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Hi all. In the next few lectures we will be looking at Concentration Inequalities for 

sequential processes. Also you can think of these as means to control the fluctuations of 

entire parts of sequences of random variables. And in this context an important toπc that 

we will present is called Uniform Deviation Bounds and we will also explore the 

connection of these uniform deviation bounds to what is called the Law of Iterated 

Logarithm which is a well known result in probability theory. 

So, let us start with a simple motivating example this is the example of sequential testing 

ok. So, what is a tyπcal sequential testing problem? Let us say we are thinking of a 

sequential testing problem about the mean of a Gaussian distribution. So, let us say you 

want to test if an unknown Gaussian distributions mean is either positive or negative to 

the right side or to the left side of 0 moreover let us assume that we know its variance. 

So, let us say its variance is unit variance and we would like to test as soon as possible 

sequentially and adaptively by drawing iid samples from this unknown Gaussian 



distribution whether each of these hypothesis is true that is the real the true mean is 

either positive or negative. So, more formally speaking here is what you as a learner or a 

testing algorithm would do in order to solve this problem? 
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So, this is the protocol at each time index by t. So, you as a learner or tester you can 

decide to stop at this time t. So, if you decide to stop you can either stop or take one 

more sample. If you decide to stop and this is based on past samples based on everything 

you have seen in the past you can decide to stop past samples then you are also required 

to guess or decide which of these situations is actually active whether the mean is 

positive or negative. 

So, you output random variable A, which is your guess and let us say that by convention 

you set A to be 1, if you believe or if you think the mean of the Gaussian is non negative 

and the output 0 if you think the mean is negative ok. And after your output this you 

break you break this loop else you request one more iid sample a fresh iid sample from 

the unknown distribution. So, you get to observe a new independent sample. 

Let us see we call that X t drawn from normal distribution with unknown mean mu and 

known variance 1 ok. So, this is the decision making loop. A essentially represents your 

answer or guess. So, tyπcally a good sequential procedure is some is a procedure that 

takes as few samples X t as possible and outputs A which is correct answer with high 

probability ok. 



So, towards this let us formalize the requirement from such a sequential hypothesis 

testing procedure. Let us define tau to be the time or the random time at which the 

procedure stops and also outputs an answer A. So, it is the first time that the stop 

condition is invoked by the algorithm. 
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And a basic performance requirement from any algorithm is this correctness requirement 

or in other words we would like the misclassification probability of the answer written 

by the algorithm A to be always less than equal to δ. So, here is a mathematical way of 

writing it. For any value of the true mean of the distribution that is generating samples if 

you run this algorithm then all the samples provided to it are drawn from a normal 

distribution with mean mu and variance 1.  

So, you run this algorithm and wait for it to stop and you look at the answer A the 

random answer A that it outputs. So, if A equal to 1; that means, the algorithm stops and 

thinks that the mean is larger than 0, but the actual mean is less than 0. So, this event or 

the event where A is returned to be 0, but the actual mean is greater than equal to 0. So, 

both these are error events. Only one of these can occur depending on the actual value of 

u.  

So, in any case the probability of such an event is required to be bounded by at most a 

given number δ say δ equal to 0.1 or 0.01 ok. So, the decision the design choice here is 

when to decide to stop and if the algorithm has decided to stop or break this loop, what is 



the hypothesis to output based on all the data that has been seen so far or all the samples 

that have been collected so far right. So, a common way to build correct stopπng rules 

which essentially satisfy this requirement. 

So, let us; so, let us call this correctness requirement star. So, one way to build a stopπng 

rule that respects star given a target parameter δ is to use what is called confidence 

intervals for the unknown parameter that governs the distribution of the samples. So, 

what do we mean by confidence intervals? 
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So, here is a definition of here is one possible definition of confidence interval sequence. 

So, a confidence interval sequence is nothing but a family of functions, one for each 

value of sample index one for each let us say n sample number of samples n that maps. 

So, what does it take as input and what does it give as output? It maps n samples seen so 

far we denote it by X 1 through X n and use X superscript n subscript 1 and outputs an 

interval I n ok.  

So, I n is a real interval of real numbers with lower index called L n and upper index 

called u n. So, we will assume in general that it is a closed interval of this form subset of 

R such that the following property is satisfied, for any stopπng time or any stopπng rule. 

So, we already defined tau as a stopπng time tau. So, recall that tau can depend on the 

data on the X i sequence. 



