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In the last two lectures, we saw how log Sobolev inequality is connected to a classic 

information theoretic inequality called the Sturm's inequality. This was the connection 

between Gaussian log Sobolev inequality and Sturm's inequality. In the next two 

lectures, we will see the connection of Gaussian log Sobolev inequality with another 

very interesting notion namely that of Gaussian hyper contractivity. 

In order to talk about hypercontractivity, I should first describe contractivity in particular 

I should first talk about contraction. So, this is a quick review. I will not spend too much 

time on this and I will not be very formal. So, roughly speaking a mapπng f on a metric 

space is a contraction if it shrinks distances. So, if the distance between f(x) and f of y is 

less than equal to distance between x and y, then f will be a contraction ok. 

So, this is what a contraction is because it shrinks distances, ok. And in fact, if this 

underlying if this underlying metric is; if this underlying space is not only a metric space, 

but it has a norm then it suffices to talk about the norm of f(x). By the way this distance 



can be some other distance if you want we can have something d prime instead of d, 

because f will take you to a different metric space; similarly this is a different norm, ok. 

Suppose this is less than equal to norm x then for all x then implies f is a contraction. So, 

that is what a contraction is, ok. And in this lecture we will be interested in a very 

specific mapπng namely the so called Markov Kernel. 
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And what we, let us begin by showing that the Markov kernel is a contraction. So, before 

we talk about hyper contractivity, let us talk about contractivity of the Markov Kernel, 

ok. So, what is the Markov Kernel? 

So, consider two random variables X and Y with joint distribution P XY. Let f be a 

mapπng from x that is why this x takes values to R, ok. So, x f is a real value of mapπng. 

I will put some rather than putting constraints on f up front I will put this constraints as 

we move forward when we require them. So, we are given this mapπng f using this we 

can describe a mapπng on Y as follows. 

So, define g which is now a mapπng from y to R as g of y = the conditional expectation 

of f X given Y; I am I will abuse the notation and write Y equal to y. So, this is basically 

this is a random variable and this is that, this is the realization of that random variable ok 

that is my g of y the conditional expectation, ok. 



So, this operator we will use W to denote; denote by W the channel P Y given X maybe 

X given Y ok, and with an abuse of notation we denote the operator that takes that 

denote the operator that converts f to g by W, ok. So this, so, what we have seen here is 

basically g = W of f ok. So, that is that is the mapπng. 

So, this operator W can be thought of as mark is called Markov kernel ok. And, we will 

show that this Markov kernel is actually a contraction. So, to talk about contraction we 

should first think of a basic norm for random variables. So, let us use. 
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So, that is the claim; claim W is a contraction for we will use L p norm ok; L p norm. So, 

what is the L p norm? So, how do we prove this? Firstly, what is the claim? So, claim is 

follows that is if you look at the random variable g of Y, look at its L p norm. What is the 

L p norm of g of Y? This is the expected value of g of Y to the power p. 

Claim is this guy is less than equal to; so, this is by the way this is norm of W of f is less 

than E that is correct is less than equal to the L p norm of f which is expected value of 

f(x) to the power of p to the power 1 by p, ok that is the claim ok. So, how do we show 

this? Well, the proof is actually not so difficult. The proof is this Jensen’s inequality ok. 

So, the let us see.  

So, the L p norm this L p norm to the power p for this is simply expected value of 

expected value of f(x) given Y to the power p. And, this is less than equal to if we take 



this expectation inside right, this is by this is by Jensen’s inequality actually this is 

sometimes called conditional Jensen’s ok. And now this is as we have seen several times 

this is exactly equal to expected value of X to the power p, right. So, that is the proof. So, 

indeed this is the contraction ok, and right. 
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And, so what we will show is that; in fact, we will see that this inequality can be 

improved can be strengthened for many distributions P XY, ok. So, the fact that this 

inequality holds for all; this inequality here holds for all functions f ok, fact that Markov 

kernel is a contraction. That is a feature of the distribution P XY it depends on the joint 

distribution P XY and the claim here is that it can be strengthened ok. So, that is what 

and this strengthened inequality is called hypercontractivity. 

