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Hi all. This talk is going to about what are called Self normalized concentration 

inequalities and these are again this is a method to prove concentration inequalities for 

functions of sequential processes, where current random variables depend on previous 

random variables and so, there is a lot of time correlation.  

So, let us introduce the necessity for these kinds of concentration inequalities in the 

context of motivating example involving estimation a parametric estimation ok. So, what 

is the so, what is the arguably simplest kind of parametric estimation problem? Well, it is 

often a regression problem.  

So, let us consider a standard let us start off considering a standard least squares 

regression problem linear regression problem in what we call the fixed design setting ok. 

So, what is the fixed design setting? You have n d dimensional vectors x 1, x 2 up to x n 

these are fixed or non random vectors also called your design ok. 



So, these are essentially vectors that represent your choice the experimenter or data 

collector’s choice of directions to measure upfront. So, the design vectors x 1 through x n 

are fixed upfront. Let θ be a d dimensional unknown parameter and let Y i be a random 

variable which is the inner product of x i with θ with an additive Gaussian noise 

independent Gaussian noise variable W i which has mean 0 and standard deviation 

sigma. 

And the goal is as usual. We want to recover or estimate θ from our data x i Y i ok. So, 

this is the standard regression problem with Gaussian noise additive Gaussian noise. And 

the most natural way to estimate θ is what is called least squares regression or linear least 

squares estimation. 
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So, the linear least squares estimation is solving the following optimization problem. So, 

the estimate for θ from these n data is defined to be θ n hat which is the solution to a 

minimization problem over all possible θ tilde in R d of the sum over your θ of the fitting 

error. 

So, x i transpose θ tilde - Y i and if the x i’s are chosen let us say. So, that they span the 

entire space R d then it is not difficult to show that this has an explicit closed form 

solution as sum over i going from 1 to n x i x i transpose. So, this is a matrix inverse. So, 

if the x i’s all span θ then this matrix is going to be full ranks and hence invertible into 



this particular vector which is the weighted sum of the x i’s with the respective scalar 

measurements Y i ok. 

So, this is true if so, let us denote this matrix whose inverse is being taken as V n. So, 

this is true if V n is invertible or equivalently full rank ok. So, this is the standard linear 

least squares estimate for inference about the unknown parameter θ of the of this linear 

model and in fact, it turns out that since we have assumed that the x i’s are all fixed the V 

n is a fixed or non random matrix. 

So, θ hat n is just a fixed linear function of the sequence of Gaussian random variables Y 

1 through Y n and it follows that since all the random variables Y 1 through Y n are 

multivariate normal together. 
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It follows that θ hat n is also the estimate θ hat n also has a multivariate normal 

distribution. So, more precisely it follows that θ hat n is distributed as multivariate 

normal vectors with mean as the original parameter θ and with covariance matrix sigma 

square V n inverse.  

So, sigma square recall is the variance of the per measurement additive noise and V n in 

some sense is the overall design matrix representing how much of each direction in space 

of d dimensions how much is being explored. So, if we just do some linear algebra it 

follows that 1 over sigma into the √ V n into the difference θ hat n - θ is distributed as a 



standard multivariate normal vector ok. This is the left hand side is in some sense just the 

whitened form of a θ hat n - θ. 

And this in turn implies by using standard concentration results for multivariate normal 

vectors that the probability that the l 2 norm of this vector 1 over sigma √V n θ hat n - θ 

ok which is basically the l 2 norm of a multivariate a standard multivariate normal in d 

dimensions exceeds a let us say some constant times the √of dimension + another 

constant times √of log 1 by δ is bounded by δ ok. 

This is just by appealing to standard Gaussian concentration since the l 2 norm function 

is a Lipschitz function with respect to the l 2 norm itself and. So, you can use the 

Gaussian concentration inequality along with basically this C 1 √d which is actually a 

bound on the expected value of the l 2 norm of a standard Gaussian vector ok. So, that is 

where you get this norm. 

