝑎1𝑧−1 ± ⋯ 𝑎𝑀𝑧−𝑀. 

 

So, which implies that my 𝑌(𝑧) is represented as (1 − ∑ 𝑎𝑚𝑧−𝑚𝑀
𝑚=1 ) so, this is my represents my 

poles basically, which is equal to 𝑋(𝑧) into this we will be varying ∑ 𝑏𝑘𝑧−𝑘𝑁
𝑘=0  we say direct form 

realization that is dot product of a vector of 𝑛 +  1 what we are assuming it coefficients and vector 

of current input and previous inputs, what we call it as a FIR section for our zeros and dot product 

of a vector of M coefficients and vector of previous M outputs. 

 

So that is FIR filtering of previous output values what we will be taking it here as it is represented, 

and then computation of 𝑀 +  𝑁 +  1, multiply accumulate what we need it as we can see the 

thing. And memory is also going to be 𝑀 +  𝑁 words for previous inputs and outputs. And then 

𝑀 +  𝑁 +  1 words for the coefficients as it is represented here. This is our previous output. And 

this is our input represented with the coefficients 𝑏𝑘.  
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So, when we represent this equation in this form, what happens to our structure, we will see, 𝑥(𝑛) 

is the input. And we see that 𝑏0, 𝑏1, 𝑏𝑁 coefficients are in the feed forward, so we have the unit 

delay, and this is 𝑥(𝑛 − 1) to 𝑥(𝑛 − 𝑁), which are going to be summed up in this unit, and then 

output is going to be our 𝑦(𝑛). So, what is the feedback here, so, we will be delaying with one unit 

delay and coefficient is going to be multiplied with 𝑎1. So, we will be 𝑎1𝑦(𝑛 − 1)  so, which goes 

up to 𝑦(𝑛 − 𝑀)𝑎𝑀.  

 

So, all this is we call it as the feed forward path and this is the feed backward path. So, completely 

added here, if there is as we have seen in the earlier case it is −𝑎1𝑦(𝑛 − 1). So, some of the 

coefficients, as we will see, they may add and then get subtracted and then they may nullify, and 

we may not have the overflow, may or may not we can tell that y of n maybe overflowing or not 

overflowing in these cases depends on the coefficients what we are using it see we call it is when 

we want the full precision. So, what we need is word length of 𝑦(0) is going to be 2 words. So, as 

we have seen the thing multiplication and then addition, so, it will be going up to 2 words. So, 

what happens to word length of 𝑦[𝑛] if we start putting y of with 2 words, we will be seeing the 

output next time is going to be 4 words or it goes on increasing to avoid this, what we have to do 

is we have to come back our 𝑦[𝑛] representation with whatever n bit representation so, that we are 

not going to have overflow in our representation of 𝑦[𝑛].  

 



So, and then M and N may be different, we do not know what kind of order of the filter we are 

going to design. So, they may be the same or they can have different values for them.  

(Refer Slide Time: 18:34) 

 

Then, how we are going to represent again the direct form of IIR filter as it is shown here. So, we 

will be rearranged transfer function to be cascade of an all pole IIR filter followed by an FIR filter. 

So, that is 𝑌(𝑧) =
𝑋(𝑧)𝐵(𝑧)

𝐴(𝑧)
. So, we represent this as 𝑉(𝑧) =

𝑋(𝑧)

𝐴(𝑧)
 

as 𝑉(𝑧)𝐵(𝑧) where that is what we have z is given by this equation. And then we see here 𝑣(𝑛) is 

the output of an all pole filter applied to 𝑥(𝑛) that is what we call it.  