So, you see that you are in a sense improving Jensen’s whenever you can improve 

Jensen’s you can have very very interesting deep consequences. So now, we will talk 

about the hypercontractivity of the Markov kernel, ok. So, let us bring in a definition. A, 

so this Markov kernel is associated with a joint distribution. So, we will just talk about a 

joint distribution. 

A joint distribution P XY is p, q hypercontractive ok; p, q hypercontractive where q is 

actually smaller can is smaller than or less than or q is less than or equal to p and so, we 

are ruling out p being infinity and 1 ok previous bound also holds for p equal to 1, but we 



are ruling out those things. If this is just for convenience that we are ruling it out, it is not 

so useful if p is equal to 1. 

If you look at the Markov kernel associated with P XY and you take any function f like 

this p is less than equal to this q for all functions f which have finite q-th moment. So, 

this is basically functions f which lie in this space ok. These are the functions which have 

finite q-th moment. So, that is when we will call it p. 

So, why is this stronger than; when can it be stronger than hypercontractivity when q is 

at least smaller than p. So, note that f q is an increasing function of q. Therefore, the 

previous inequality is stronger than contractivity; stronger than contractivity when q is 

smaller than p. And in fact, we would like to find as smaller q as possible. 

So this is a, this is the inequality that we want to prove. And, note that if this inequality 

holds for; if this inequality holds for a q it holds for all q prime greater than that q 

because of this monotonicity; is an increasing I should say non decreasing not increasing 

necessarily increasing ok. So, let us define the best q, ok. 
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So, let s p for this joint distribution it is a function of joint distribution, but it is maybe I 

will just write it as P X s P; P XY is defined as; actually I think this notation is slightly 

better. So, I am viewing it as a function of the random variables, but surface function of 

the joint distribution, but this is for convenience.  



This is how we indicate even sometimes in which information and information theory as 

a function of random variables, but it is a function of the joint distribution. So, we will 

define this guy as the infimum over q by p such that q is smaller than p, q is greater than 

1 and smaller than p and P XY is p, q hypercontractive ok. And the point is that we get 

an interesting more than interesting actually inequality when s p X Y is less than 1 can 

you make it strictly smaller than 1.  

Of course, this is it is already clear that it is less than equal to 1 because any P X Y is 

hype is P P hyper contractive because P P hypercontractivity is just contractivity. And, 

we want to make we want to check if it can be made less than 1, ok, that is 

hypercontractivity. There are many equivalent forms of the same requirement this 

inequality and we will present that, ok. So, let us do that equivalent forms simplification, 

ok.  

So, first we note that W f p is less than equal to f q if and only if expected value of f X g 

Y is less than equal to f, yeah. So, f p prime g q ok for all functions g which have a finite 

q-th moment this function is of y where. So, where this p prime by the way is the holder 

conjugate this. So, you know 1 by p prime + 1 by p = 1, ok. So, that is what p prime is 

ok. So, how do we show this? Proof is easy. 
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This is just Holder’s inequality. Suppose this holds then expected value of f X g Y = 

expected value of W f of Y g Y, because this is the conditional expectation and g when 



you take conditional expectation given by g Y comes out because it is a constant given 

Y, ok. 

And, now we apply Holder’s inequality. So, that gives us W f; ok maybe a small change 

here. So, this will be p prime and this would be q, yeah. So, W f of p and g of p prime, 

right. And now, this is by Holder’s inequality. And now, this is less than equal to f q g p 

prime, ok. 

So, this is an improvement of Holder’s inequality because you have replaced this p-th 

norm by p prime here. You could have applied Holder’s and you would have got p prime 

directly you could have applied it here, but this is smaller than that. So, this is a smaller 

value, so you have improved Holder’s inequality ok. So, this direction is done. 

