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Finally, I will conclude with a slightly different characterization of hypercontractivity 

this constant sp X Y and I will call this is an information theoretic characterization due to 

Chandra Nair. So, I will call this Chandra Nair’s information theoretic characterization. I 

would like to remark that an earlier some of these results were already available in earlier 

work of Ahlswede and Gacs from the 70s and this is a recent paper from 2000 maybe 15 

or so, I cannot remember the year. It was it is a conference paper. 

So, essentially what we will do is we will connect hyper contractive into so called strong 

data processing constants in information theory. 
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So, suppose you have this input distribution P X and a channel w then the strong data 

processing constant associated with this P X and W well. 
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We can just write it as the joint distribution P XY is defined as max overall input 

distribution Q X that are absolutely continuous with respect to P X the divergence 

between W PX and W sorry, W Q X and W PX divided by the divergence between Q X 

and P X ok; that is the strong data processing constant here. 



And, similarly, we can define the strong data processing constant for mutual information 

as sorry, about this ok as the maximum over all distributions P UXY such that U is such 

that P UXY has a Markov relation. So, U can be formed only by looking at X is equal to 

P U given X P X Y of mutual information between U and Y divided by mutual 

information between U and X. 

So, we know that all these coefficients by standard data processing inequalities that these 

coefficients are less than equal to 1 and when this coefficient is strictly less than 1, we 

call it a strong data crossing inequality, ok. So, it was shown by Ahlswede and Gacs. 

Sorry, I spelled it wrong. This is by this see the Gacs that this strong data processing 

constant for KL divergence is actually equal to limit P going to infinity s P of not X Y, 

but Y X ok. 

Yeah, There is a there is an asymmetric treatment of X and Y here and this is the right 

order you have to take maybe, yeah. So, so that is what we defined this s P in a particular 

order. So, that is the order in which this comes in here. In fact, here also it is not 

symmetric in X Y. This first coordinate is treated differently from the second one first is 

the input and second is the output ok. So, that is what it was shown that is quite 

interesting. 

So, this strong data processing constant gets connected to hypercontractivity constant. 
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And, later it was shown by I think Venkat Anantharam maybe I mean Gohari and Sudeep 

Kamath Chandra Nair is very recent about 2013 or so; that this guy itself is also equal to 

limit p going to infinity s p Y X ok. So, these two strong data processing constants 

coincide, ok.  

And what we will show now is a much more refined relation between strong data 

processing inequalities and hypercontractivity which will recover all of these results and 

this is the result due to Chandana. So, what is that result I will just call it a theorem. So, 

before I state theorem I need some more quantities to be defined now. 

So, define kappa for K kappa for KL divergence kappa P let us say Y X kappa P X, Y, it 

makes sense to think the way we define hypercontractivity, it makes sense to think of the 

first coordinate as input as the basic random variable here there and in this definition it 

makes sense to think of the other one as the input and that is why we have this sort of an 

switch in the order ok. 

So, kappa X, Y is defined as max over all distributions Q XY that have density with 

respect to P XY of divergence between P Y and Q Y divided by P * divergence between 

P XY Q XY + - P - 1 into divergence between sorry, P X and Q X and P X, ok. The out 

the input output this is also equal to max over Q XY absolutely with respect to P XY the 

divergence between Q Y and P Y just like the data processing inequality data processing 

strong data processing coefficient. 

But, there is an additional term which comes and that additional term is p into this - this. 

So, that is the divergence between Q XY and Q X P Y given X ok that comes in. 
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Similarly, we can define mu; mu for mutual information P XY as max over all joint 

distribution P UXY not necessarily the ones having the Markov relation of the output 

mutual information divided by p * joint mutual information - p - 1 * I U X ok this is also 

equal to max or P UXY by this + p into this - this which is just the conditional mutual 

information, ok. 

So, we introduce these two new quantities kappa P XY and mu P XY and if you take 

limit P going to infinity then look at this expression here; the only way this expression. 

So, if this guy is positive ok this is just a rough argument then as p goes to infinity, then 

this guy goes to 0. And, therefore, only way that you can have something more than 0 is 

when this is set to as P goes to infinity this also this thing also remains 0 and that means, 

that you want P Y given X to be same as Q Y given X. 

Using this what we can also see I just roughly outline the proof that this guy in the limit 

as P goes to infinity is exactly the same as strong data processing in equal constant for 

KL divergence for P XY. And similarly, you take limit p going to infinity and look at 

this quantity once again the only way to get positive constant is to have this as 0 and this 

will happen. 