So, the second term here comes from concentration about the mean the first term is 

basically by estimating the expected norm of a Gaussian vector itself ok. So, this is 

standard. So, we basically get this kind of a concentration inequality for the fluctuation 

of θ hat n about θ with respect to the shape V n as well. 
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Let us introduce let us denote. So, denoting by x subscript A the √of x transpose A x. So, 

when x when A is a positive definite matrix this is often called the matrix weighted 



Euclidean norm ok. So, if A is the identity matrix then you get the standard Euclidean 

norm. 

So, this the above suggests that so, if you define this particular d dimensional subset C n 

as the set of all beta d dimensional vectors such that the l 2 norm of 1 over sigma V n 

raised to half θ hat n - beta in l 2 norm is less than C 1 √d + C 2 √log 1 by δ. So, notice 

that this can equivalently be written by rescaling as the set of all betas such that θ hat n - 

beta. 

So, the l 2 norm of V raised to half θ hat n - beta is equivalent to the V n matrix weighted 

norm of θ hat n - beta by definition being less than C 1. So, you can multiply throughout 

by sigma. So, this set so, based on your data you could compute θ n hat and you could 

also compute V n. In fact, V n is known in advance even before collecting the 

measurements Y 1 through Y n because it is a fixed design setting. 

But in any case the this set C n, which is basically an ellipsoidal set in d dimensional 

space is actually a probability 1 - δ. So, what we get from the concentration inequality 

about is that this particular set C n is a probability 1 - δ confidence set.  

In fact, it is an ellipsoidal confidence it is a you can call it a confidence ellipsoid 

specifically for the true parameter θ of the linear model ok. In the sense that so, that the 

sense of the confidence set is that probability that θ belongs to C n is at least 1 - δ ok. 

So, if you had this data x 1 Y 1 up to x n Y n and if you constructed the set C n, you can 

be assured that C n is a high probability confidence set that will typically contain θ with 

it ok. 
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So, we now next come to a more complicated setting which often arises in practice and 

this is the setting of not fixed design linear regression, but adaptive design linear 

regression. It is also called online linear regression. But the setting is basically the as 

follows. Suppose the measurements X i are also a random along with the Y i’s in the 

sense that suppose the X i are chosen sequentially and adaptively depending on the 

previous X’s and Y’s ok. 

So, by that what I mean is as follows. So, there is this dependency diagram that we can 

imagine. So, X 1 is the first linear measurement the first direction along which you want 

to collect a noisy projection of the unknown parameter θ. So, you get. So, you choose X 

1, let us say using some internal randomness and then you apply X 1 and you get the first 

measurement as Y 1 which is X transpose θ + W 1 ok. 

So, this arrow indicates that Y 1 depends on X 1 via this function Y 1 is exactly X 1 

transpose θ + W 1 followed by this X 2 is chosen, but X 2 can depend on Y 1 and X 1. 

So, that is why X 2 has arrows coming in from X 1 as well as Y 1, so this arrow is a 

tangent ok. 

So, X 2 depends can depend on X 1 and Y 1 following which Y 2 is obtained only 

depending on X 2 following the linear model X 2 transpose θ + W 2. Following Y 2 X 3 

is a new direction that can be computed by looking at all the past θ. So, X 1 Y 1 X 2 and 

Y 2 can be used to decide X 3 and so on and so forth ok. So, the key difference from the 



previous fixed design setting is that the future linear measurements that is the X i’s can 

actually depend on the outcomes seen so far. 

So, upfront there is no way to predict or decide what the trajectory of the measurement X 

i’s will be as opposed to the fixed design linear regression setting. So, both the X’s and 

the Y’s are random here in this sequential in this sequential or causal manner ok. So, that 

is what is called adaptive design linear regression. 