How about the opposite implication. So, this shows that hypercontractivity implies this 

new form ok; by hypercontractivity of W. 
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And, now for the other direction suppose this inequality holds for all g, then consider f in 

L q X ok; that is what we need to consider here. So, if you look at such an f and we look 

at expected value of W f to the power W f y p the p-th moment this is equal to expected 

value of W f Y times W f Y to the p - 1. So, this is exactly equal to expected value of; 

expected value of f X given Y W f Y p - 1. So, which can be also written as expected 

value of f X times W f Y p - 1. 



And, now we use the other form of hypercontractivity with this being g. And note that 

this is indeed we can view this as g because; note that expected value of W f Y of; so, 

this is to the power p - 1 suppose we did it is it to the power p prime. So, that is p by p - 

1, ok = expected value of W f Y to the power p and that guy here is less than this is the 

contractivity property we saw earlier; f X to the power p and that is less than equal to X 

to the power p. So, we must maybe we should assume this f is in p ok and this is finite. 

This is the assumption here ok. 

Therefore, W f belongs to L p prime Y this was a requirement here by the way. 

Therefore, we can apply Holder’s inequality. 
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So, expected value of we can apply that improvement that we are assuming here W f Y if 

your loss what we are trying to show is this inequality implies this inequality; suppose 

this inequality holds for all function g then this must hold. So, this guy here is less than 

equal to f q and W f p prime, but that is the same as this is f q and this is now W f p 

prime, but what is this? This is exactly equal to this. So, this guy here is W f p to the 

power p ok; looks like W f to the power p - 1 p prime norm of that. 

What is the p prime norm of W f p - 1? We just saw this. This is exactly equal to W f p to 

the power p by p prime ok that is this norm here. So, what we get is this is the same as 

saying W f p to the power p into 1 - by p prime less than f q and since p prime is the 



holder conjugate of p, so, 1 - 1 by p prime is 1 by p. So, this is just 1. So, which is the 

same as saying W f p is less than equal to f q, ok. 

So, this is a standard way of expressing the these norm inequalities in terms of this inner 

products here, ok. So, you may have seen it in function analysis where you show some 

bound holes for all test functions in this class, then the same bound holds for all function; 

if this holds for this then this also holds. Yeah, these kind of tricks are used. And, we 

have chosen g carefully here, but it works out ok. 

So, in other words we see that this particular form of hypercontractivity is form is 

equivalent to this strengthening of this strengthening of Holder’s inequality, ok. 
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The next simplification that we introduce is the familiar tensorization property. So, if you 

want to establish hypercontractivity for product measure it suffices to show 

hypercontractivity for individual coordinates. In particular, remember this quantity s p X; 

Y it was defined as the least value of the ratio q by p such that this joint distribution P 

XY is this is the least of all q greater than exceeding 1, but less than equal to P. And such 

that P XY is p q hypercontractive, ok.  

We have defined this quantity. Now, suppose you want to evaluate this quantity for 

product measures so, X n and Y n denote two independent distributed random variables. 

So, let us say X i Y i for i equal to 1 to n are iid P XY. Then this the quantity s p of X n 



Y n which must be less than 1 is equal to max over 1 of i over 1 to n of s p of X i Y i, ok. 

This is the so called tensorization property. In particular, if they are identically 

distributed then they are then s p of X n Y n = s p of X i Y i. So, how do we show this? 

I will present the proof sort of an old proof of this result from a paper by Ahlswede and 

Gacs, a little less known paper, but it is one of the initial papers looking at 

hypercontractivity.  

So, this is how they prove it. Note that it suffices to show this for n equal to 2 and that is 

what we will do we will fix n to 2. So, we need to show that s p of X and X 2 Y 2 = this 

is what we need to show; max of s p of X 1, Y 1, s p of X 2, Y 2 let us call this guy 

something let us call it r, the max we are denoting this max with r ok. So, how do we 

show this? 
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So, consider a function f from x 1 cross x 2 to R and denote W 2 = W 1 cross W 2, the 

two channels in applied independently. That is what this W 2 is to be applied to the 

function f. The condition the; so, we will use this W 2 operator as before W 2 of f will be 

the conditional expectation of f given y 1 Y 2. So, this is again Y 1, Y 2 W 2 this is 

expected value of f(x) 1, X 2 given Y 1 = small y 1 and Y 2 = small y 2 that is the W 2 

operator. And maybe one more convenient notation.  



