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Hi all. In this lecture, we will study sub Gaussian random variables, which is a convenient

and common class of random variables for which we can prove nice concentration

inequalities. Then, we will study two classical concentration inequalities derived using the

Chernoff method that we have seen earlier. One is called Hoeffding’s inequality and the other

is like an improvement on Hoeffding called the Bennett or the Bernstein inequality.

So, let us start out with defining sub Gaussian random variables. So, here random variable X

with 0 mean is said to be sub Gaussian random variable. If, there is some number v, a positive

number v, such that it is log moment generating function is upper bounded / λ 2 v / 2 ok, for

every value of λ.

Now, just to refresh your memory c x of λ is the log moment generating function of X at λ.

And, if you recall λ 2 v / 2 is actually the log moment generating function of a Gaussian



random variable. So, e raise to λ G, where G is distributed as normal with mean 0 and

variance v ok.

So, this is the reason why this random variable X is called sub Gaussian, it is because it is log

moment generating function is upper bounded by the log moment generating function of a

normal random variable, with the appropriate variance, which is v in this case.
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So, we use the notation G of v to basically denote all random variables, which are sub

Gaussian with a parameter, we will also call it the variance parameter, for reasons that will

become clear later v ok.

So, G of v is the class of all random variables, which are sub Gaussian with variance

parameter v. And, so, we use the notation X belongs to script G of v, calligraphic G of v, if X

is 0 mean and it is sub Gaussian with this variance parameter v. So, moving on there are

couple of remarks about this definition of sub Gaussianity.

So, it is easy to check that, if you have random variables which are independent called Xi.

And, each of them is sub Gaussian with an appropriate variance parameter vi, then their sum

is also sub Gaussian, where the sub Gaussianity parameter of the sum is simply the sum of

the sub Guassianity of each random variable.



The second point here is that if X is a sub Gaussian random variable, then it is / definition 0

mean. And, you have concentration inequalities that bound the probability mass of it

exceeding a level t a positive level t. So, you immediately have / the moment generating

function bound and the Chernoff method, the probability that X exceeds t or - X exceeds t is

at most e raised to - t 2 / 2 v.

So, these are just applications of the Chernoff method ok. So, / the Chernoff technique ok.

Because, you have an upper bound and the log moment generating function, which is that of a

Gaussian random variable. This will give you a lower bound on the dual of Ψ X λ which is Ψ

X * of t and that is precisely what comes × this exponent here ok.
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The third remark here is that it is it is easy to show that if X is sub Gaussian with parameter v,

then it is variance is actually bounded by v ok.

So, this is the reason we call this parameter v as also as the variance parameter. Now, the

definition for sub Gaussian random variables that we stated here, is not the only one that

allows you to specify a tail behavior for the distribution of such random variables. There are

in fact, several equivalent ways of being able to enforce a sub Gaussian tail for random

variables.



So, this is the following result. So, if you have a random variable whose mean is 0. Then, the

following statements are essentially equivalent for suitably chosen numbers v, b, c and d ok.

So, essentially up to constant scale factors all these definitions give you the same property of

random variable X, which is essentially the fact that it has a sub gaussian tail.

So, the first property is our usual definition that we just made about X being v sub Gaussian.

The second property is the resultant Chernoff bound that you get for its tail, which essentially

decays at rate E raised to - constant times t2. The third equivalent characterization of a sub

Gaussian random variable says that, if you take the expected value of E raised to c X2 for

some positive number c, for an appropriate positive number c then it is bounded it is finite ok.

So, such a random variable X enjoys finite expected values of its 2 ok, constant time 2. The

fourth properties is essentially, the fourth property is essentially controlling the rate of growth

of the moments of the random variable. So, if you take each even moment, which is expected

value of X raised to 2q then it is basically bounded by the rate of growth of the moments of a

Gaussian random variable.