It often arises in settings where the next measurement is designed or constructed 

carefully by looking at the history of past measurements ok, when there is the ability to 

adopt your next sensing decision or measurement decision based on whatever has 

happened in the past so far. 
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So, in this more general case it is actually not too hard to see that. In fact, θ hat n which 

was multivariate Gaussian earlier in the fixed design setting need not be Gaussian 

anymore, its distribution as a vector in d dimensions need not be Gaussian in the general 

case. There are examples where it is it can be quite far away from the Gaussian 

distribution in the sense of having tails and so on in for certain kinds of measurement 

processes. 

And moreover θ hat n in general can even be a biased estimate. So, in the fixed design 

setting note that the expected value of θ hat n was θ because θ hat n was a multivariate 



normal centered at θ. But in the adaptive design setting there could be biases because of 

the data collection mechanism or the measurement mechanism that decides the next X t 

depending on the past which would actually introduce which could actually introduce a 

bias in θ hat n ok. 

So, expected value of θ hat n, so, when I say the expectation this is over the randomness 

or distribution of both the X of the X’s and the Y’s ok. This could this expectation need 

not be equal to θ anymore ok, but the question still remains.  

The interesting question for my inference point of view still remains that is it still 

possible to build or construct a high probability confidence set for such an adaptively 

constructed estimate θ hat n after n adaptive measurements and at any point in time small 

n ok. Note that even if you are at a fixed point in time small n the pattern of taking 

measurements X 1 X 2 up to X n could have a general distribution and be random. 

So, one has to worry about that aspect as well ok. So, the same Gaussian theory does not 

hold because essentially your θ hat n which is V n inverse into summation Y i x i is such 

that both the V n part and the Y i and the x i's are all random. 

So, it is simply not a fixed linear transformation of a sequence of Gaussian random 

variables and so on. So, is there any hope is it still possible to build in some sense 

analogous high probability confident sets for adaptive estimates adaptive sequential 

estimates? 
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And the answer is rather surprisingly yes. In fact, one can argue we will argue now that 

an ellipsoidal set confidence set very similar to the fixed design confidence set that we 

called C n. Let us see in this equation star C n of star can be constructed, but of course, 

we have to pay a price for being adaptive and incurring some bias. 

So, there will be some inflation that we will have to do to handle the extra bias as the; so, 

at a high level this is the price of being adaptive over time. So, we will see exactly how 

much of a price we will roughly have we will have to pay. And so, this is where the idea 

of a concentration inequalities for adaptively constructed estimates arises via what is 

called self normalizing inequalities self normalized inequalities. 
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So, just to set the stage recall that in the adaptive linear regression setting the next 

measurement X t can depend on is some function of the past measurements and sensing 

actions that is the Y’s and X’s in the past. So, let us start by rewriting θ hat n in a slightly 

different form. 

So, recall that θ hat n was defined as the summation of i equal to 1 to n X i X i transpose 

inverse into the sum of X i Y i. Note that the X i’s are now in capital letters because they 

can be random in the adaptive setting. So, we will still use; we will still call this as V n, 

however V n is a random matrix now. 

So, we can write this as V n inverse and by definition we can expand Y i as X i transpose 

θ + W i because that is the assumed linear model for the Y i’s. So, the W i’s are iid 

normal 0, 1. Let us say let us assume we normalize the variance of the noise to 1 in 

whatever follows and so, this is equal to V n inverse. 

If you expand if you distribute the inner sum you get a V n times θ by definition + the 

second sum which is W i X i. Let us call this sum as S n ok. And so, this finally, gives 

you this finally gives you θ + V n inverse S n ok. So, θ hat n is exactly equal to the 

original θ + V n inverse S n. So, θ is the original non random parameter. V n inverse S n 

is a random vector which could have bias because of adaptive data collection. 
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Nevertheless, if you subtract if you take θ to the other side and find the V n norm ok the 

V n weighted matrix norm of θ hat - θ then we just get the V n weighted matrix norm of 

this V n inverse S n ok. This by definition is S n transpose V n inverse followed by the V 

n in between. 