And for all values of the distribution parameter that governs the probability distribution 

of the samples we must have that the probability ok. So, P mu is shorthand notation for 

the same thing that is probability where all the samples each successive sample is 

generated iid from n mu 1 the probability that the interval I at time tau actually contains 

the real parameter mu is at least 1 - δ ok.  

So, this is basically a coverage property. It says that no matter when you decide to stop 

or no matter under what kind of stopπng rule when the algorithm decides to stop, I of tau 

the interval I tau which is L tau comma u tau the set of all numbers which are at least L 

tau and at most u tau must contain mu with significant probability ok. So, note that a 

confidence interval sequence is an entire family of intervals. 

So, for any given n, it is desired that there is a interval I n such that whenever you 

happen to stop at time n, I n must contain tau must contain with high probability. So, 

how do confidence interval constructions help design good sequential tests? Here is the 

connection.  
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So, if we have a valid confidence interval construction with probability of failure no 

more than δ as above then here is a good sequential testing algorithm for the Gaussian 

mean testing problem ok. So, here is what such an algorithm would do. The algorithm 

would stop at the first time t when 0 falls out of the interval I t that is when the interval I 



t it does not contain 0. So, recall that the interval I t is at time t comprised of a lower end 

point L t and an upper endpoint u t.  

So, if L t u t is either to the right of 0 or to the left of 0; that means, if either L t is larger 

than 0 or u t is less than 0 then you stop. And you output the natural decision; that means, 

if the lower endpoint of I tau when you stop at time tau L tau if its larger than 0 then you 

guess that the mean of the Gaussian distribution is larger than 0. If it is if the upper 

endpoint u tau happens to be less than 0 then you would naturally guess that the mean of 

the Gaussian you are dealing with is less than 0 ok.  

Let us call this a rule an algorithm this gives you an entire algorithm for performing 

sequential testing and stopπng when required with confidence ok. So, why is why does 

this work? So, what is the proof that this kind of procedure actually has a 

misclassification probability which is bounded at most by δ? 
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Well, it is easy to see this. Let us assume for the moment that if the real mean of the 

Gaussian generating the samples is actually negative let us evaluate the probability that 

the answer returned at time tau according to the rule above when you stop is equal to 1. 

So, this is the error event when mu is actually negative and the answer output is actually 

that the mean is positive.  



So, in other words this is just P mu that the lower endpoint of the interval I tau that is L 

tau is larger than 0. So, we can break this sum into two parts by the law of total 

probability. So, this is P mu L tau greater than 0 and mu belongs to I tau - probability of 

the same event intersected with mu naught belonging to I tau. 

Now, the probability of the first event is actually 0 because if this event were to occur 

then it means that mu is at least L tau, but L tau is at least 0. So, mu is greater than 0 

which is not possible because mu was assumed to be less than 0 and so, we are left with 

only the second term for which an upper bound can be obtained by just dropπng the first 

event inside. 

So, this is just upper bounded by the probability that mu does not belong to I tau and we 

know by the confidence interval property of the sequence of intervals I 1, I 2, I 3 and so 

on that this event occurs with probability at most tau ok. So, the condition star which is 

the correctness condition. So, we call the star condition, the misclassification probability 

condition is met ok. 

So, what we have seen is that good confidence interval constructions or valid confidence 

interval constructions when coupled with the natural stopπng rules yield non trivial 

hypothesis sequential hypothesis tests ok. So, how do you go about constructing 

confidence intervals? So, this is what we will expose the connection between confidence 

intervals and uniform deviations of stochastic processes. 
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So, let us perform the following thought experiment. So, let us take a set of these random 

variables. So, let us take the first n successive rewards generated by the distribution ok or 

the unknown Gaussian distribution. So, since, so, fix. So, let us say let us first fix an 

integer N, ok a non negative integer N, since the first N samples ok. So, just think of the 

first N samples returned by the of the Gaussian distribution out of the infinitely many 

samples that are possibly generated. 

This has no relation to what samples were actually consumed by an algorithm. So, we are 

just thinking of the first N samples for a fixed small n. So, since X 1 through X n are 

drawn assumed to be independent and identically distributed as a normal distribution 

with mean mu and variance 1 by Chernoff by the Chernoff bound we already have that P 

mu of let us say the sample mean 1 over n summation i equal to 1 to n X i - mu 

exceeding ɛ a level ɛ is bounded by 2 e to the - n ɛ square by 2. 

