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In the last lecture we saw the notion of hypercontractivity and so, how it can have 

amazing consequences in terms of strong data processing inequalities. And in fact, there 

are many more which we did not discuss. We saw different equivalent forms of 

hypercontractivity. And the question is this really a new phenomenon, which have which 

has not been seen before and what we will now see is that in fact, for some distributions 

like Gaussian distributions hypercontractivity is exactly equivalent to log-Sobolev 

inequality. 

So, before we proceed, let us just first describe Gaussian hypercontractivity ok. So, we 

consider generic Gaussian random variable P X, Y. Let X, Y be jointly Gaussian, zero 

mean random variables ok. What does it mean? That is P X, Y is Gaussian with mean 0 

and covariance matrix K, with K given by yeah. Let us also assume that there are they 

are standard normal. So, we normalize them to unit variance and rho is their correlation 

coefficient ok. 



Such X, Y can be expressed as this is something that you may know already Y equals to 

rho X plus root 1 minus rho square Z, where Z is independent of X and its again 0 mean 

and unit variance. Note that X and Y are both 0 mean and unit variance Gaussian random 

variable ok. 
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So, here is this Gaussian hypercontractivity theorem from (Refer Time: 03:04) gross. It 

says that P X, Y is p, q hypercontractive if and only if q minus 1 by p minus 1 exceeds 

rho square ok this. We do not even claim by the only if part if this exceeds. Or so, in 

other words quantity s P X, Y that we had seen is exactly equal to 1 plus p minus 1 rho 

square by p ok. Not an easy form to remember, I think this is an easier form to q minus 1 

by p minus 1 exceeds rho square ok. 

This is the Gaussian hypercontractivity and now we will like to prove it. In fact, to prove 

it we will develop little bit of a we will use a little bit of heavy machinery eventually we 

will do that, but to begin with we will start from some elementary proof. So, the proof 

proceed this follows. 

We first recall that by using the equivalence between pq hypercontractivity and the 

strong data processing inequality that we saw for any divergence. It suffices to show that 

for all Q x that have density with respect to just Gaussian density P x and such that this 

density has d Q x by d P x to the power be the P th moment finite. 
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What we need to show is that for all such; for all such Q x the P th divergence between Q 

x and P x when pass through this channel ok. By the way this channel will be 

parameterized by rho because that is what brings in this rho. Remember this channel can 

just be described as this additive Gaussian noise channel. It multiplies with the gain rho 

and this 1 minus rho square. So, this is a channel parameterized by rho. 

And this guy is less than equal to 1 minus q by 1 minus p D q Q x p x if or this is true for 

all p less than equal to 1 plus q minus 1 by rho square. In fact, we use a slightly different 

parameterization, but before that this last inequality by the way is equivalent to log. This 

is something we saw earlier also. W rho of p is less than equal to log D q x by d P x and 

this is q. And this must hold for all p less than equal to 1 plus q minus 1 by rho square. In 

fact, it suffices to have it for p equal to this by rho square. 

Now, just a side remark; we saw earlier that this guy here the W that the Markov kernel 

of the channel applied to the log likelihood to the likelihood ratio to the density is exactly 

the same as this guy remember that ok. And this is by the way the Gaussian density, 

when you apply this channel to Gaussian input you get Gaussian output ok. 

Now, we will see this thing and we will use a slightly different parameterization. Writing 

rho equals to e to the power this only depends on rho square. So, we will write rho 

square as e to the power actually we assume rho is positive because otherwise the same 

proof can be repeated with x this is minus x does not change anything. So, we set rho to e 



to the power minus t and W t for W rho what we need to show is that if you look at this 

function g t or maybe something else maybe call it r t defined. 
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So, this logs can also by the way. We do not really need to have this logs here. So, it 

sufficed to show that this function r t defined as W t d Q x d P x p t. This is the quantity 

we are calling p yeah p t, with p t defined as 1 plus q minus 1 e to the power 2 t. This 

quantity here is non increasing for t greater than 0 ok.  