And then again V n inverse S n and so, this and this can cancel. So, we finally, get so, its 

equivalent to the to a certain inverse matrix metered norm of this quantity S n ok. Now 

the important; so, if we want to control θ hat - θ let us say in the V n norm as before as 

with the fixed design setting this is equivalent to controlling the V n inverse weighted 

norm of the random vector S n ok. S n itself is the sum of n random vectors each of them 

being the W i X i’s. 

Now, one thing that is worth noticing here is that both S n and V n in the adaptive design 

setting are random quantities. The former a random matrix in the latter a random vector; 

the former a random vector and the latter a random matrix, but we notice that there is a 

kind of self normalization ok. 

The self normalization essentially is that; you know what is I said what do we mean by 

self normalization? S n grows let us say it basically linearly this is very roughly linearly 

with n because each time S n grows by the addition of a new component W i X i ok. And 

on the other hand V n grows again linearly with n. So, linearly is in quotes because these 



are all rough statements and hence V n inverse grows sorry decays as 1 over n roughly 

ok. 

So, S n grows linearly with n, V n also grows linearly with n roughly and so, essentially 

you expect S n V inverse sorry S n normalized by V n inverse or S n normalized by V n 

to be essentially your some kind of constant scale ok. There is a self normalization. So, 

we can very roughly expect S n V n inverse to be of constant size ok. 

Could differently sort of you know S n can grow large, but so, will V n ok. So, S n 

normalized by V n inverse can probably be expected to not become too large ok just as 

with the fixed design estimate fixed design estimate. So, in a fixed design setting things 

were little easier because V n was a fixed matrix, it was not random. So, it was easy to 

handle terms involving V n. So, how is this? So, how do we make this formula ok? 
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So, here is a result that we will prove for the adaptive for concentration of the adaptive 

regression estimate using a new technique which we will call the method of mixture. So, 

this theorem is essentially inspired by the paper of Abbasi Yadkori et al, it is a paper 

about linear multi armed bandits from 2011 which essentially establishes the following 

type of result. 

So, let us fix some small epsilon. This is a constant you should think of epsilon is a 

constant and let δ belong to 0, 1 the probability. So, this theorem says that the probability 



when the X i’s are adaptively designed that exists any time t in the set of all natural 

numbers at which. So, it is a uniform deviation statement for the entire self normalized 

process S t normalized by so, we add a small epsilon I + V t ok. 

So, the small epsilon I sort of required because of the. So, it enters through the method of 

proof, but imagine epsilon I as to be so, small to not significantly affect the scale of V t. 

So, epsilon I + V t inverse is really roughly like V t inverse exceeding a level 2 log 1 by 

δ + this term which is a log the determinant of this matrix epsilon I + V t divided by 

epsilon raise to d is at most δ ok. 

So, this is what it says the probability that at any time the self normalized quantity S t 

inverse weighted by V t square exceeds this particular number is bounded ok. So, to get a 

sense of the scale of this number, so, if δ is fixed this is basically an order 1 quantity and 

if δ is fixed this is you can show that this is roughly an order d log t quantity. 

So, this is not too far from the kind of threshold self normalized level in the fixed design 

case where you again had a order √d term. So, note that here the norm is not being 

squared. So, you should imagine each of these terms being squared to make a fair 

comparison. So, order √d would be orders order d if you squared it and this term is order 

√log 1 by δ ok. 

So, the order √log 1 by δ squared could appear here as the log 1 by δ term which is the 

order 1 term except that we are paying a small price of this extra log t ok to be uniform 

in time ok. So, this is the price of sort of; this is sort of in some sense the price of being 

able to uniformly control an adaptively obtained estimate, a function of a stochastic 

process and you could you could think of this as not too large a price to pay ok. 

So, it just scales logarithmically with the number of time steps here ok. So, but for a 

small blow up you get exactly uniform deviations. 
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So, let us see how this kind of result is obtained and the proof is going to expose a very 

interesting technique called the method of mixtures. So, this is called the method of 

mixtures for martingale processes which is probably the most interesting take away from 

this lecture that I would like you to have ok. It is also related very intimately to 

something called Laplace’s method. 