So, this is a standard Chernoff bound for a Gaussian ok. Let us for shorthand denote the 

sample mean of the first n samples as X bar n ok. So, this means that; so, this is the say 

this in fact, means that if I set a particular value of ɛ to make the right hand side equal to 

δ. So, this is what we get the probability that mu belongs to this particular interval X bar 

n - √2 log 2 by δ divided by n 2 X bar n - the same deviation 2 log 2 by δ over n this 

probability is at least 1 - δ ok. 

So, this holds for any fixed n ok. So, if there was a stopπng rule that decided always to 

stop at time small n ok. So, never stop before that or after that. So, let us say there was a 

stopπng rule that always stopped trivially at time small n then this interval I n with left 

endpoint as this number L n and right endpoint as u n ok. So, this interval would be a 

valid confidence interval at that specific time small n ok. So, this is a 1 - δ confidence 

interval. 
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So, let us record this by saying that a confidence interval with level 1 - δ for mu after 

having observed exactly n samples where n is some fixed non random integer n samples 

is this interval to X bar n - √2 log 2 by δ divided by n 2 X bar n - √2 log 2 π δ divided by 

n ok. 

So, the key thing here is that the n samples are fixed ok. So, this is set sort of a 

confidence interval for a fixed or a batch. So, this is like a batch of n iid samples ok. So 

however, if you have a stopπng rule that actually stops at a random time depending on 

the data, so, at a random possibly data dependent that means, depending on the previous 

history of samples observed so far. 

So, let us say someone has designed a stopπng time tau that is sort of non trivial ok. So, 

its maybe complicated. Maybe you stop at the first time when the certain property of the 

sequence of samples seen so far has been satisfied. So, that could lead to various 

distribution of the stopπng time tau not necessarily always at a fixed number of samples 

n ok. 

Its not hard to argue that the set of samples that you have seen until stopπng X 1, X 2 and 

so on up to the last time a sample was taken; that means, X 1 through X tau the tau 

samples. In fact, these are no longer iid in general ok. So, these need not be iid in general 

ok. So, this is a probably a surprising fact the first time you encounter it, but on the other 

hand its not hard to come up with some counter examples to X 1 through X tau being iid. 



So, basically the upshot is that in the previous setting we considered n to be a fixed batch 

of samples. 

So, this is equivalent to saying that there is a stopπng rule for which tau is exactly equal 

to n always; it always stops after taking n samples no less no more. And so, in that case 

naturally X 1 to X n by definition are going to be iid, but if the stopπng rule actually 

depends on the data seen in the past then the iid property is can be completely violated 

ok. 

So, just as an example you can think of a rule which is quite strange in the sense that it 

says you know let us wait, let us stop when you see a sample larger than some value let 

us say 10 for the first time ok. So, it obviously means that the sequence of samples you 

have seen so far has the property that the last sample X tau is going to be greater than 

equal to 10 and all the previous samples are by definition going to be less than 10 ok. 

So, this is not an iid distribution over samples X 1 through X tau ok, but. So, this sort of 

violates the ability to apply Chernoff because as we know Chernoff requires tau to be 

non random. So, you cannot ok. So, you could not have applied Chernoff in the setting 

earlier when n was when small n was random. So, think of a random number of samples 

being taken which can actually depend on the samples themselves. 

So, if small n was actually a random variable you would not be able to apply Chernoff 

for obvious reasons because Chernoff requires number 1 all the random variables to be 

independent. And number 2 there is this n that appears on the right hand side. So, you 

cannot have n as a random variable ok. So, this is a sort of subtle, but important issue 

that one has to worry about when defining concentration events for sequential procedures 

or sequentially sampled processes. 
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So, the obvious way one obvious way to get around this problem is to use a union 

bounding argument along with Chernoff ok. So, the idea here is that you can build 

uniform deviations concentration bounds by using the basic union bound idea from 

probability ok. So, what do we mean by this? 

So, suppose we want to construct confidence you want to construct a family of 

confidence intervals one for each time such that no matter what the value of tau is the 

interval at time at the stop time I tau contains mu with high probability must hold. So, 

here is what you do.  

At any for any stopπng time induced by a stopπng rule and we define mathematically the 

stopπng time to be tau ok. We will make the small technical assumption that tau is 

almost surely finite, assuming tau is less than infinity almost surely. So, as long as tau is 

less than infinity almost surely one can do the following one can write the following. So, 

the probability. 