If this is 0 then the then you can only look at those channels for which this Markov 

condition holds and then it coincides with the strong data processing constant for mutual 



information ok. So, this is true. These in the limit as p goes to infinity, these quantities 

coincide with the strong data processing coefficient. 
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So, the main result that we will present is for each p s p of Y X is equal to kappa p of X 

Y which is also equal to mu p of X ok that is the that is the main result that we have. So, 

proof is a little bit involved I will just give you the main idea. So, what we will show is 

that s p of Y; X is less than equal to kappa p of X; Y is less than equal to mu p of X; Y 

ok. 

So, let us show this part first I am sorry and this itself is less than equal to s P of Y; X. 

So, for this part this green part this p inequality here. Let r equal to s p of sorry, but theta 

be smaller than s p of Y; X ok then there exists functions f and g such that expected 

value of f Y g X this guy exceeds g p prime and f theta p ok because it is smaller than the 

smallest possible. So, this must exceed. 

Note that without loss of generality we can assume that both these norms are one because 

we can divide by these norms and define new function and this inequality must hold for 

that function. 
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So, without loss of generality assume that this norm = this norm = 1 and in this case 

when we assume that we must have f Y g X the expected value must exceed 1, ok. We 

will this is this will show up as a constant in the calculation we will define it as C, ok. 

So, now we define our measure change. So, we will use this functions to construct this 

measure Q X; Y that is used in kappa. So, define maybe before that let us prepare a little 

bit for this definition. So, consider functions f bar y given by f y to the power theta p and 

g bar x given by g x to the power p prime, ok. 

And, what we know is that expected value over Y of f bar Y = expected value over X of 

g bar X = 1. So, this is by the assumptions that the norms are 1 and that expected value 

of f bar to the power 1 by theta p * g bar X * g bar to the power 1/ p prime Y this is X is 

equal to C which exceeds 1 ok. 

So, we use these functions to define our measure change argument. So, define we would 

define a new measure Q XY as so, we will define it is density. The density that Q has 

with respect to P is given by f bar 1 by theta p Y g bar 1 by p prime of X and we need to 

divide by C ok. So, that it normalizes to 1, ok. So, this is a definition of Q now. 
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Now, let us compute all the quantities involved for this Q. So, let us say D let us compute 

the denominator first of denominator of kappa for this Q first. So, we have p * D Q XY P 

XY + - p - 1 * D Q X P X this is equal to P * expected value log of this guy. So, log f Y f 

bar Y to the by theta p that is the first term here + beta P by P prime expected value log g 

bar X and then p log C, ok. 

This is the expected value of log of this guy that is what divergence and then this 

expectation is with respect to p of course, when we do not write anything the expectation 

with respect to P that is the bigger probability measure. And, now, - p - 1 * expected 

value of log d Q X by d P X, ok. 

So, in fact, this guy here this is equal to 1 by theta expected value of log f bar Y + p - 1 

into expected value of log this g bar X by d Q X by P X, So, the these expectations have 

to be carefully taken all these expectations are with respect to Q XY QXY and this one is 

again Q X because we did not include the extra factor here. So, again Q XY Q XY ok all 

the expectations are with respect to Q XY - p log C that is what we have and what we. 
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So, this C is greater than 1 therefore, this guy is less than equal to 0. So, since C is 

greater than 1. So, we can just drop this the great this is something positive we are 

subtracting that part is this one log f bar Y log f bar Y + p - 1. Now, let us look at this 

guy here. So, this one is expected value over Q XY log of g bar X by the Radon – 

Nikodym Q derivative of Q X with respect to P X X. 

If we take this expectation inside the log by Jensen’s inequality it will only increase the 

thing, ok. We get 1 by theta log f bar Y + p - 1 log of expected value with respect to Q 

XY or just Q X actually it depends only on the marginal. So, let us just say Q X of g bar 

X by d Q X by d P XX. 

But, this expectation is can be written as. So, now, let us look at just this part here just 

this part here. This can be written as expected value over P X of d Q X by d P X into g 

bar divided by d Q X by d P X ok if this you can do a d P X Q X by P X is a positive 

orbital. So, this cancels. So, this is only expected value over P X of g bar X and what do 

we know about that? Well, what we know about that part is that the way we have 

normalized that part this is 1. So, this thing is 1 and therefore, this is log of 1 which is 0. 
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So, this is less than equal to or this is exactly equal to 1 by theta expected value of Q XY 

log f bar Y and just like this calculation we can again multiply and divide by d Q Y by P 

Y the log likelihood ratio. Sorry, the Radon-Nikodym derivative for Q Y with respect to 

P Y the likelihood ratio we can do that. 