So, this was actually developed by Laplace centuries ago and used in modern probability 

theory by first by Robbins and Siegmund dates back to Robbins and Siegmund in 1970. 

And there is a survey book by de la Pena of 2008, which actually details a lot of 

applications of the method of mixtures techniques ok. 

So, what is the method of mixtures technique? So, we note first let us start by noting the 

following that if you; so, the quantity that whose fluctuations we want to control 

uniformly in time is equivalently the S t the norm the V t inverse norm of this random 

walk type object S t ok. 

So, half of V t inverse norm of S t squared. In fact, you can show just by linear algebra 

that this is the solution to the following variational problem. It is the solution to max over 

lambda in R d of lambda transpose S t - half the V t norm square of lambda ok. 

So, this is actually an identity that expresses actually a matrix weighted norm as the 

solution to an optimization problem involving the weighted norm of the inverse matrix 



on the other side ok. So, V t inverse becomes V t on the other side ok. So, if we transfer 

our attention to the right hand side here we would like to control the left hand side. 

So, equivalently it makes sense to try and control the. So, one sufficient way to do 

control the left hand side is to be able to control this particular quantity here for every 

possible value of lambda ok that is leading to a to an upper bound on the left hand side 

ok. 

So, towards this is sort of what brings us to the Laplace method or the method of 

mixtures. So, to this end for every vector lambda define let us define the following 

quantity. Define M t lambda let this is a random variable which is e raised to lambda 

transpose S t - half the V t norm square of lambda ok right. 

So, this M t lambda if you think of lambda as fixed and t evolving in time the it forms a 

stochastic process M 1 lambda, M 2 lambda, M 3 lambda and so on. And this is the key 

claim that makes that allows us to do something useful with the with this process. It turns 

out that t is the sequence of random variables M t lambda as t goes from 0 to infinity. By 

the way if t is 0, this is an M t sum and so, you just directly get M 0 lambda is defined to 

be 1 triple e. 

So in fact, this process over time for a fixed lambda turns out to be a martingale ok. 

More specifically what we mean by this is, that for any time greater than equal to 1 if 

you take the conditional expectation of M t lambda given X 1, Y 1 all the previous 

measurements and the all the previous sensing decisions and the observed measurements 

then this is equal to M t - 1 lambda almost surely ok. 
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So, what is the proof of this claim? Well, it is the fact that the left hand side so in fact, 

we note that because of the adaptive sensing X t is already determined once X 1, Y 1 and 

all the way up to X t - 1 Y t - 1 are given ok. So, if you have this conditional expectation 

M t lambda is the X is e raised to lambda transpose a sum - another sum. 

So, the left hand side of the expression above in the left hand side you can actually bring 

out the second term here. You can bring out the term here corresponding to X to X t in 

fact. So, that is the e raise to - half lambda transpose X t the whole square. This is just the 

last term in norm lambda V t the whole square. It comes out because X t is already 

measurable with respect to X 1 Y 1 up to X t - 1 Y t - 1 just because of the causal nature 

of the sensing decision the X t. 

And then you have M t - 1 lambda that also comes out of the conditional expectation 

because it is a function of exactly all these things X 1 Y 1 up to X t - 1 Y t - 1 and the 

only thing that remains inside the conditional expectation is the first term is the last term 

of lambda transpose X t which is basically e raised to W t lambda transpose X t given 

everything in the past. 

And given everything in the past the only randomness is in this W t random variable 

which is an independent standard Gaussian by assumption whose moment generating 

function is precisely. So, you have all of these terms and the last term the conditional 



expectation is exactly the moment generating function of W t evaluated at this inner 

product lambda transpose X t. 