So, I am omitting the subscript nu which is because that is understood the probability 

that the absolute value difference between X bar tau. So, imagine that we have stopped at 

time tau according to some data dependent rule and X bar tau is the mean of the first tau 

samples that you have taken before stopπng. So, the probability that X bar tau - real 

mean mu exceeds let us say a number ɛ tau that we will design later. 



So, let us think about the probability of this event ok. So, we know that tau is less than 

infinity almost surely.  
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So, what this event implies is that there must exist a value of i where i is any positive is 

some positive integer such that the absolute value difference between X bar i the first i 

samples average - mu must have exceeded ɛ i ok, this is just by basic inclusion. So, there 

is no way that the first event would have happened if the if not for the second event ok.  

So, at some point in time tau if your sample mean of tau samples exceeds is further than 

further from mu then by an amount ɛ tau that it means that there must exist some integer 

i at which X bar i - is greater than equal to ɛ i. And by the union bound you can bound 

this probability by summing over all possible values of this time tau ok of the probability 

that X bar i - mu exceeds, ɛ i ok ɛ i something that we are yet to derive.  

So, let us try to arrange things. So, that this final sum that we have here, the sum from i 

equal to 1 to infinity is no more than δ. Let us say we are given a target value of δ for the 

for coming up with a confidence interval construction. So, if the ith term in the sum 

above is let us say less than equal to let us say let us just say δ over i square.  

So, δ is the number the probability the violation probability number we have been given 

and let us probably try to find ɛ i such that each successive term is bounded as δ over i 

square then by summing all these 1 over i square is a summable sequence sum is for 



instance less than some constant times δ ok. The constant is whatever you get when you 

sum 1 over i square ok. So, what is this?  
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So, what is our target? We want to make probability X i bar - mu greater than equal to ɛ i 

less than equal to δ by i square ok. Now, we have fixed. So, i is a fixed integer here ok, 

there is nothing random about this integer i. So, X bar i is simply now the sample mean 

of i the first iid samples from a Gaussian with a mean mu and so, here is where you can 

actually use Chernoff.  

So, by Chernoff an upper bound, so, this is implied if the Chernoff upper bound which is 

2 e to the - i ɛ i square by 2 can be made less than δ by i square and this is just the same 

as saying as setting ɛ i to be equal to √2 right log 2 i square by δ ok. So, right.  

So, what we have shown by this union bounding argument along with Chernoff is that 

even for a random no matter what the value of the stopπng time tau you are assured that 

the interval I tau. So, you can set I tau as X bar tau - - the lower end point being the - and 

upper endpoint being the - √2 over tau log 2 tau square by δ ok. 

So, you have an interval at stopπng and then you can basically make a decision based on 

whether 0 is in this interval or not ok. So, the usual theory carries forward. So, let us 

think about this union bound result we have shown from a slightly different viewpoint. 
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So, in other words what have we shown, what have we shown? We have shown that the 

probability that for any positive integer i, X i bar - mu less than so. In fact, for all i less 

than equal to n for all i natural numbers the probability of the deviation of X i from X i 

bar from you being less than 2 over i log 2 i square by δ is greater than equal to 1 - δ ok.  

So, uniformly over time, so, for all i natural numbers is just saying uniformly over time 

the sample mean X i bar; X i bar - mu always stays within this fixed i dependent number 

on the right ok. Put slightly differently this is also equivalent to saying that the 

supremum taken over all i positive integers of; so, if you divide the left hand side by the 

right hand side and it is at most 1.  

And it just says that the supremum of √i times X i bar - mu divided by √2 log 2 i square 

by δ is less than equal to 1. This entire event has a significantly large probability of 1 - δ 

of at least 1 - δ ok.  
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So, just to πctorially illustrate; so, this is; so, let us illustrate this statement with 

something that conveys the nature of fluctuations of the stochastic process X bar i ok. So, 

for instance here is one way of representing this result. So, on the X axis we have i. Let 

us so in fact, one remark here is that the denominator here. So, imagine δ to be fixed δ is 

a fixed number. So, order wise this is basically nothing but √log i ok. So, let us plot √log 

i on one hand.  

So, if i start from 1 then this is how √log i looks and on the negative side this is how - 

√log i looks ok and this is short sort of the region in between. So, let us think about the 

paths of the entire stochastic process indexed by i which is √i times X i bar - mu ok.  

So, all we are saying is that with probability at least 1 - δ the stochastic process given by 

i time √i times X i bar - mu ok over all integers i is contained within this shaded yellow 

region ok. So, there is this tube if you wish. So, this is sort of a tube that is bounded by 

the functions roughly √log i and - √log i.  