So, what we get is one by theta expected value of Q Y log d Q Y by d P Y ok, but this 

quantity again by Jensen’s inequality this is just the same calculations here and the 



because of the fact that expected value of f bar is 1 under P. This is this is 0 + 1 by theta 

and we can recognize the term here as a divergence between Q Y and P Y. 

So, if you look at this is the numerator of the expression of kappa, this is less than equal 

to 1 by theta * the 1 by theta * the 1 by theta * the that is the denominator this is the 

numerator. So, we get that D Q Y P Y by P into D Q XY P XY - p - 1 D Q X P X is 

greater than equal to theta which implies that kappa P X Y is greater than equal to theta. 

And since this holds for every theta less than S p Y; X we must have kappa P X; Y 

greater than equal to S p Y; X, ok. 

This is almost complete proof some infinite we have treated some sup as max and so on 

and so forth. In fact, we used max in a definition of kappa P should have used sup if you 

wanted to be more careful, ok. So, we have shown this inequality. Now, let us show the 

other inequality which is this one here. So, the fact that kappa p X; Y is less than equal to 

mu p X; Y. 
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Again I am showing this because these are very interesting counts tell you about how 

divergence behave and how divergence how divergences can be related to mutual 

information. This is the next thing we will show, ok and this is a very interesting proof, it 

is a nice perturbation argument, ok. 



So, suppose because you were writing kappa as a max although it is a sup. So, this is a 

little bit informal, but that is fine suppose kappa p X; Y is attained by a particular 

distribution Q, suppose this is equal to this we will use this distribution Q X Y to define 

our random variable u which is used in the definition of mu X Y mu p X Y. So, how do 

we define that? 

So, consider the distribution before that it is a technical statement I am putting it here 

without loss of generality, we may assume that this guy here is less than equal to some 

large constant M almost surely with probability 1, you can assume that it is bounded ok 

this boundedness will be used in our proof, ok. So, let us assume that. 

Now, with this assumption we can define this define this distribution P UXY which 

needs to have the marginal of X; Y corresponding to P X; Y as follows. So, P U so, U 

takes the value 0 and 1 with P U of 0 is epsilon and P U of 1 is 1 - epsilon, ok. 
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And, where this epsilon is less than 1 by M. So, this is the first part of the definition uh. 

Second part of the definition is P XY given the fact that u equal to 0 is the same as Q XY 

same as Q XY, then P XY given U = 1 = P XY - epsilon Q XY by 1 - epsilon. So, what 

does it mean? That is this guy has a density with respect to P XY and that density is 

given by 1 - 1 by 1 - epsilon into 1 - epsilon * density of Q XY with B XY. And, since 

this density is less than equal to M, this thing is always less than 1 and therefore, this is a 



valid density and you can also show that it integrates to one easily ok. So, that is the 

second distribution ok. 

Now, so, this is a distribution that we have defined. Now, let us define this function for a 

lambda for let us say theta again theta less than kappa p XY define g of epsilon as mutual 

information. So, this U depends on epsilon. So, I will call it U epsilon, ok. So, it is the 

mutual information between U epsilon and Y - theta * the denominator that comes up in 

the definition of mu. So, I mu epsilon XY - p - 1 * I mu epsilon U epsilon X, ok. 

So, one thing you can check is that g of 0, so, what happens when you have 0? Then 

under 0 this coincides this distribution just has one value which is P XY and therefore, 

the mutual information is just U is a constant actually. So, this is just 0 0 0. So, 

everything is 0 here. So, this is 0. What about now the derivative of this guy around 

epsilon? 
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In fact, we can comment on its derivative around epsilon in the limit as epsilon goes to 0. 

And it turns out that this is an observation I think it is I it is Chandra Nair paper, but I 

think Chandra Nair it is to attributes this to Guhari and maybe it goes back further. So, if 

you take at this take this limit this guy here the all these all this mutual information they 

go back to divergences of the two perturbations used in constructing this U E ok.  



So, these divergences are actually this limiting values for this mutual information and 

this you can actually validate very easily by differentiating and taking the limit. So, all 

the mutual information becomes the become the divergence between corresponding 

distributions used in defining this ok.  

And since we have assumed that so, since we have assumed that theta is less than kappa 

and this ratio by the way is kappa therefore, if you take this part out which is the non-

negative part then you get some non-negative part into kappa - theta which must be 

strictly greater than 0, ok. 

So, here is a function which starts at 0 and it is derivative is strictly greater than 0 and 0 

therefore, there exist some epsilon prime greater than 0 such that g of epsilon prime is 

strictly greater than 0 which in turn implies that. So, this is greater than 0 what does it 

mean to have this greater than 0 which means this by P XY - p - 1 I U epsilon Y is 

greater than theta which in turn implies that mu X; Y is greater than theta. 