And this is true since W 0. What is W 0? W 0 basically corresponds to having rho equal 

to 1 and in which case y equals to x ok. So, this channel is just the identity channel. So, 

its W 0 is the identity mapping ok that is what you have to show. 

So, let us take the derivative of this function and show that it is less than 0 that is all we 

need to show ok. But how do we differentiate this function, alright? So, to do that to 

show this note that W t of this Q x d P x this is exactly the same as the conditional 

expectation of d Q x d P x.  

Now, this is a function of x, x is the standard Gaussian random variable here given y ok 

that is something we have seen earlier and you should say it is given Y t denoting by Y t 

the random variable y corresponding to e to the power minus t ok. But in fact, there is a 

symmetry in the channel from y to x and x to y, this distribution is symmetric this 

distribution here is symmetry. 
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And therefore, this can also be written as expected value this is by symmetry, symmetry 

of the distribution. So, this is since X, Y t has the same distribution as T t, X. So, this can 

be written as d Q x by d P x. Now, this symmetry is actually pretty crucial to this proof, 

but it holds here. It holds for the symmetric channel. This is this Y t given X equal to y 

ok. So, this guy has now this kind of trajectory alright. 

But so, let us abbreviate this did on Nickelodeon derivative ok. Denoting g of y as or 

maybe g of does not matter x as d Q x d P x of x r t is given by expected value expected 

value of g of Y t given X yeah. The entire distribution is symmetric. So, that we can take 

the outer expectation with respect to we can take the outer expectation also with respect 

to with respect to x ok. Remember that the original thing had this outer expectation with 

respect to y and the inner one with respect to x. So, this is r t therefore. 

So, we can write a little bit more about it. This is equal to expected value of expected 

value of now we know what g looks like given X looks like e to the power minus t X 

plus square root 1 minus e to the power minus 2 t is it ok and given X this expectation is 

over Z then by the way given X to the power p t p t and then to the power 1 by p t right. 

Actually it will help keeping the log sorry above that. Let us keep this log here ok. So, r t 

was this, r t is defined as log of this same thing and then this guy has log here and this 

also has a log here right ok. 
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So, then if you take derivative of r with respect to t, so, this is this by this. So, it this 

expression here this is equal to first we take derivative of this 1 by p t. So, that is minus. 

So, one convention when we take derivative with respect to t we use a dot ok. So, some 

convention here d by dt of g t of g t or any function actually d by dt of h t is h dot and d 

by d x of h x is h prime ok. We will use this dot and prime notation 

So, here we have p dot t by p t square * of course, the log natural log of expected value 

of this whole thing; expected value of g Y t given x to the power p t ok. And plus 1 by p t 

and now this second derivative part of the derivative. So, log of this we can get this in 

the denominator and derivative of this guy; now we can take derivative inside and then 

there are two terms given X and we have to now focus on this one. 

So, first term is taking the derivative again of p t, but this guy will remain right. So, that 

is expected. So, that is p dot t. So, just taking it this is just taking derivatives plus now we 

take the term of this guy p dot t p dot t yeah maybe its convenient to use a little bit more 

notation right. 
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So, let us call this name this function something. We will call this h t ok. So, what we see 

is for the second term? What we see is plus 1 by p t expected value of h t is a random 

variable h t to the power p t no problem and then in the numerator we can take derivative 

inside h t to the power p t. What is the derivative? That is e to the power h t log h t p t. 

So, first it is e to the power h t p t. So, that is h t p t * two terms will come. First one is p 

t by h t into h dot t plus p dot t into log h t ok. These two terms come here. And 

therefore, this is minus p dot t p t square log expected value of this h t to the power p t 

plus p dot t by p t. Let us say p t square again, expected value of log. So, this is the 

second term here this one. 