So, it turns out that if you do the computations for a standard Gaussian random variable, then

the 2qth moment will essentially grow at this rate. You know by q factorial × let us say some

constant 4 times d raised to q ok. We will not prove this theorem we will just state this result

without proof ok, because it will be a bit of a diversion from the flow of this lecture.

So, with this definition of sub Gaussian random variables in hand, it is useful to study what

types of random variables can be sub Gaussian. It turns out that a large and common

commonly known classes of random variables that we have seen, actually turn out to be sub

Gaussian.
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So, the first step in our agenda to examine to study sub Gaussian random variables is what is

called Hoeffding’s inequality, which finally, says that bounded random variables are actually

sub Guassian.

So, in order to prove Hoeffding’s inequality, which we will show later. We first need an

auxiliary result called Hoeffding’s lemma. So, this is also lemma 3.3 in the concentration

inequalities book and it takes back to the work of Hoeffding in 1963. So, the lemma is rather

simple to state.

So, it says that if you have a bounded random variable; that means, a random variable that

takes values in an interval a comma b with probability 1. Then it is actually sub Gaussian

with the following sub Gaussianity parameter, the following variance parameter which is (b –

a)2 / 4 ok. So, it helps you conclude that bounded random variables are sub Gaussian provided

you adjust the scale of the sub Gaussianity appropriately ok.
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So, let us do the proof of this lemma due to Hoeffding. So, there are several ways in which

one can prove this lemma. We will present one of them, which essentially uses the language

of moment generating functions. So, the first observation is to say that, if X is a bounded

random variable between a and b, then one can upper bound its variance as follows.

So, the variance of X is the same as the variance of X - the midpoint of a and b ok.

Subtracting a constant does not change the variance. And, the variance is upper bounded / the

second moment, because the variance is = the second moment - the 2 of the first moment.

So, this is at most expected value of X - a + b / 2 the whole 2 ok. And, since X is bounded

between a and b and a b / 2 is the midpoint, the largest that X can deviate from the midpoint+

a + b / 2 is again / a + b / 2. And, so, this gives you a bound of (b – a)2 / 4 ok. /By the way this

bound is tight and you can easily convince yourself that you can design an appropriate

random variable X between a and b that meets this inequality with equality.

The second observation is to say that so, let so, we have the notation Ψ x of λ is the log

moment generating function of X at λ. So, let us make a couple of observations.
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The first is to observe that, if you set λ = 0, then you get log of 1 which is 0. And, the same

holds if you differentiate Ψ X of λ with respect to λ and set λ = 0 ok. So, Ψ X of 0 is going to

be = the derivative of Ψ X at 0, which is 0 ok. So, this is easy to check.

Now, let us move on to the second derivative of Ψ X. So, let us compute the second

derivative Ψ X double dash of λ at any λ is / definition d / d λ of Ψ X prime at λ which is just.

So, if you differentiate Ψ X once you will basically get expected value of X e to the λ X

divided / E to the λ X expected value of e to 𝑡ℎ𝑒 λ𝑋.

And, so, we just differentiate this using basic rules of calculus. So, on the numerator you will

have expected value of X 2 e λ X × expected value of e to the λ X expected value of X e λ e−

raised to (λ X)2. And, at the denominator you will just have the original denominator the

whole 2 expected e to the (λ X)2.
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So, one can rearrange this as follows you can write this as distributing the numerator you just

have X 2 e to the λ X, divided / expected e to the λ X - the 2d of expected X e to the λ X /

expected E to the λ X ok. So, this is just basic algebra and calculus. So, now, we will do

something nontrivial we will define so, let X let P be the distribution or probability measure

of X of the original random variable X ok. Define, let us define a new probability

distribution.

So, denote so, let us define a new probability distribution Q on the same space as of values

that X takes. As, so, you will use the following formula, we will say the ratio of Q / P at

every sample point is e raised to λ X; X is the value of the random variable divided / Ψ X λ to

make it a valid probability distribution that is to make it sum to 1 ok.