If you have a function say g, for a function g which has two arguments Z 1 and Z 2 we 

define g subscript Z 1 as a function of Z 2 as g of Z 1 Z 2. And, similarly g Z 2 of Z 1 is 

g of Z 1 comma Z 2, ok. This is just for convenience ok. So, all the notation is set. So, 

what do we want to show? 

Let us look at. So, we show that expect that for all f that are I think an L P expected to an 

W 2 of f p is less than equal to f of r p ok that will complete the proof. Yeah, I am being 

a little bit informal here there is an inf in this definition and I am treating it like a min in 

the sense that I am thinking there is indeed a number for which there is an indeed a q for 

which this is q p hypercontractive. 

You can make it formal very easily by replacing this r with r - r + epsilon and then taking 

limit epsilon going to 0 that is the standard way of handling this inf and sup. So, I am not 

bothered about that. So, we will show this. How do we show this? 
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So, let us start with this conditional expectation; conditional expectation of f X. So, X 

here denotes the vector X 1, X 2 maybe it is better to write the whole thing Y 1, Y 2 to 

the power p whole to the power; whole to the power p let us look at this guy. This can be 

written as expected value of. So, here the expectation is over X 1. So, expected value of f 

of W 2 of f of Y 1, Y 2 to the power p I will write it as Y 1; Y 1 of Y 2 to the power p, 

ok. This is f of Y 1, Y 2 I am W 2 f of Y 1, Y 2 I am using a notation here to simplify 

this, ok. 



And what is this quant this quantity here? So, for each Y 1 this guy here is simply 

expected value of the p-th norm of this guy this expectation is over Y 1 outside this 

point. So, the functions are different, but for each of these random variables which is just 

dependent Y 2 now, this is this expectation ok. 

So now, let us focus on this quantity here. So, for this quantity we note that this W 2 of f 

of Y 1 it is p-th norm this is equal to expected value of. So, Y 1 is fixed in this parts 

maybe I will use a small Y 1 here. So, then this is X equal to expected value this 

expectation will be over Y 2 W 2. The conditional expectation of f(x) 1, X 2 given Y 1 = 

y 1, Y 2. This is my random variable whose expectation I am taking over Y 2. So, this 

random variable to the power p whole to the power 1 by p, ok. 

That is what, that is what this quantity is there is another power we will come back to 

that later. 
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And so, this part here if you look at this inner part here it can be viewed as expected 

value of. So, let us make some space 1 by p and let us look at this inner expectation here 

there is something to the power p, ok. So, what is this inner expectation here? So, this 

inner expectation is over X 1 is over X 1 and X 2, but let us look at the expectation over 

X 1 part. 



So, that is look like, this is the conditional expectation. So, we will do d of this is 

notation for convenience, so, that things become explicit. This is the conditional 

distribution given Y 1, X 1 and it does not depend on Y 2 because of independence. So, 

we can just do this part and we have expected value of f(x) 1 and so, this part is f(x) 2. 

Now, if you look at this particular conditional expectation you have to average over both 

Y 1, Y 2, but there is no dependence. So, given Y 2, X 2 is independent of Y 1 and X 1 

and therefore, we can only write it as this. 

So, once again the point here is that this inner part can be written as W 2 just the W 2 

operator not the superscript to the second channel of f(x) 1 that is this conditional 

expectation evaluated at Y 2, ok evaluated at Y 2 that is the random variable we have d 

of p x 1 given y 1. And, what we are looking at is the, so, this is a function of Y 2 and we 

are looking at the L p norm of this random variable of this random variable. 

Now, by Minkowski inequality this is less than equal to the L p norms of individual guys 

weighed by this thing ok this is Minkowski inequality ok. Because this is just the fact 

that L p norm is a norm and this is roughly the triangular inequality for L p norm which 

is called Minkowski inequality. 