So, h t to the power p t log, I multiplied and divided by pt. So, you have this and plus this 

p t cancels here it is the expected value of h t p t minus 1 h dot t by expected value of this 

expected value remains here as well expected value of h t to the power p t h t to the 

power p t. 
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And we would like to claim that this is less than equal to 0, if p dot t; so, there is so, we 

multiply and divide this guy by p t square p dot t * expected value of h t p t log h t p t 

minus we have multiplied divided by this denominator here, h t p t log expected value of 

h t p t ok. This is the first term plus p t square expected value of h t p t minus 1 h dot t is 

less than equal to 0. 

So, this term if you see this term this exactly look like p dot t into entropy of h t p t plus 

p t square expected value of h t p t minus 1 h dot t is less than equal to 0. Note that for 

our choice of p t this p dot t is nothing but you can show this is 2 p t minus 1 you can 

verify this. Remember p t was 1 plus q minus 1 e to the power 2 t.  

So, you get from this formula and this must be greater than equal to. In fact, must be 

strictly greater than 0, this is strictly greater than 0. And this implies this previous 

inequality holds if and only if the entropy of h t p t plus p t square by 2 into p t minus 1 

expected value of h t p t minus 1 h dot t is less than equal to 0 ok. 

So, that is what we have to show and now that we see this nice entropy term here, this 

one here ok. It is time to bring in the logs of all of you. Let us introduce a slightly more a 

heavy notation. So, let so, remember that h t h and recall. So, recall that this h t that we 

using here. This h t was given by the conditional expectation of g of Y t given X yeah 

that is what h t was and right. So, this is a function of X basically. 
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So, we will now use the slightly heavier notation. Let me call this h t of x ok. So, that I 

see this dependence on X explicitly it depends on t and it is a function which depends on 

t and then it depends on X. Then with where X is the Gaussian random variable here, X 

is normal 0, 1. Then log-Sobolev inequality implies; what would be log-Sobolev 

inequality? 

It says that expected value of h t X sorry the entropy of h t X to the power p t f square 

minus the gradient of the gradient of this guy. So, what is this function? This is d by so, 

so we are looking at h t X to the power p t by 2. What is its derivative with respect to X? 

It is p t by 2 into h t X to the power p t by 2 minus 1 into h t X prime. So, this is the 

derivative with respect to the argument whole square this is log-Sobolev inequality and 

this is the inequality we want to show. 

So, let us number this guy. Let us call this hash. Thus hash is equivalent not equivalent 

then hash follows from log-Sobolev inequality, if so, we will add and subtract this term. 

So, this term must equal this term ok. So, this plus this should be 0, if minus expected 

value of. So, we will take this out. p t square by 4 h t X p t minus 2 h t prime X whole 

square equals to this term now p t square by 2 p t minus 1 expected value of h t p t minus 

1. I am sorry, h t X t minus 1 h dot t X. 
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So, if you show these two are equal then this will follow from log-Sobolev inequality. 

And in fact, the opposite implication the fact that log-Sobolev inequality follows from 

hypercontractivity also can be shown similarly by somehow using a t for which this 

function becomes your required function ok. So, we will not discuss that part. We will 

just talk about this part of the implication ok. 

So, how do we show this now? This is what it has come down to. So, this holds if and 

only if sorry log-Sobolev inequality at a factor of I think there is a factor of 2 that I have 

to bring in. It is my factor rho right. This is the log-Sobolev inequality. So, this guy here 

will be just by 2 ok. So, this holds if and only if this guy here expected value of h t X to 

the power p t minus 1 h d by dt of h t X is exactly equal to minus 2 p t minus 1. 

Expected value of ok; that is what this formula is what you have to show ok yeah. So, 

that is what you have to show. Now, in showing this formula we will use a little bit of 

heavy machinery ok. So, till now I think this was an elementary calculation and the big 

observation here is that these two quantities are the same and once we show that we are 

done our proof is complete. 