So, the notation dQ / dP if you are not familiar with this. If, so, you can just for concreteness

imagine that X is a discrete random variable. And, so, this if X is a discrete random variable,

this just reduces to q of x / p of x. So, when P is a discrete distribution, if P has a probability

density function then dQ / dP is taken to mean the ratio of probability densities of Q / P. And,

this can be extended even for general random variables ok.

So, in other words an equivalent way of defining this new probability distribution is that for

every event E in the original σ algebra of X the measure the probability of the set E as



measured / Q is defined to be the integral over this event E, of e raised to λ X with the

original distribution P, P d . And, you have to finally, divide / Ψ X of λ ok, to make it a validω

probability measure.

So, this is basically how the distribution Q is defined ok. It is also called an exponentially

tilted measure, because what you are doing is basically you are multiplying the original P /,

you are hitting this original P / e raised to λ x. So, you are up weighting you are weighting up

the probability distributions of values of X that are very high, if λ is positive and down

weighting the corresponding probabilities of the random variable when the values are low,

when the values X of ω are low.

So, it is easy to see / a simple calculation that, if you compute expected value under this new

distribution Q of the same random variable X 2. So, this turns out to be integral, by definition

this is the integral over the entire sample space of X 2 Q d ω, instead of P d ω, and this is = /

definition X 2 e raised to λ X P d ω. Finally, divided / Ψ X so, divided / Ψ X λ ok.
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And, so, you will easily see that, Ψ X double prime of λ, which we were computing earlier

here, which is this quantity here, in fact, can just be written as E Q. So, the first term here

simply becomes E Q [X 2], - E Q [X] 2. The second term is exactly (E Q [X] ]) 2 ok.



So, this is (E Q [X] )2 the second term here. And, this is simply the variance of the same

random variable X, but evaluated under a different probability distribution Q. And, since X

has not changed the random variable X has not really changed. So, it is still bounded between

a and b.

And, so, by our variance result its variance under any distribution, whether it is P or Q or any

other distribution can be no more than (b – a) 2 / 4 ok. So, what we have shown is that the

second derivative of c X, which is defined with respect to the original distribution P is

actually bounded ok. So, you have a function Ψ X as a function of λ, with some bounds on its

curvature or second derivative.

So, the last step here is to use so, finally, applying the Taylor series formula. So, Taylor’s

Theorem in the remainder form will give us the following, it gives that for any λ, we have Ψ

x of λ is = so, let us expand this as a Taylor series about λ = 0. So, we have Ψ x of 0, + λ

times Ψ x prime at 0, + the second order term is going to be λ 2 / 2 Ψx double prime at some

number between 0 and λ ok.θ

So, this is Taylor’s theorem up to second order with the remained δ. And we know that this

term is 0, this first derivative is also 0 at 0. And, we know that the second derivative is

bounded / one-fourth ok. And, so, using this we finally, get that this is upper bounded / λ 2 / 2

(b – a) 2 / 4, which is exactly what we wanted in the theorem λ 2 / 8 b - a the whole 2 ok,×

that concludes the proof of Hoeffding’s lemma.

So, basically what we have shown is that for a random variable X bounded between the

values a and b, it is log moment generating function is always bounded by this quadratic

function of λ with a bound and the coefficient being b - a the whole 2 point ok.
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So, an additional note here that I would like to add is that this lemma is actually TIGHT is

TIGHT ok. Meaning that, you can actually find a non-trivial random variable X given any

interval a and b, which for which the log moment generating function is exactly = λ2 / a (b –

a) 2 ok.

So, once we have Hoeffding’s lemma in hand, it gives you what is called Hoeffding’s

inequality, which is Corollary 3.4 in the concentration inequalities book ok. So, this is a

concentration inequality that is obtained / appropriately using Hoeffding’s lemma. And, it

says that if you have independent random variables X 1 through X n which are each bounded

in the respective interval a i b i, then the probability that their sum exceeds a level t ok.