And what we have established by this very basic union bounding argument is that if you 

basically take a scaled version of the difference between the sample mean and the true 

mean scaled by basically √the number of samples and plot that trajectory ok then a tyπcal 

trajectory is going to sort of wander always within this tube ok.  



So, that is what we have shown ok. So, this is in some sense to be regarded as a 

statement about the trajectory of the entire stochastic process √i into X i bar - mu for i 

equal to 1 to infinity ok. So, it is an infinitely long infinite time stochastic process ok. So, 

that is what we have shown.  

So, this raises the question of how much we can actually improve things ok. So, can we 

actually try to if you are given you know a 1 - δ high probability target what is sort of the 

narrowest kind of green tubes that you can draw to bracket the entire trajectory of this 

stochastic process with probability at least 1 - δ ok? 
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And that is the that brings us finally, to the subject of controlling uniform deviations or 

time uniform deviations of a stochastic process right from time 1 to time infinity. So, 

here is a natural question we saw that if for instance in the mu equal to 0 case, so, when 

X i are all drawn X i is a sequence of iid infinite iid random variables drawn from the 

standard normal distribution then we saw that the probability that the largest possible 

value of this ratio which is absolute value of S n divided by √2 n log 2 n square.  

S n is nothing but the sum of the first n random variables X i ok. So, you have just 

represented X i bar as S i divided by i ok. So, what we saw is that S n ok you can think of 

S n as a random work. The magnitude of S n if you scale it by √2 n into log 2 n square by 

δ that quantity is never going to hit 1, hit cross the level 1 with probability at most 1 - δ 

ok.  



So, basically it says that if you draw in the S n sense if you draw 2 tubes of - - √roughly 

n √n log n then S n is not going to wander outside this tube ever unless you are in an 

event of probability at most δ ok. So, the natural question here is can you do something 

about this denominator by how much can the denominator be improved or increased ok? 

So, if you want tighter control of if you see tighter control of S n let us say then it means 

that you would want to try to raise the level of the denominator (Refer Time: 37:03) as a 

function of n and δ. So, by how much can the denominator be improved or increased for 

uniform deviations to be under control ok. By uniform deviations we basically mean the 

supremum over all positive integers ok. 

(Refer Slide Time: 37:26) 

 

So, this is what we will show to this effect. It turns out that there is sort of in some sense 

a large room for improvement compared to what we have got so far. So, we will show 

the following result in this lecture. So, we will show. In fact, that the usual situation let 

us say without loss of generality that all the X ’'s are drawn iid with the standard normal 

distribution.  

Then the probability of the worst case ratio of between S n and a quantity that is roughly 

order √n the √n is inevitable, but what we will be able to do is we will be able to replace 

the polynomial n sitting inside the log by a logarithmic n. So, we can actually get log log 

n as a function of n exceeding a being less than 1 to be at most to be at least 1 - δ ok.  



So, this is the result that we will be able to show in contrast to the previous result. So, 

instead of log n in the previous result, so, there is a polynomial n sitting inside the log 

which is roughly equal into log n. We will be able to actually get log log n deviation as a 

multiplier for the √n ok. And this is actually if you think about it this log n compared to 

the n square on top is an exponential improvement over n to the alpha or polygon. 

So, n square like this for instance ok that you tyπcally get by doing a union bound over 

the entire time horizon ok. So, one may wonder is this the only is this the limit of how 

you can how far you can go.  
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Well in fact, in some sense the answer is yes this is the best possible result that you can 

show to that you can hope to achieve in the sense of controlling uniform deviations of S 

n. So, in a sense because there is in some sense a lower limit or a fundamental limit to 

how far you can go to control uniform deviations due to what is called the law of the 

iterated logarithm LIL.  

And here is the statement of the LIL for the same setting where you are dealing with the 

sums of iid standard normals. So, the LIL basically says that for X i drawn iid from 

normal 0, 1 the probability that the limsup as n tends to infinity of S n. So, if you rescale 

if you scale S n by √basically roughly root n log log n ok.  



The probability that this limsup equal to 1 or the on the symmetric side if you take the 

liminf if you take the probability of the event that liminf as n becomes large of S n scaled 

by √2 n log log n equal to - 1. These are actually almost surely true ok. So, these are 

actually events that happen with probability 1 ok.  