 

So, 𝑣(𝑛) = 𝑥(𝑛) + ∑ 𝑎𝑚𝑣(𝑛 − 𝑚)𝑀
𝑚=1   basically m will be varying 1 to M. And 𝑦(𝑛) you will be 

seeing that it is represented with our 0s multiplied by 𝑣(𝑛 − 𝑘). So, the implementation complexity 

it we can assume 𝑀 ≥ 𝑁, the number of computation what we need is 𝑀 +  𝑁 +  1 MACs in this 

case, and memory is going to be M double words for past values 𝑣(𝑛) and 𝑀 +  𝑁 +  1 words 

for the coefficients  
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How this is going to represented as you can see here, this is our 𝑣(𝑛) point and we have summation 

here and summation here. So, x of n is going to be multiplied with all IIR filter feedback basically, 

that is, this is the feedback structure. So, 𝑣(𝑛 − 1), 𝑣(𝑛 − 𝑀), which is going to be summed up. 

So, which is going to be given as, as you will be seeing that that is our 𝑣(𝑛), which is getting 

multiplied, we will be seeing that 𝑏𝑘𝑣(𝑛 − 𝑘) with that and then summed up here with all feed 

forward 0s and 𝑦(𝑛) will be output.  

 

So, as you notice from single summation, what we have come down to double summation. So, the 

critical path, what we call it is our over flow or under flow, because here all of them are negative 

we may underflow in this case, and all of them are positive, we may over flow also. So, these are 

the 2 critical notes what we call it, one has to take care that summation is not going to over flow 

or under flow these 2 points from one single critical node, we have Biquad into 2 critical notes.  

 

But as you can see that the delay in itself come down by 2 compared to the previous direct form 

structure representation. So, that is what the advantage.  

(Refer Slide Time: 21:44) 



 

Now comes with the stability because we are more worried with respect to stability. So, we will 

be seeing that our linear time invariant system is what we say is bounded input bounded output 

BIBO stable what we call it. So, if our any bounded input 𝑥(𝑛), such that 𝑥(𝑛) is within the bounds 

what we call it between 𝑥(𝑛)is less than or equal to our some bound value, which is less than ∞, 

then the filter response 𝑦(𝑛) is also bounded what we claim it that is whatever B2 it should be less 

than ∞.  

 

So, coming with the FIR filter, that is ℎ(𝑛) what we have it so, we said 𝑥(𝑛) is bounded already, 

then when the FIR filter is going to be stable, that is BIBO stable, if and only if what we claim is 

magnitude of our impulse response ℎ(𝑛) is less than infinity for n is varying from -∞ to ∞. So, we 

say every finite impulse response of LTI system, even after implementation is going to be bounded 

input bounded output stable. So, we say causal infinite impulse response LTI system is BIBO 

stable if and only if its poles lie inside the unit circle that is what the meaning of it.  
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So, continuing with the thing, so, what it says is rule one is for a causal sequence poles are inside 

the unit circle applies to z transform functions that are ratios of 2 polynomials or the rule two is 

unit circle is in the region of convergence in continuous time imaginary axis would be in region of 

convergence of Laplace transform what we claim. As an example, 𝑎𝑛 into units step function when 

we take the z transform of it, which is nothing but 
1

1−𝑎𝑧−1 for all  |z| > |a|.  

 

So, stable if |𝑎| < 1 by a rule 1 applying it or equivalently stable if magnitude of |𝑎| < 1 by rule 

2 also because magnitude of z is greater than |𝑎| and |𝑎| < 1, so, that we will be achieving the 

stability.  
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So, we will see how we can represent Z and then Laplace transform what is the relationship 

so, that is transformed difference or differential equations into all algebraic equations that 

are easier to solve. So, our complex valued functions have a complex frequency variable, 

what we call it as Laplace in transforms, what we represent s = σ + j 2 π f, whereas in the Z 

transform, we will have 𝑧 = 𝑒𝑗𝑤. So, the transform kernels are complex exponentials 

eigenfunctions of linear time invariant systems what we call it.  