So, I should also say that, I should also say that all X i are 0 mean ok. Then, the probability

that their sum exceeds t is at most e raised to - 2t 2 / Σ i of (a i - b i ) 2 ok. So, this gives you a

way to control the deviations of bounded random of a sum of bounded random independent

and bounded random variables.

The proof is basically an application of Hoeffding’s Lemmsa so, it is just one line, so, by

Hoeffding’s lemma. We have that the sum of these independent random variables must be sub

Gaussian with the variance parameter being = the sum of all their individual variance



parameters, which / Hoeffding’s lemma is (a i - b i) 2 / 4 ok. So, that is the, that is the proof

once you have Hoeffding’s lemma.
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So, we will now move on to proving what is called Bennett’s inequality, which is which can

be motivated / the observation that, if you stare a little closely × Hoeffding’s inequality. There

is one issue or a weak point in Hoeffding’s inequality, it is that it does not bring in the actual

variance of the sum of all these X is or the variance of let us say each of these random

variables.

So, there is no dependence here, if you look at Hoeffding’s inequality. There is really no

dependence here on the actual variance of each X i, there is only a dependence in the worst

case sense on the complete range of ai and bi. So, for instance if all these random variables X

i were within very very loose bounds a i and b i, a and b, which are very far apart, then you

would have a fairly weak bound. Because, you know that with high probability they are

actually confined to a much smaller range ok, effective range.

So, how do we bring in that measure of spread of each random variable or the spread of the

sum? Ok. So, this is one thing that Bennett’s inequality will help to address.
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And, so, one version of Bennett’s inequality is as follows it is also lemma 3.5 in the book. So,

let us take independent and 0 mean random variables X 1 through X n, where each of them is

bounded, it is the same setting as Hoeffding’s inequality.

So, a bunch of independent 0 mean bounded random variables. And, let σ 2 be their average

variance ok. So, this is not n here I should say it is this is not eta it is n. So, σ 2 is basically

the average variance, then we can control the fluctuation of the sum of these random variable

independent random variables, by a quantity that depends on the variance the average

variance here ok.

So, the σ 2 appears here, as well as here ok. The function h here is something that we have

seen earlier, which you should probably recall as related to the Chernoff method or for the tail

probability bound for a Poisson random variable ok. So, this appears and we will make the

connection to a Poisson random variable in the proof ok.

So, the upshot of this inequality Bennett’s inequality is that, it gives you actually a way to

bring in the actual variance of the sum of these random variables X 1 through X n. And, one

can stand to benefit if the actual random variables enjoy a much smaller variance than their

worst case bounds ai and bi s. So, let us go on to prove this inequality. So, the first step of the



proof is to write out the is to bound the moment generating function of each random variable

X i.
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So, let us begin by writing the expected value of the moment generating function of any X i

ok. So, this is by definition if you just expand it out as infinite power series, this is k = 0 to

infinity λ to the k expected X i to the k / k factorial ok.

So, since the first moment is 0 / assumption, let us take out the first two terms; the first 2

terms are 1 + 0 and let us write this sum from k = 2 onwards ok, the k = 1 term is missing,

because the expected value of X is assumed to be 0. So, this is λ to the k, expected X i to the

k / k factorial. And, we will now perform the following bound bounding operation on the

summation on the right.

So, this is 1 + this is at most 1 + the sum over k = 2 to infinity. So, we will have λ k / k

factorial. So, what we will do is from expected value of X i raised to k since k is at least 2, we

can take out X i
2 and then we can keep the remaining X i raised to k - 2. So, we have

expected value of X i 2 and the absolute value of X i raised to k - 2 ok.