So, to show this we develop we recall some basic concepts from the from continuous 

time Markov chains ok. So, we will call this we will number this inequality. This is this 

identity, this is 1, for us we will show this ok. 
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So, a Markov process can be described by its maybe we describe only in the context of 

the process that we work with. So, for us this Y t is given by e to the power minus t X 

plus 1 minus e to the power minus 2 t Z, where Z is the Gaussian noise and X can be any 

random variable we start with a Gaussian X, but in general we can start with any other X 

tilde ok. This is the process we are looking for looking at. 

So in fact, this process can be viewed, it can be viewed as follows. So, consider this 

random variable Y t and apply look at Y t 1. Consider Y t 1 and let Y prime be given by 

e to the power minus t 2 Y t 1 plus minus t 2. Let us call it Z prime which is an 

independent Gaussian noise independent of everything else in the past. So, this becomes 

e to the power minus t 2 e to the power minus t 1 X plus 1 minus e to the power minus 2 

t 1 Z plus square root 1 minus e to the power minus 2 t 2 Z prime. 

And this is equal to e to the power minus t 1 plus t 2 X plus e to the power minus t 2 into 

root 1 minus 2 t 1 Z plus root 1 minus e to the power minus 2 t 2 Z prime. So, if you look 

at this guy here, this is again a 0 mean Gaussian random variable here with variance. So, 

its variance is given by let us call this guy Z prime. 

So, variance of Z prime prime equals to expected value of Z prime prime square which is 

just the sum of these two variants because these two are independent. So, its e to the 

power minus 2 t 2 into 1 minus e to the power minus 2 t 1 plus 1 minus e to the power 



minus 2 t 2; so, that is 1 minus e to the power minus 2 t 1 plus t 2 ok that is the variance 

of Z prime prime. This whole thing is what we calling. 
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So, essentially I can view this random variable here as this is equal to e to the so, Y 

which is Y prime is equal to e to the power minus t 1 plus t 2 X plus square root 1 minus 

2 t 1 plus t 2. And then there is a random variable which is independent of X and is 

normal 0, its Gaussian 0, 1 ok. Thus Y prime exactly is equal to has the same distribution 

as Y t 1 t 2 t 1 plus t 2. 

So, this process actually if you can from this you can sort of convince yourself this is just 

some quick heuristic calculation that. This process is a Markov process and therefore, it 

has it has a semi group linear operator associated with it which is given by the following. 

Let W t, this name is not important that I will just define this operator. 

W t of f is of x is defined as the conditional expectation when you run through this 

Markov chain of f given X equal to x and this operator captures this operator W 2 ok, so, 

this operator W 2. W 2 is a mapping from all I think functions with finite expectation to 

gain functions with finite expectations alright. 

So, this W 2 actually captures the evolution of the Markov chain and in fact, there is 

another operator that one can associate with the Markov chain. It is the generator or the 



let us say the some* called the infinite decimal generator associated with W t. Let us 

denote it by L is given by. 

So, this guy L again acts on the same functions is given by if you take W t of a function 

and you take its derivative then that is equal to almost surely equal to W t of L of f ok 

which is also the same as L of W t f. There is an operator which will satisfy this equation 

and that is this infinite decimal operator ok. 

Actually a better definition of this L of f is the following. L of f x equals to is defined as 

so, I will define it for every x, limit t going to 0 d by dt of W t of f x ok. So, this guy this 

is maybe a better definition. This can also be treated as a definition. The operator for L 

should be L and W t are related to this equation this some* called Kolmogorovs 

equation, but perhaps this is a better definition ok. 

So, you can associate this generator matrix with it right. Its telling you how the 

distribution is changing per time roughly that is what it tells you, ok. Now, this operator 

has some very nice properties ok so. Firstly, we can firstly, we can find this operator 

associated with our own continuous time Markov chain. 
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So, for us for our Markov chain, let us try to compute this derivative. W t of f(x) equal to 

conditional expectation of f of Y t given X equals to x, which is equal to expected value 

of f of e to the power minus t x plus square root 1 minus 2 t Z and that is. So, that is the 



just W of x and therefore, d by dt of W t f x equals to. So, you can take this derivative 

inside, so, first you will get this x part. 