Now, here once we have this part, now we can see that this part here only entails the W 2 

function for the second channel. And therefore, by using the by using definition of r and 

the fact that the second channel is p r become hypercontractive this is less than equal to 

f(x) 1, X 2 ok that is the function here given q-th norm of this sorry, r p-th norm of this 

ok that is what this green expression here can be bounded and we have used now the 

hypercontractivity for the second coordinate. So, we will substitute this guy in this form 

here. 
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So, on substituting what we get is; yeah let us maybe zoom out to see both of them at the 

same time, right. So, we will substitute this we will substitute this in this guy here. So, 

therefore, expected value of W 2 f of Y 1 Y 2 p is less than equal to expected value. 

Now, I will substitute this guy. This is just the conditional expectation given of X 1 

given Y 1 and then there is an expectation of Y 1. So, that is just expectation of Y 1. 

And, this whole part of the whole thing to the power p, so that is conditional expectation 

of f x 1 f X 1 X 2 the r p-th norm of this random variable this expectation given Y 1 

whole to the power p, ok that is what we have, that is where we have reached ok. 

So, we have already used hyper contractivity for the second coordinate and now, it is 

time to use hypercontractivity for the first coordinate. So, towards that end this is less 

than equal to. So now, we apply hypercontractivity for the first coordinate you see this is 

exactly that form. This is exactly equal to expected value of we will think of this function 

as some we will name this function something. 

Let us call this function here as this norm already takes expectation over X 2 and this is 

only some function of X 1. So, we will call this h of X 1 ok or maybe g of X 1. And so, 

this is just W 1 of g evaluated at Y 1 to the power p that is what this is. And, now using 

the hypercontractive; using hypercontractivity for the first coordinate this is less than 

equal to g of X 1 r p-th norm to the power p ok. Which implies that W 2 of f p-th norm is 



less than equal to g X 1 r p-th norm this is where we use hypercontractivity for the first 

coordinate.  

So, let us expand what this g looks like. So, what is its r p-th norm that is expected value 

over X 1 g of X 1 to the power r p and whole to the power 1 by r p and then this is equal 

what is g l to the power r p? Well, this is g of X 1 is this norm this norm to the power r p. 

So, that is f(x) 1 X 2 r p to the power r p. 

So, what is this inner norm? This inner norm is nothing but expectation of f(x) 1 this 

expectation is over X 2 and this one is over X 1, ok to the power r p given X 1 just to 

explicit here and this is nothing but f(x) 1, X 2 this is just f(x) 1, X 2 to the power r p ok. 

So, essentially we have obtained ok, alright. So, that is what we get, ok. 

(Refer Slide Time: 45:54) 

 

And, this is exactly this exactly shows that thus s p of X 2 Y 2 is also less than equal to r 

ok and indeed s p of X 2, Y 2 must be greater than equal to r, because we can consider 

functions which are just depending on one coordinates and for them the 

hypercontractivity coefficient the best one here will depend only on the hypercontract; 

will equal the hypercontractivity for that coordinate and, so, s P X 2, Y 2 must be greater 

than equal to max of s P X 1, Y 1 and s P X 2 X Y 2, ok. So, this must be equal to r that 

is the proof. 



Here the proof was a bit tedious because of notation, but I think this is a very delicate 

proof. For example, here instead of taking the p-th norm if you take p-th norm to the 

power p and used Jensen’s inequality here instead of Minkowski inequality, then you 

will not get this bound you will get a weaker bound which will not give you this 

hypercontractivity, ok. 

So, long story short. This s p tensorizes just max of each coordinate ok. So, great. So, if 

you want to show hypercontractivity for product distribution its suffices to show 

hypercontractivity for individual coordinates. This is something we have been doing for 

other inequalities as well and it is good to see that it works for hypercontractivity too ok, 

alright. So, this was the second simplification. 