Now, as before we have shown that for any theta that is less than, so, we choose some 

arbitrary theta here for any theta where is my theta chosen for any theta less than kappa P 

X; Y mu p X; Y must exceed theta thus mu p X; Y must exceed kappa p X; Y ok. So, 

that this completes this completes the second part ok this is this is the second part and 

both these parts are sort of self contained analytics, so, I could present them  

However, this last part requires a lot of ideas from information theory. In fact, so, this 

that is why I am calling this as sketch. 
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So, for this last part here uses ideas from multi terminal information theory actually. So, 

I will just tell you how we do it. We use the fact that this s p tends arises. First we use 

that mu P of X Y is actually less than equal to mu P of X n Y n ok that is what that is that 

is true because X and X and Y has more options. And then we show that mu p of X n Y n 

actually is less than equal to s P of Y X for n sufficiently large or in the limit as n goes to 

infinity and that completes the proof. 

How do we show this last part? The goal is to use this distribution is auxiliary U which 

will be defined for remember that there will be this U we will have a joint distribution P 

U X n Y n and we want to use that distribution to define these functions which satisfy to 

define these functions to define these functions so that for those functions this inequality 

that the hypercontractivity inequality is violated. This holds in the opposite direction ok. 

How do we find these functions? Well we actually construct functions as indicator 

functions of sets, ok. And those sets so, we have to actually construct sets and 

constructing such sets is a tyπcal activity is a standard activity, a standard problem one 

needs to solve a multi terminal information theory when we derive some coding theorem. 

So, we use some tyπcality arguments so called tyπcality arguments to define those sets. 

One more observation here is that while for a given X Y s p Y X can be attained by must 

be attained by arbitrary functions, but s P X and Y n for sufficiently large n can almost 

be attained by almost be attained by sets, ok. So, there is actually no loss in generality in 



using these sets. In fact, we show that this upper bound holds therefore, we show that for 

large enough n it suffices to consider it suffices to achieve s p Y and X n, it suffices to 

consider indicator functions of sets subsets of X n and Y n rather than this arbitrary 

functions ok. 

Yeah, I went over this part quite quickly, but this one requires a lot more effort if you do 

not know these ideas from information theory, but on the other hand if you know these 

ideas this is a very elegant proof which uses some standard construction from 

information theory to some tyπcality construction to show this inequality and exploits the 

tensorization property of s p Y X, ok. So, this is the proof. 
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So, in summary what we have seen in this lecture is, we have defined this we have 

started studying this Markov Kernel the conditional expectation. 
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And, we have checked that this Markov Kernel is actually a contraction for any LP norm. 
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And, then we showed that when we define this notion of hypercontractivity when can 

Markov Kernel be more than a contraction when can this norm on the right side be less 

than p. 
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And, so, we define this quantity s p X Y rather than finding when or what is this s p X Y 

for a particular distribution. What we have been doing is trying to understand this 

question itself by expressing various equivalent forms we saw that there is an inner 

product form which strengthens holder inequality. 
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Then we saw that this s p X; Y tensorizes. So, this is equal to s p X and Y and for 

independent and identically distributed X n Y n X i Y i. 
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And, we also saw the connection of this hypercontractivity in fact, equivalence of this 

with the strong data processing inequality for any divergences. 
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And, finally, we presented this is that equivalence showing this for all Q that that have 

density with respect to P is equivalent to P Q hypercontractivity. 
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And, finally, we saw we saw this alternative characterization in terms of divergence and 

mutual information s p XY is equal to this kappa p XY is equal to mu p XY. By the way 

once we establish this equality this identity here, then by taking limit p going to infinity 

both these results follow, ok. Clearly the strong data processing constant is equal to is 

equal to s p p going to infinity and again the both the strong data processing inequality 

constants are equal to this and therefore, both of them must also be equal, ok. 

So, this concludes this lecture. As I said we have not proved anything any particular 

bound on s p X Y or s p Y X for any distribution. We have just shown equivalent form of 

this hypercontractivity requirement. In the next lecture, we will try we will study 

hypercontractivity for Gaussian distribution. 

So, called Gaussian hypercontractivity which is first shown by Gacs and remarkably 

what we will show is that Gaussian hypercontractivity is exactly equivalent to Gaussian 

log Sobolev inequality. So, this amazing phenomenon of hypercontractivity is also 

equivalent to for the Gaussian cases is also equivalent to this super inequality called the 

log Sobolev Gaussian log Sobolev inequality which we earlier saw was equivalent to 

stams in. 