So, what this is again with respect to the figure is that if you; so, it does not matter how 

you draw things. If you draw a √2 n log log n and on the bottom you plot the envelope of 

- √2 n log log n ok, what it says is that what this law of iterated logarithm says is that 

infinitely often the process S n is going to touch both these boundaries ok. We are going 

to come arbitrarily close to both these boundaries ok. 

So, basically if you bump things down by a factor of 1 - ɛ where ɛ is small then it means 

that infinitely often with probability 1 the process S n is going to wander out of this tube 

infinitely many times. It cannot be constrained within this narrower tube ok. So, this sets 

an absolute lower limit because there is an almost sure event that the process S n is going 

to breach these the boundary of such a tube with such bits.  

And so, one cannot hope to really improve the scaling of the denominator better than √n 

log log n ok. So, what we are going to show here this result can be thought of as a you 

know uniform deviations or finite time analogue of the law of the iterated logarithm. The 

law iterated logarithm is really a statement about its an asymptotic statement about the 

nature of the sequence S n.  

So, let us go ahead and try to derive this kind of best possible bound which is basically 

expressing uniform deviations of the S n process ok. 
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So, that will be the last part of this lecture. So, what is the basic idea here? The basic idea 

is. So, recall how we got the worst the weaker bound with the √n log 2 n square by δ. We 

basically did a union bound over all values of time ok. So, in contrast the idea that I 

would like to present here to get sort of almost optimal LIL type uniform deviation 

bounds is to save on doing so many union bound.  

So, save on doing a global union bound over all values of small n over natural numbers, 

instead we will use what is called a peeling argument or a peeling trick. This is sort of 

the name that has become sort of standard for this kind of procedure by now which 

involves broadly speaking much fewer union bonds or much fewer instants of time ok. 
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So, here is so maybe let us set up some notation before i describe the idea in more detail. 

So, let us fix some ɛ constant between 0 and 1. You can think of ɛ equal to half for 

instance for a remainder of the proof and that so, let us define u 0 as time instant 1 and 

let us define the k - 1st instant next time instant as 1 - ɛ times u k, for all k greater than 0 

greater than equal to 0 ok. 

So, u 0 is 1, u 1 is 1 - ɛ, u 2 is 1 - ɛ of u 1 and so on and so forth. In fact, technically we 

need all of these to be integers. So, its best to take the ceiling ok. So, this is sort of the 

precise definition of these in case. These are also a subset of the natural numbers. And to 

convey the entire idea of peeling using a πcture here is the set of all times at which you 

want to control uniformly the deviations of S n. So, it starts with time 1, ok. 

So, that is u 0,  u 1 is here, u 2 is basically a geometric is sort of a scale factor 1 - ɛ time 

u 1. And so, this grid u k basically grows geometrically as a function of k ok it explores a 

raπdly. So, it is a geometrically increasing grid u 4 ok. So, in order to so, we have a 

process S 1, S 2, S 3 and so on which is taking values at every possible natural number. 

The u k’s are a subset of these natural numbers.  

Imagine that you can control imagine that you want to first you want to be able to control 

the fluctuations of the stochastic process S n by first controlling S n at these chosen 

points u k’s ok. So, first let us say that we want to be able to control a sense that only 

these u k’s these u k’s are much in some sense far fewer numbers and the entire set of 



natural numbers. So, we first control S n at n equal to u 1, u 2 and so on and then locally 

handle S n between each let us say u k to u k - 1, ok.  

So, in some sense it is a hierarchical approach. This peeling approach that is why it has 

the name peeling because you sort of its a hierarchical approach where you first control 

you basically block you bunch time up into exponentially increasing segments you 

control the process at the end points of each segment and then do sort of a separate local 

procedure to control the deviations of S n within these segments ok.  

So, we will see exactly how this idea pans out. So, at least in the process the total number 

of union bounds at the outer level over the u k’s is in some sense going to be much 

smaller than taking union bound over all natural numbers and that is sort of the reason 

behind why you get this exponential improvement in the end ok. 

So, this proof that we will present using the peeling argument it occurs in several parts 

several places in the literature on statistics in sequential statistics and online learning, but 

we will use the argument that is given in this paper by Jamieson et al, which is basically 

an online learning paper featuring what is called the LILUCB algorithm for multi armed 

bandits.  
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So, let us do the peeling argument in detail. So, let us define this function for 

convenience psi x as roughly √x log log x by δ. This is the kind of uniform deviations 



growth that we want in a result. So, there are three steps to the argument. So, step 1; step 

1 is the control the first level of the hierarchy. So, this is the control of S u k, for all k and 

let us see how we do this. 