And so, you just directly get this is the moment generating function for Gaussian half 

lambda transpose X t the whole square ok. So, the first term and the third term cancel 

leaving you with what you require ok. So, this is because W i are assumed to be iid 

standard norm ok. So, what does they show? For each fixed lambda M t lambda is 

actually a martingale process in the sense that it essentially does not change it is mean 

more than average. 
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So, hence e raise to the quantity that we want to control which is a half S t V t inverse 

square is actually exactly equal to the supremum of a martingale at time t of an 

uncountably a large collection of martingales ok. So, M t lambda we have just shown is a 

martingale for a fixed value of lambda and in some sense you know the what we want to 

control is on the left hand side up to a monotonic transformation of e exponentiating. 

And we essentially would like to control the fluctuations of a supremum of many 

martingales ok. So, unfortunately this supremum of many martingales; so, we know very 

well there is a lot of martingale theory that tells us about the fluctuations of martingales 

results like Azuma, Azuma’s inequality from martingales and so on, but the maximum of 

many martingales is unfortunately not in general a martingale. 



So, we cannot control this right hand side. So, we cannot control this supremum over 

many martingales using standard results like let us say Azuma’s inequality or its variance 

ok. So, this leaves us with sort of this we are write this recall where we have not we 

cannot really proceed at first glance to control this supremum of a really large family of 

martingales. 
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So, this is exactly where the method of mixtures enters and finds helps us find a way 

forward or also called; so, you can really view it as an instance of what is called the 

Laplace integral approximation ok. So, what is this Laplace integral approximation or 

Laplace integral formula? 

So, suppose it is sort of this following phenomenon. Suppose f is a function, you can say 

f is let us say a smooth function on defined on the interval a cross b ok. So, it is a real to 

real function with a maximum at an interior point lambda star in a, b ok. 

So, f exception argument lambda in the interval a, b in the closed interval a b and its 

maximum actually occurs at its interior where somewhere in its interior. So, the so, what 

one can show using basically Taylor approximations up to second order is the following. 

So, if you integrate the function e raised to S so, fixed S as some real number a large real 

number e raised to S f lambda b lambda ok. 



So, consider integrating e raised to S f lambda over the integral over the range a to b as S 

becomes larger and larger one can argue that this essentially tends to e raised to the 

basically you recover e raised to S times the value at its maximum point into √2 pi by S 

times some constant that this constant depends essentially on the smoothness of a of the 

function f about its maximum point its lambda star. 

It essentially like it is it relates to the Hessian of or the second derivative of at lambda 

star. So, the point of this is up to a constant you essentially by integrating you recover e 

raised to the maximum value ok. So, the implication here is that the key implication here 

is that maximization is roughly equal to approximate integration ok. So, the integral is a 

convenient approximate way to find the maximum ok in some sense. 
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And this is very useful in our context because we can consider instead of the sup over 

lambda of M t lambda what we can do is, we can set up the stochastic process M t define 

this as M t as the expected value over lambda drawn from some distribution Q over R d 

of M t lambda ok. 

So, think of so, this is essentially you know what this is doing is basically integrating or 

mixing across martingales M t and the convenient fact here is that this is actually a 

martingale itself because it is the average of a bunch of a martingales ok. So, it retains 

the martingale property for any probability distribution Q on R d ok. 



So, no matter how many martingales even an uncountable family of martingales you 

average you will still get a martingale ok. And since this is a martingale its fluctuations 

are very easy to control using standard martingale results and indirectly we can also get a 

handle on controlling it supremum which is what we seek to control finally, ok. 
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So, this is the high level idea and the details will be spelt out shortly of how this helps. 

So, let me just put down this claim that the mixture of all these M t lambdas where 

lambda is independently chosen as a vector from some convenient distribution Q over R 

d forms a martingale with respect to the same filtration as we had earlier with respect to 

X 1, Y 1, X 2, Y 2 and so on in the same way ok. So, this is something that you can 

easily check offline ok. 