So, it is expected value of f prime to the power minus t x plus square root 1 minus 2 t Z 

and then the derivative of this part with respect to t. So, that is given by e to the power 

minus t x plus; what is the derivative of this part that is e to the power minus 2 t x by 

square root 1 minus e to the power minus 2 t x yeah so, minus minus cancel. So, it 

becomes plus * Z ok that is what we get. So, this is exactly equal to e to the power minus 

t x expected value of f prime e to the power minus t x plus square root 1 minus Z. 
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Plus e to the power minus 2 t by square root 1 minus 2 t expected value of Z f prime e to 

the power minus t x plus ok. So, taking the limit t going to 0, actually t goes from 0 from 

the positive side of this limit. So, this one remains as so, this guy as t goes to 0, this 

becomes x expected value of f prime x plus; this again goes to 1 here yeah. Actually 

before taking the limit we will simplify the second term now. So, the second term is 

actually quite interesting. 



(Refer Slide Time: 47:31) 

 

So, if you are given any function let us say h and you look at this guy here this is exactly 

equal to. So, we will use an integration by part formula here. So, this is Gaussian density 

minus 1 by root 2 pi z h z e to the power minus z square by 2 dz. Let us use integration 

by part. So, this is equal to 1 by root 2 pi minus infinity to infinity. 

If you take the if you take the integral of this function z e to the power minus z square by 

2 then that is just again e to the power minus z square by 2. So, you get this and minus 

right you get minus of this and then plus h prime z e to the power minus x square by 2 by 

root 2 pi dz. 

Now, turns out that we can restrict our attention to those functions for which so, we have 

this function f here, an arbitrary function. Turns out by some approximation arguments it 

is enough to restrict our attention to these functions f which are compactly supported and 

continuously differentiable. So, they are in fact, we can assume that this guy goes to 0 as 

z goes to infinity ok. 

So, this is 0 and what you are left here is expected value of h prime of Z ok. So, we will 

apply this formula here. When you take derivative of this with respect to Z now this 

factor comes out. Therefore, this guy here t by dt W t of f x we already saw the first term 

that was e to the power minus t x expected value of f prime e to the power minus t x plus 

this. And now the second term is e to the power minus 2 t expected value of f prime 

prime. 
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So, when the limit as t goes to 0, this thing goes to x expected value of f prime x. So, 

which is just f prime x and similarly the second term goes to I missed a minus sign 

somewhere ok, there is a minus sign here right. So, this minus sign is here plus f prime 

prime x ok. So, this gives us the infinitesimal generator matrix for our Markov chain of 

interest, this particular operator. 

And in fact, this Kolmogorov equation that I wrote here it is quite useful. It tells you the 

derivative of this function is actually the L of that derivative L of that function and the 

reason and I have not derived this formula. You can explicitly verify this formula by the 

way for our case, but this holds in generality the this matrix must satisfy this. 

It is easy to show this. How? It is easy to show this formula by just using the fact that by 

using the fact that this W t of f is this W t is semi group. So, W t plus s equal to W t f and 

then W s applied to it using that you can establish this formula, but I am not deriving that 

formula. And if you are; if you really are interested for the specific distribution for our 

specific Markov chain you can verify this formula the derivative of W t f is L W t of f. 

Now, the reason this formula is important for us is because in our calculation we see this 

guy here d by dt of h t of x where h t of x if you remember was a similar conditional 

expectation. This is basically W t of g of x. So, this is the derivative of W t of g of x and 

that must be L of t of x ok. 