So, we just want to bound let us say the probability that there ever exists a value of k for 

which S u k exceeds let us say √1 - ɛ. So, you should just think of the √1 - ɛ as just some 

number larger than 1 ok that is all the meaning of, that is all there is to the meaning of 

this ɛ. Ɛ you can just think of ɛ conveniently as a half into psi of u of k - 1, ok. 

Psi of u of k - 1 is in some sense a threshold that we want to control every S u k by. So, 

we can first split this by the union bound over these k’s ok which are much smaller than 

the total number of I mean in some sense they are smaller than the total number of larger.  

They avoid many natural numbers and many union bounds potentially wasteful. e raised 

to - 1 - ɛ log of log up u k - 1 divided by δ. This is just by using the union bound and also 

simultaneously applying the Chernoff bound for Gaussians. So, first using the union 

bound - the Chernoff bound for Gaussians ok, so, this is just a simple union bound 

followed by Chernoff. 
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So, this is the same as the sum. So, by the way I am avoiding the I am avoiding sort of 

more precise computation because u k - 1 is the ceiling of 1 - ɛ times u k. So, we 

presume that we can use fractions for you can use real numbers for integers, but with 



small modifications the entire argument goes through in exactly the same way as we are 

doing now.  

So, this is exactly summation δ by k - 1 log 1 - ɛ the whole thing raise to 1 - ɛ. And the 

only part that depends on k if you remove you are left outside with δ by log. So, let me 

write it here. This is δ by log 1 - ɛ raise to 1 - ɛ that comes out followed by a sum of 1 by 

k - 1 to the 1 - ɛ. And by some bound integral bounds you can easily show that this is at 

most 1 - 1 by ɛ. 

So, finally, we get the bound of δ by; so, let us say let us write 1 - 1 by ɛ into this 

quantity δ by log 1 - ɛ into 1 - ɛ ok. So, you should really think of this complicated 

looking right hand side as just upper bounded by some constant times δ ok. So, because δ 

is a number smaller than 1, δ to the 1 - ɛ can; obviously, be upper bounded by δ itself and 

the rest is just a constant 1 - 1 by ɛ in the denominator which is a function of ɛ. So, it is 

just a constant times δ finely ok. 
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So, we now come to the step, 2nd step which is descending one step lower into the 

hierarchy and trying to do local control. So, this is about controlling S n for n in the 

interval u k to u k - 1 right. So, how do we do this? So, we will take recourse to the 

following result from probability called Hoeffding’s maximal inequality. 



So, we will use the follow link following result from probability called Hoefiding’s 

maximal inequality which in our case applied to standard normal iid random variables 

sees the following. So, for every integer m and x greater than 0, the probability that there 

exists in n in 1 through m for which exceeds x ok. 

This is really the same as the probability that the max over n equal to 1 to m of S n is 

larger than equal to x is actually controlled by basically the same kind of Chernoff 

exponent Chernoff rate as what you would expect for S m the last element S n, ok. 
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And the reason this holds you can go and look this up, this is a consequence of an even 

simply simpler stated, but a very powerful result called Doob’s martingale inequality, 

Doob’s sub martingale inequality in fact, ok. So, we are not going to prove this 

inequality in this class, but we will use it as a statement of fact. So, what it says is 

basically it allows you to control over a given interval of time m uniformly the 

supremum of a random work is n, so, ok.  

So, using this we can write the following. So, we have that the probability. So, using this 

we have that the probability that there exists a time t in the interval between 2 epochs u k 

- 1 all the way up to so, this is a set of integers up to u of k - 1 - 1 ok. Since we have 

already controlled for u k and u k - 1 separately at the top level of the hierarchy, S t 

relative to S u k ok. So, think of S u k. So, going back to the figure here think of suppose 

k is equal to 2.  
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So, you already controlled S u 2 and we are trying to sort of understand how much 

fluctuation excess fluctuation there is in this interval between u 2 to u 3. So, S t - S u k 

exceeds let us say something again √ɛ into psi u k - 2. So, u k - 2 is chosen conveniently 

as you will see soon. 
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This is equal to the probability that there exist t. So, just by shift by recentering time you 

can just recenter everything from time u k onwards, it does not change the nature of the 

random work. So, there exists a t in the interval. So, basically in 1 through u k - 1 - 1 - u 



k ok such that S t exceeds √ɛ psi u k - 2 as before. This is the same because all we have 

done is we have basically started time for the random work from the bar the time u k. 