So, / putting the absolute value we can make an upper bound. And, let us now invoke the

bound that the absolute value of X i is at most C ok. So, that whatever is remaining is the

expected value of X i 2, which is just it is variance. So, this is at most 1 + the sum λ k / k



factorial. So, the absolute value of X i is bounded by c and then what remains is just the

variance of X i ok. Let us denote this / i
2, this is variance of X i.σ
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So, finally, what we have is the expression 1 + σ i
2 / c 2, sum over k = 2 to infinity, λ c / λ c

raised to k / k factorial. So, I have taken out the c to the - 2 outside. And, this in turn is just 1

+ σ i
2 / c 2 ok. So, this is just the power series expansion of e raised to λ c - the first 2 terms -

1 - λ c.
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And, we will use 1 + X is less than = e raised to X, now to make an upper bound here, σ i 2 / c
2 e raised to λ c - 1 - λ c ok.

So, this is because 1 + alpha is at most e raised to alpha for any value ok. So, finally, we have.

So, therefore, we have we will be able to extend this to the sum of n independent random

variables to show that Ψ of summation X i i = 1 to n at λ, is just = the sum over all the is well,

I think it is it should be an upper bound ok. From i = 1 to n σ i
2 / c 2 and e raised to λ c - 1 - λ

c this is just by summing, this inequality above ok. For all i = 1 to n.

Now, this kind of log moment generating function bound is something that we have actually

seen before and just to refresh our memory, let us recall the following fact. That, if X is a

Poisson distributed random variable with some parameter v, then it is log moment generating

function, when you center it by v / it is mean v, is v × e raised to λ - 1 - λ.

And, it is dual function ΨX* it is Kramer transform of the centered Poisson random variable is

v times h of t / v ok, where h of x is basically the same function h 1 + x log 1 + x - x ok. So,

this is a fact about the tail of a Poisson random variable or the moments of a Poisson random

variable. And, you can we can it is we can now do some pattern matching here. So, this

expression here can somehow be thought as this here ok.
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So, we have now that Ψ of the sum of i X i at λ is at most n σ 2 ok. So, this summation of all i

σ i 2 is just n σ 2 / definition n σ 2 / c 2 × e raised to λ c - 1 - λ c ok.

So, let us compare this moment generating function for a centered Poisson with this

expression, which we have obtained for our sum of X is ok. So, it follows that one can set v

as n σ 2 / c 2. And, / doing this / making this connection you can find the dual function of this

right hand side expression here, to get the bound Ψ* of Σ i 1 to n X i at t is lower bounded.=

Because the primal function c is upper bounded it will imply essentially a lower bound for the

dual function, / the definition of Ψ *. So, you get finally, after some algebra n σ 2 / c 2 h of t c 2

/ c n σ 2 ok. And, this is the same as n σ 2 / c 2, h of t c / n σ 2 ok.

So, this is this should be what we want. So, that is n σ 2 / c 2 h of t c / n σ 2. So, that is exactly

the expression that we wanted. And, this implies the tail bounded that we see ok. So, that is

the proof. So, the proof essentially involved not succumbing to using the standard sub

Gaussian bound from Hoeffding’s lemma for these random variables, but actually keeping a

dependence on their variances.

And, directly relating the moment generating function of each random variable to its variance

and finally, connecting it to the moment generating function of a Poisson random variable.



So, that is Bennett’s inequality. Now, Bennett’s inequality is phrased in terms of this h

function, which has essentially an X log X type dependence.

And, often Bennett’s inequality is simplified to get a more transparent insight × tails of

random variables depending on their variances. So, here’s one such consequence of Bennett’s

inequality called Bernstein’s inequality, it is given in corollary 3.6 of the book. So,

Bernstein’s inequality basically says that in the same setting that is if all these Xi’s are 0

mean and bounded an absolute value / c, then the probability that their sum exceeds the level

t is at most e to the - t 2.

So, this is basically in the exponent is a ratio of polynomials, there is a quadratic polynomial

on t on top and there is a linear polynomial depending on the in the bottom ok. So, this form

is what you get as a consequence of Bernstein of Bennett’s inequality ok.