 

So, we have Laplace = 𝑒−𝑠𝑡 = 𝑒−𝜎𝑡−𝑗2𝜋𝑓𝑡 t . So, which is nothing but 𝑒−𝜎𝑡  and then these are the 

exponential function to exponential function what we are representing. So, in the Zee domain what 

we have 𝑧−𝑛 = (𝑟𝑒𝑗𝜔)
−𝑛

  that is z we are replacing with 𝑟𝑒𝑗𝜔. So, which is nothing but 𝑟−𝑛   and 

then 𝑒−𝑗𝜔𝑛. So, we constitute to that e power −𝜎𝑡 and then 𝑟 −  𝑛 as dampening factor whereas, 

the other exponential factors 𝑒−𝑗2𝜋𝑓𝑡 and 𝑒−𝑗𝜔𝑛 are the oscillation term in our representation.  
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So, no unique mapping from Z to Laplace domain or from Laplace to Z domain. So, we can have 

mapping one complex domain to another is not going to be unique and one possible mapping is 

impulse invariance. So, make impulse response of a discrete time linear time invariant system be 

a sample version of the impulse response of the continuous time LTI system. So, how what is that 

I have a function 𝑓(𝑛). So, in the Zee domain I represent, pass it through with 𝐻(𝑧) that is my 

impulse response, and what I will get output is 𝑦(𝑛).  

 

Whereas, in the case of a Laplace transform. So, will be a continuous time signal is represented 

with 𝑓 ̃(𝑡), which is transformed using 𝐻(𝑠). So, I will be getting the 𝑦(𝑡). So, how do we represent 

in that case, 𝐻(𝑠) is given as 𝐻(𝑧)|𝑧=𝑒𝑠𝑇 that is, we call it as impulse invariance mapping.  
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So, coming to the mapping how it is going to happen in the impulse invariance, what it is shown 

here, mapping is 𝑧 = 𝑒𝑠𝑇  where T sampling time what we call it as Ts basically. So, we will be 

seeing the axis our real axis and then imaginary axis, the poles on the left hand side of our what 

we call it as Laplace transform, which is going to be mapped inside the unit circle and our 

imaginary axis which is shown in blue actually 𝑠 = 𝑗2𝜋𝑓𝑡 gets mapped on the unit circle which 

becomes 1.  

 

And then the 0s on the right hand side of it can be mapped to outside our unit circle. So, this is 

how from Laplace transform to Zee transform, the transformation is going to happen. So, what we 

have is omega max is nothing but 1 in this case, which is fmax which is given by 1/2𝜋𝑓 which is 

implied that fs should be greater than 1/π. So, we assume let 𝑓𝑠  =  1 hertz what we are assuming 

it then what happens our poles 𝑠 = −1 ±  𝑗 in the, is getting mapped in the z domain as 0.198 + 

or - j 0.31 into T - 1 second.  

 

So, 0s will be getting mapped as 𝑠 =  −1 ±  𝑗  is getting mapped as in the z domain 1.469 + or - 

j 2.287 into T - 1 second. So, you will be seeing the Laplace domain, left hand plane inside the 

unit circle which we discussed and imaginary axis is the unit circle and right hand plane is going 

to be our outside unit circle. So, what we say is with this we will be having lowpass, highpass, 

bandpass, bandstop allpass or notch filter what it is going to be designed.  
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So, how we are going to represent our continuous time IIR Biquad section. So, second order filter 

section with 2 poles and 0 to 2 poles what we can have 0 to 2 zeros. That means to say I need not 

have to have any 0s in our second order filter. If m and n are different if they are equal, then we 

will be having 2 poles and then 2 zeros. And that is what we will be representing and in the transfer 

function is the ratio of 2 real valued polynomials what we consider and then poles and 0s occur in 

conjugate symmetric pairs.  

 

And what we define the quality factor, it is a technology independent measure of sensitivity of our 

pole locations to perturbations. For an analogue biquad with a poles at 𝑎 ± 𝑗 𝑏, where 𝑎 < 0, then 

the quality factor what 𝑄 =
√𝑎2+𝑏2

−2𝑎
, where it is going to be half less than or equal to Q which is 

less than or equal to ∞. So, if we have the real polls, then b will be 0.  

 

So, the quality factor will be half that is we call it as exponential decay response. And if we have 

imaginary poles, a will be 0. So, Q becomes ∞. So, we say we are going to have the oscillatory 

response. Thank you. 