So, I will name this guy. This is Kolmogorov equation. So, for our application, we 

consider this guy here. So, that is expected value of W t of g of X to the power p t minus 

1 * d by d t of W t of g of X that is what we look at, which is equal to now we apply this 

Kolmogorov equation. So, this guy here is p t minus 1 L of W t of g X because this 

derivative is L of W t of g X ok. 
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And this is by once again you can just verify it by differentiating ok. So, now what we 

have shown this. Now, it turns out that for this particular Markov chain now this is the 

next thing we will need about our particular Markov chain frame expected value of f X L 

g X for our Markov chain is equal to minus expected value of actually first thing. This is 

true for any Markov chain when X is the stationary measure. 

Note that X is the stationary measure for Markov chain because if you start with 

Gaussian you the distribution always remains to be the same Gaussian ok and for that we 

must have this, it is true. So, this operator L is so called self adjoint. And in fact, this is 

equal to expected value of f prime X g prime X ok that is the claim. 

We will show this, but using this formula above in this formula with using this formula. 

This expected value here W t of g X to the power p t minus 1 d by d t W t g X. This is 

the quantity we were looking at here and this is this we now have just take derivative of 

two things; derivative of W t g X and derivative here. So, that derivative is that is 

derivative with respect to X. 



So, first we take this derivative with respect to X that becomes p t minus 1 * the 

derivative of this guy with respect to X. So, W t of g X to the power p t minus 2 * 

derivative of this with respect to X will which will bring back yeah. Remember we are 

not using this notation h t X for this. So, this notation is more convenient sorry, we have 

to switch between these notations so many * and so, its derivative h t prime X. 

This is good yeah and then also the derivative of this guy this is just h t. So, derivative of 

this is again ht. So, you get this. But this is exactly what we wanted to show ok. So, we 

have shown this and you can go back and check. Here this is same as our 1 ok. 
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So, which is the same as 1. So, it only remains to establish the claim. Proof of claim, this 

is true for any f g for our particular generator matrix for our particular infinite decimal 

generator here. So, first thing we will show is that this is equal to this ok that is the first 

thing we will show. 

First expected value of f X L g X equals to expected value of L f X g X. So, how do we 

prove this? Proof: Expected value of f X, this is for any f g not the particular g function 

that we have about W t of some function g X is equal to expected value of f X expected 

value of g Y t given X, which is also equal to expected value of f X g Y t. 

But note that since these random variables are exchangeable the distribution of X, Y t in 

this case is the same as distribution of Y t X. In general this will be true for a reversible 



Markov chain. So, there we can write it as f of Y t g X ok. You can this symmetry we 

have mentioned earlier also, but then this becomes expected value of W t f X g X and so, 

now, what we do is we take derivative with respect to t and take limit t going to 0. This 

derivative I am taking it inside freely and that assumes some regularity conditions on this 

f and g something like they are compact and continuously differentiable and all that is 

true here. 

So, we can take it inside no problem. So, this guy then becomes equal to limit t going to 

0. And In fact, again this limit can also be taken inside and this implies expected value of 

f X L g X is equal to expected value of L f X g X, ok. 
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So, this function is symmetric this way ok. So, then 2nd property: Expected value of L of 

f X is equal to expected value of 1 * L of f X. This first property did not really use, the 

only thing we use was the reversibility here does not did not use anything else. Induce 

the Gaussian assumption. This is exactly equal to from the previous property L of 1 * f X 

and now we use the Gaussian property. 

This L of 1 for is basically the derivative of inverse derivative of constant and. So, this is 

0, 0 for our Markov chain ok because L X is given by this operator here. We have both f 

prime and f prime prime will be 0. So, this is 0 and therefore, this is 0. 



So, for our Markov chain L of any f X is now the expected value is 0. So, L of X is a 0 

mean random variable ok. And now the 3rd step is to apply this property to. So, we 

consider expect 0 which is expected value of L of f X g X maybe better way to write this. 

Product function f g x, but this let us write what is L of f g X that is minus X f g prime 

plus f prime g X plus f g prime prime. 