(Refer Slide Time: 34:06)

The proof is / using Bernstein + the elementary bound so, by using Bennett + the bound. So,

the h function can be bounded below uniformly. So, x 3 / 2 + 2/3 X sorry this is X 2 yeah ok.

So, this is a universal bound on the h function and using that in Bennett just gives you

Bernstein’s inequality. So, let us do a quick example here to understand what Bernstein gives

over and above what Hoeffding could have given you. So, we will take the simple example

where Xi’s are all Bernoulli random variables they are iid Bernoulli random variables with



parameter P and Sn is their sum. So, in other words S n is a binomially distributed random

variable with mean np.
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So, Hoeffding would give you the following. So, just applying Hoeffding on these would give

you that, the probability that, S n - its mean which is np exceeds a positive number t is at

most e raised to - 2t 2 / n. So, a and b are set to 1 here, because that is the range of every

Bernoulli random variable.

So, equivalently the δ form of Hoeffding’s inequality, says that with probability at most δ this

event occurs S n - n p exceeds so in fact, you can put , so, it is basically n × log 1 / δ≥ √ √

ok, at most δ.

Now, contrast this with Bernstein ok, which would give you the following inequality.

Probability that S n - n p exceeding t is at most e raised to - t 2 / 2 times n times the variance of

each Bernoulli, which is in this case p × (1 – p) + 2t/ 3 ok, c is set to 1 here which is the range

of each random variable ok. It is a little more transparent if you try to find the δ form of

Bernstein’s inequality in somewhat more tedious manner.
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So, let us try to find the δ form. So, to find the δ form we need to equate the right hand side of

this inequality to δ and solve for t. So; that means, that t 2 = (2 np( 1 – p) + 2/3 t) log 1 / δ ok,

that is the only way that the right hand side will become e raised to - log 1 / δ, which is δ.

And, it turns out so, this is a quadratic equation in t and it turns out that if you actually solve

it in closed form you will get t = 1/3log 1 / δ, + 1/3 log 1 / δ whole 2, + some constant 72√

np (1 – p) log 1 / ok all under the 2 root.δ
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And, you can just upper bound this if you like by log 1 / δ + 4 times 2 root n p (1 – p) log 1 /

δ ok. For δ upper bounded by some number δ naught for instance ok. So, for small enough δ

this certainly holds.
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And, so, finally, you will get that the probability that S n - n p, exceeds this number which is

log 1 / δ + 4 2 root np 1 - p log 1 / δ, this event occurs with small probability ok. So, just to

remind you what Hoeffding would have given for the same δ target probability of error.

So, let us compare with Hoeffding. So, what would the typical deviation from Hoeffding be,

it would be basically root n / 2 log 1 / δ ok. So, the way to compare this so, one way to2 

compare this is let us say that δ is set to some small number, δ is fixed at a constant. So, log 1

/ δ is a constant and n is a large number l n is a fairly large number.

So, here this quantity goes basically as n whereas, this quantity actually goes as n × p (1√ √

– p) ok. So, this is very useful if p × (1 – p) is a fairly small number. So, if each of the

variables the Bernoulli variables Xi have very small variance, then one could actually gain by

reducing the deviation of from Hoeffding which is order n to something which is of order√

n times the variance of each Bernoulli ok.√

So, this implies that we gain when P × 1 - p is small ok. So, for example, here is just a case

just as an example there could be n Bernoulli random variables. So, X i iid Bernoulli pi = 1 to

n where each so, let us say the variance of Xi is for instance 1 over n itself ok. So, in that

case, so, one way in which the variance could be 1 over n is basically if P is itself of order 1

over n ok.

So, if that is the case then you basically get a constant deviation, constant scale deviation

here, because you have inside the n 1 / n, which is much better than what Hoeffding√ ×

could give you ok. So, basically you gain when the variance of the Xi’s is fairly small.

So, that is where Bernstein is often used to get you the additional gain from exploiting

random variables that are effectively quite small as measured by their values, that concludes

this lecture.

Thank you.