Now, 3rd simplification so, from now from; so, from here on before we go to the third 

simplification. So, where are we currently? Let me take a big eraser. So, from here on we 

focus only on the one dimensional case because by tensorization the result for general 

dimensions follows naturally for product distributions, ok.  

Now, 3rd simplification, this is very interesting. This one will relate hypercontractivity to 

so called strong data processing inequality. So, we have seen tensorization, we have seen 

this alternative form and now we are seeing that in fact, you can relate hypercontractivity 

to strong data processing inequality. 
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So, recall the data processing inequality. If you look at divergence between W P and W 

Q these are the output distributions when the input distributions are P and Q pass to the 

same channel. This must be less than equal to D P Q. This is the Kullback Leibler 

divergence. This inequality is called the data processing inequality. In fact, the same 

inequality holds for a larger family of divergences. 

So, let us introduce that larger family. The same inequality holds for so called Renyi 

divergence. So, what is Renyi divergence? So, what is this Renyi divergence? So, Renyi 

divergence of order alpha between two distributions P and Q, let us say P that is 

absolutely continuous with respect to Q.  

So, it has a density with respect to Q is given by D alpha. So, this alpha here is 

something that is greater than 0, but not equal to 1. P Q 1 by alpha - 1 log it is a natural 

log expected value of. So, P has a density with respect to Q take that density and take its 

alpha-th bar alpha-th moment. 
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So, this looks yeah. So, this is what Renyi divergence is. And for discrete case you can 

simplify this. D alpha P Q for discrete case can be written as 1 by alpha - 1 summation 

let us say distributions are both on X log summation x P x. So, P x by Q x to the power 

alpha into this expectation with respect to Q, that is, the bigger measure Q x into Q x. So, 

you get P x to the power alpha Q x to the power 1 - alpha ok. You may have seen this 



form, but yeah this is Renyi divergence expected value of this d P Q to the power alpha 

ok. 

So, just like Kullback Leibler divergence you can show this is not a difficult group this 

Renyi divergence also satisfies data processing inequality. So, D alpha WP WQ is less 

than equal to D alpha P Q, this is also true, ok. So, that is true. Now, suppose P XY is p, 

q hypercontractive, where p is where q is less than equal to p. 
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Suppose, this is true, then consider this function consider f X = d P by d Q ok then D. So, 

we have to make an assumption; we have to make consider this such that and assume 

that the p-th norm of the X is finite, ok. So, what do we have? By hypercontractivities 

into this p q hypercontractive W of f p-th norm is less than equal to f q-th norm, ok. So, 

what is this guy here? Well, let us take log on both sides. So, that we can related to 

divergences, this is less than equal to log of f of q. 

And, let us make this Renyi divergence. So, which is the same as saying that so, this 

right side here this guy here is exactly equal to q - 1 into the q-th Renyi divergence 

between P and Q. But what is this left side? We will see what this left side is, ok. 

So, note that this W of f of y is equal to conditional expectation of f X given Y = y. 



(Refer Slide Time: 56:40) 

 

So, what is this guy? This is the conditional expectation of dP by dQ given Y equal to y. 

So, what is this quantity on the right? We claim that this quantity on the right expected 

value of dP by dQ which is the function of X actually given Y = y is exactly equal to it is 

almost surely equal to the density of the measure WP with respect to WQ.  

Since P has a density with respect to Q the output distribution when you pass through 

channel W also has a density with input distribution P also has a density with respect to 

this W Q, if that density is exactly this conditional distribution ok. Now, this proof is a 

bit technical, but we will just show it for the discrete case where it is easy to see. 

So, for when x y when random variables X Y are discrete. In that case expected value of 

dP by dQ as a function of X given Y = y = summation over x; by the way this 

expectation is with respect to Q x this ratio is P x by Q x the density is just P x by Q x. 

And you want to look at this probability of; you want to look at probability of x given y 

that is probability of x y it is Q x into W y given x by probability of y.  