And in fact, the beauty here is that for the convenient choice of that the distribution Q the 

measure Q there is actually an explicit closed form solution for closed form expression 

for M t. M t is expressible in closed form thanks to properties of the Gaussian measure 

ok. So, this is remarkable. So, to show this let us define for any positive definite matrix P 

c of P as √2 pi to the d. So, P is a d by d positive definite matrix divided by the 

determinant of P. 

So, this is also equivalent to integral of e raised to - half X transpose P X over R d for 

any positive definite matrix P d by d ok. 
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So, recall so, let us chose. In fact, so, let us take the distribution of the distribution Q 

again as a standard normal. Let us say with mean vector 0 and covariance matrix some 

epsilon times identity ok, where epsilon is some is this epsilon greater than 0 number. 

So, think of it epsilon as basically a small number, ok. 

So, with this what have is that we can explicitly start writing M t as the integral of M t 

lambda. So, e raised to this is M t lambda here, e raised to lambda transpose S t - half 

lambda V t square. So, with respect to the density of the Q distributions, so, f lambda is a 

notation for the density of the Q measure which is the multivariate normal with 

covariance epsilon I. 
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And the after some straightforward linear algebra which you can verify you can show 

that this is actually exactly equal to the c of epsilon I + V t divided by C of epsilon I into 

remarkably e raised to half S t square epsilon I + V t inverse ok. So, this is exactly so, 

this exactly turns out to be an explicit function of what we actually wanted to control in 

the first place which is this S t inverse weighted by a norm V t inverse with some extra 

term in the front. 

And this extra term is precisely the determinant of a epsilon I by definition which is 

epsilon to the d divided by the determinant of epsilon I + V t whole raised to half into e 

raised to half the weighted norm of S t, the self normalized term here ok. And this is 

basically a martingale ok. 

To finish the proof of the result you will appeal to standard result in martingale theory 

which we will not prove during this course. You can go and look the look up the proof 

separately where this is called Doob’s inequality for Doob’s maximal inequality for 

martingales. So, it is a very well known and its elementary, but very powerful inequality. 
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So, it says basically that if you have a non negative martingale, so, M t as above actually 

satisfies this property. If M t over all time is a non negative martingale then the 

probability that it is maximum over t going from 1 to n. So, let me just write this 

precisely as t belonging to n M t exceeding any level epsilon is at most 1 over epsilon 

into expected value of M 1. 

This is very similar to Markov's inequality except that its strengthens it by allowing you 

to replace max the supremum of this martingale over an interval of time 1 through n by 

actually replace it with it is only its first element M 1 ok. So, that is what Doob’s 

maximal inequality allows you to do. 

So, applying Doob’s inequality we get that for any natural number n the probability that 

the max over t less than equal to n of log M t exceeding log 1 by δ ok. So, you can just 

exponentiate both sides and then you will get 1 over 1 over δ into expected value of M 1 

which is 1. So, you finally, get δ. 
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And so, this means that you can just turn this around to say that the probability that there 

exists t less than equal to n for which; so, you can sort of replace you can substitute for 

log M t. And you will get the probability that the inverse weighted norm of S t exceeds 

twice log 1 by δ + log the determinant of epsilon I + V t by epsilon to the d. 

So, this is so, you basically get the same thing as you get this is the same expression here 

is at most δ ok. And so, there is only a one last thing remaining which is a technical 

improvement. So, there is nothing here in this part which depends on the n here. So, this 

n is just any convenient n. So, you can let actually n tend to infinity. So, you can replace 

infinity which is a technical procedure that we will not concern ourselves with in this 

class. 

But suffice it suffice to say that this n is really a placeholder n, it can be as large as you 

want because the rest of the property here a really have nothing to do with this finite 

number n. So, you can actually take this n all the way to infinity ok by a limiting 

argument. 

And that is what gives you the result that you get this sort of order one term or order log 

1 by δ term and we get sort of this order d log t term as uniform fluctuation for the self 

normalized quantity S t matrix waited norm with epsilon I + V t the whole inverse which 

is roughly a V t inverse normalization of S t and that concludes this lecture. 



Thank you. 