This is equal to minus expected value of X f X g prime X plus X f prime X gx ok plus 

expected value of f prime prime X g prime X plus f prime X g prime prime X sorry f 

prime X g X f X g prime prime X plus 2 f prime X g prime X ok. 
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So, this is exactly equal to you can simplify this collect the terms with g and collect the 

term with f. So, this is minus expected value of its not to minus expected value of if you 

collect these terms; f X L of g X plus expected value of g X L of f X plus 2 * expected 

value of f prime X g prime x, but these two are equal we have already seen. This in step 

one above. 

So, this is 2 * expected value of f X L g X plus expected value of f prime X g prime X ok 

and this is 0. Let us do a step here. So, this guy here is equal to minus this ok. So, that 

that completes the proof. So, this implies though the claim holds. So, expected value of f 

X L g X is equal to minus expected value of f prime X g prime X ok. So, we worked 

hard for this last differential inequality, but we are there. 



So, many of these steps are very general and this proof is very sophisticated, it just looks 

like some manipulations, but the way this the things that we have been differentiating in 

this differential equation that we wrote we exploit a lot this structure in the distribution, 

the Gaussian distribution. 

We realize that the we saw our distribution as a process ok although we wanted to work 

with a single t, but we saw it as a process which evolves like this. In fact, this process is a 

name this is the OU process and this OU process has is it is a Markov process and it has 

a associated with this process is this semi group operator W t.  

This family this semi group operator W t and with this Markov process we have this nice 

infinite decimal generator L f X given by f minus X f prime X plus f prime prime X and 

an any such infinite decimal generator and the semi group must satisfy this Kolmogorov 

equation. 

So, once we have this relation and once we have this formula we have this nice formula. 

This is only true for Gaussian case for this particular OU process. We have this nice 

formula for the OU process ok for f X L g X and basically we use this formula this is I 

think called the integration by parts formula. And we use this one here to get this 

equality. And essentially it is this integration by part formula which establishes the 

equivalence of log-Sobolev inequality and hypercontractivity. 

Not note that we have only shown that log-Sobolev inequality implies 

hypercontractivity. Now, for the other way round we have to have any arbitrary function 

any arbitrary function here and we can start with our favourite function f X by if we can 

start with our favourite function f and if will let us, but we should be able to express that 

function f in this form in this particular form. And that can be done that can always be 

done. 

I think if you set this. I think we can do that by even taking this limit t to be t 2 equal to 

0. I think maybe we will be able to do that right, but that is a small technical part no big 

deal about that part. The fact that, so, the fact that log-Sobolev inequality implies this is 

the critical part of the proof and yeah. 

So, to summarize we have seen that the Gaussian log-Sobolev inequality is also 

equivalent to Gaussian hypercontractivity. By the way which also gives you the Gaussian 



strong data processing inequality and all the other implications that we saw for 

hypercontractivity. So, log-Sobolev inequality for Gaussian case is indeed very powerful. 

In fact, many of the results that we saw for the Gaussian case not the stamps inequality, 

but the equivalence between hypercontractivity and log-Sobolev inequality also hold for 

the binary symmetric case. So, instead of this Gaussian if you had so, here we were 

adding this Gaussian noise that is how that is how our correlation was, but you can have 

a binary symmetric channel where you have some X and you flip it with some 

probability. 

Let us say you have a uniform by 0, 1 valued random variable X and you flip that bit 

with some probability and symmetrically for both 0 and 1 that is a binary symmetric 

channel. For that also we can establish an equivalence between Gaussian an equivalence 

between log-Sobolev inequality and hypercontractivity ok. 

This concludes this lecture. And from the next lecture onwards I think Auditya, actually 

no. So, I will see you in the next lecture where I will talk to you about some more 

inequalities and I will describe the I will further discuss the connection of log-Sobolev 

inequalities to concentration bounds. And I will also discuss the I will revisit the 

transportation information inequalities. See you in the next lecture. 