What is probability of y? Probability of y is simply summation over x Q x W of y given 

x. Let us write slightly better this is equal to P x by Q x that is this function times Q x W 

y given x divided by the marginal which is this guy ok that is what the density is. 
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But, if you look at this guy here, this is the probability of Y under W and if you look at 

this guy here this Q x canceled. So, that is probability Y under P by probability of Y 

under Q this is essentially this is exactly equal to W P, ok. 

So, indeed this conditional expectation is equal to this density and this can be proved in 

general under some conditions on the channel some technical conditions of channel. We 

will not get into all that. I the way I need; the way I know how to show this proof is by 

defining the channel having what is called regular conditional densities, but maybe there 

are more general proofs available ok. 

So, very nice so, even this W f is actually the density of the output measures P WP with 

W Q. And therefore, just as we could write this guy as a divergence we can write this 

guy also as a divergence. So, therefore, P XY is p, q hypercontractive implies D p of WP 

WQ is less than into p - 1. So, we will take this guy this side. Actually there is this 1 by q 

power here which must be which must be brought down. So, it is here ok because we do 

not need this 1 by q power and D Q and so, this is less than equal to so, this is p - 1 by p 

q - 1 by q D q P Q. 

So, the only difference between this and the hypercontractivity statement is that 

hypercontractivity it holds for all function and this one only holds for functions which 

can be expressed as these densities, which means they must be normalized to 1. But note 

that hypercontractivity inequality is homogeneous. If you divide both sides; if you divide 



if you replace a function f with c times f, the inequality continues to hold. Therefore, we 

can always normalize. 

So, this is actually if and only if it is p q hypercontractive; I will just replace it with if 

and only if condition. If and only if for all Q that have density with respect to P such that 

D p P Q is finite D WP WQ is less than equal to 1 - 1 by q by 1 - 1 by p into D q P Q ok. 

This is the same as; this is exactly equivalent to hypercontractivity that is what we are 

claiming, ok. This is not so clean, ok. So, this is hypercontractivity. 

So, what is important here is that if you look at this constant here this part here this part 

here, this is less than 1 if 1 by Q is greater than 1 by p; if q is less than p ok. So, if you 

can show that because if we show that s p X; Y is less than 1, then the data processing 

inequality holds with this constant less than 1. By the way if q is less than p this D q P is 

actually an increasing function of non-decreasing function of q or order alpha. 
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And therefore, thus D p W P W Q is less than equal to C q times D q this, and which is 

less than because see this is less than 1, so this guy is also less than 1. This is less than D 

q which is less than equal to D p P Q ok; or alternatively D p ok. 

And, therefore, that this is the data processing inequality we saw earlier, except that this 

constant can be made less than 1. And when is this constant the smallest? This constant 

is the smallest when this guy is the smallest, that is the best we can do, ok. 



Note that s P is not exactly this guy s p is related to q by p; this is q - 1 this is slightly 

different, but related quantity ok. And, in fact, there is a lot of work on connection 

between the best data processing constant which is obtained by taking sup over this C q 

here and which is obtained by minimizing over the C q here and this s P X; Y. Mostly 

this guy is attained when p goes to infinity ok, and that quantity coincides with the best 

data processing constant that is usually the case. But here is an exact equivalence. 

So, at P X Y is P Q hypercontractive if this Renyi divergence of order p satisfies strong 

this particular strong data processing inequality. The Renyi divergence of order of p 

between WP and WQ is less than equal to 1 - 1 by q by 1 - 1 by p D q P Q ok. So, this is 

another alternative form of hypercontractivity.  

So, in conclusion. We have seen that hypercontractivity is actually equivalent to strong 

data processing inequality for Renyi divergence. We have also seen two different forms 

of hypercontractivity. We have seen tensorization which says that it suffices to show 

hypercontractivity for one dimension and then you will automatically get it for any 

arbitrary dimension.  

In improving this equivalent of equivalence of hypercontractivity and strong data 

processing inequality for Renyi divergence. Along the way we remark that it suffices to 

show hypercontractivity for functions which are normalized in any norm. In fact, if that 

inequality holds for f it must also hold for C f. So, this is all I wanted to show say about 

hypercontractually different form. 