So, this is by recentering time and now we can apply Hoeffding's maximal inequality to 

get an upper bound of -. So, the square; so, whatever is here get squared. So, ɛ the square 

of psi u k - 2 is precisely 2 u k - 2 log log u k - 2 by δ. And finally, we have to divide by 

this by 2 times the number of steps in the random work which for us is just u k - 1 - 1 - u 

k ok, so, right. 

So, we have this upper bound. Now, we can take this ɛ here and this u k - 2 and this 

difference essentially between u k - 1 and u k and show that this ratio is lower bounded 

by 1 - ɛ ok. So, this is an easy exercise. So, you can replace with 1 - ɛ.  

So, this is basically the reason why the geometry grading works essentially says that you 

know there is a factor of 1 - ɛ increase in the sort of scale and at the same time It also 

saves you many many union bounds and the top level there is an exponential reduction. 
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So, log log u k - 2 by δ; the reason for this is in short that ɛ u k - 2 divided by u k - 1 - u k 

- 1 can be shown to be greater than equal to 1 - ɛ. There is always the ratio 1 - ɛ here ok. 

And this in turn is just simply expressed as δ over using the definition of u k - 2. u k - 2 

again is basically 1 - ɛ raise to k - 2 up to a small approximation. 



So, ignoring that approximation error we can just write this as δ over. So, log u k - 2 is 

just k - 2 log 1 - ɛ ok and the entire thing is raised to the exponent 1 - ɛ ok. So, this is 

again essentially a constant times δ, this is another constant time δ. And so, we have 

essentially managed to bound both local and global fluctuations of S n by basically 

constant time δ and the last step is to just put both of these together. 
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So, to get the LIL type result. So, putting everything together, so, this is the last step. So, 

by steps 1 and 2 we get that so, steps 1 and 2 essentially give you probabilities of bad 

events upper bounded by some numbers. So, here is the good event, this is the 

complement with probability at least 1 - the total bad events. So, step 1 gave you a bad 

event probability of this much and step 2 gave you a bad event probability of this much 

ok. 

So, we can argue that if you sum up the bad event probabilities and subtract them from 1, 

so, step 1 gives you basically 1 - 1 by ɛ into some expression and then a further 1 by ɛ 

into this thing δ by log 1 - ɛ base 2 1 - 1 - ɛ. So, recall that in step 2 you have to sum over 

all the all case to get the net bad event of step 2 that any of the local fluctuations is 

bounded. 
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So, with this much probability for all epochs k and for all time steps local time steps 

within the epoch k, so, the right endpoint is now included thanks to the step 1 result. We 

must have that S t. So, can we bound S t? Find the S t is actually S t - S u k - S u k and 

each of these terms is bounded the first 1 by step 2 and the second term the difference by 

step 2 and the last term by step 1. 

So, we know that by step 2 this is at most √ɛ psi of u k - 2 and the second deviation is 

bounded in height with high probability by √1 - ɛ psi u k - 1. 
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And we just need to do some very basic algebra and bounding. So, we know that t is 

within u k to u k - 1 and so, u k - 2 must be at most 1 - ɛ square into t and psi is a mono 

term function - √1 - ɛ. Again you can bound u k - 1 by at most 1 - ɛ × t, ok. 

You can use a further bound on √1 - ɛ of 1 - √ɛ and finally, you get something like 1 - 2 

√ɛ psi of 1 - ɛ the whole square which is another constant times t ok. So, the orders are 

all essentially in the right place. So, for instance, so, this essentially completes the 

argument.  
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If you specialize and write this for instance with ɛ equal to half if we take say ɛ equal to 

half and write down this result, then the probability that there is ever a time uniformly 

over the entire time horizon, where S n exceeds 1 - √1 - 2 √ɛ that is 1 - √2 into the √of let 

us say twice 9 by 4 that is 1 - ɛ the whole square n log log of 9 by 4 n divided by δ. 

So, that gives you the log log n type term is no more than 1 - 4 into some constant into δ 

into δ to the ɛ by log 3 by 2 raised to 3 by 2 which is ultimately some constant some 

explicit numerical constant times δ ok and which is essentially in the form of the it is a 

finite time version of the law of iterated logarithm ok.  

And the key idea here was to use this kind of hierarchical peeling idea or peeling trick as 

its commonly called to essentially try to save on the number of union bounds getting as 

close to optimal as possible. 



Thank you. 


