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Lecture 21: Hypercontractivity
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In the last two lectures, we saw how log Sobolev inequality is connected to a classic
information theoretic inequality called the Sturm's inequality. This was the connection
between Gaussian log Sobolev inequality and Sturm's inequality. In the next two
lectures, we will see the connection of Gaussian log Sobolev inequality with another

very interesting notion namely that of Gaussian hyper contractivity.

In order to talk about hypercontractivity, I should first describe contractivity in particular
I should first talk about contraction. So, this is a quick review. I will not spend too much
time on this and I will not be very formal. So, roughly speaking a mapznng f on a metric
space is a contraction if it shrinks distances. So, if the distance between f(x) and f of y is

less than equal to distance between x and y, then f will be a contraction ok.

So, this is what a contraction is because it shrinks distances, ok. And in fact, if this
underlying if this underlying metric is; if this underlying space is not only a metric space,

but it has a norm then it suffices to talk about the norm of f(x). By the way this distance



can be some other distance if you want we can have something d prime instead of d,

because f will take you to a different metric space; similarly this is a different norm, ok.

Suppose this is less than equal to norm x then for all x then implies f is a contraction. So,
that is what a contraction is, ok. And in this lecture we will be interested in a very

specific mapnng namely the so called Markov Kernel.
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And what we, let us begin by showing that the Markov kernel is a contraction. So, before
we talk about hyper contractivity, let us talk about contractivity of the Markov Kernel,

ok. So, what is the Markov Kernel?

So, consider two random variables X and Y with joint distribution P XY. Let f be a
mapnng from x that is why this x takes values to R, ok. So, x fis a real value of mapnng.
I will put some rather than putting constraints on f up front I will put this constraints as
we move forward when we require them. So, we are given this mapnng f using this we

can describe a mapnng on Y as follows.

So, define g which is now a mapnng from y to R as g of y = the conditional expectation
of f X given Y; I am I will abuse the notation and write Y equal to y. So, this is basically
this is a random variable and this is that, this is the realization of that random variable ok

that is my g of y the conditional expectation, ok.



So, this operator we will use W to denote; denote by W the channel P Y given X maybe
X given Y ok, and with an abuse of notation we denote the operator that takes that
denote the operator that converts f to g by W, ok. So this, so, what we have seen here is

basically g = W of f ok. So, that is that is the mapnng.

So, this operator W can be thought of as mark is called Markov kernel ok. And, we will
show that this Markov kernel is actually a contraction. So, to talk about contraction we

should first think of a basic norm for random variables. So, let us use.
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So, that is the claim; claim W is a contraction for we will use L p norm ok; L p norm. So,
what is the L p norm? So, how do we prove this? Firstly, what is the claim? So, claim is
follows that is if you look at the random variable g of Y, look at its L p norm. What is the
L p norm of g of Y? This is the expected value of g of Y to the power p.

Claim is this guy is less than equal to; so, this is by the way this is norm of W of f is less
than E that is correct is less than equal to the L p norm of f which is expected value of
f(x) to the power of p to the power 1 by p, ok that is the claim ok. So, how do we show
this? Well, the proof is actually not so difficult. The proof is this Jensen’s inequality ok.

So, the let us see.

So, the L p norm this L p norm to the power p for this is simply expected value of

expected value of f(x) given Y to the power p. And, this is less than equal to if we take



this expectation inside right, this is by this is by Jensen’s inequality actually this is
sometimes called conditional Jensen’s ok. And now this is as we have seen several times
this is exactly equal to expected value of X to the power p, right. So, that is the proof. So,

indeed this is the contraction ok, and right.
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And, so what we will show is that; in fact, we will see that this inequality can be
improved can be strengthened for many distributions P XY, ok. So, the fact that this
inequality holds for all; this inequality here holds for all functions f ok, fact that Markov
kernel is a contraction. That is a feature of the distribution P XY it depends on the joint
distribution P XY and the claim here is that it can be strengthened ok. So, that is what

and this strengthened inequality is called hypercontractivity.

So, you see that you are in a sense improving Jensen’s whenever you can improve
Jensen’s you can have very very interesting deep consequences. So now, we will talk
about the hypercontractivity of the Markov kernel, ok. So, let us bring in a definition. A,
so this Markov kernel is associated with a joint distribution. So, we will just talk about a

joint distribution.

A joint distribution P XY is p, q hypercontractive ok; p, q hypercontractive where q is
actually smaller can is smaller than or less than or q is less than or equal to p and so, we

are ruling out p being infinity and 1 ok previous bound also holds for p equal to 1, but we



are ruling out those things. If this is just for convenience that we are ruling it out, it is not

so useful if p is equal to 1.

If you look at the Markov kernel associated with P XY and you take any function f like
this p is less than equal to this q for all functions f which have finite q-th moment. So,
this is basically functions f which lie in this space ok. These are the functions which have

finite g-th moment. So, that is when we will call it p.

So, why is this stronger than; when can it be stronger than hypercontractivity when q is
at least smaller than p. So, note that f q is an increasing function of q. Therefore, the
previous inequality is stronger than contractivity; stronger than contractivity when q is

smaller than p. And in fact, we would like to find as smaller q as possible.

So this is a, this is the inequality that we want to prove. And, note that if this inequality
holds for; if this inequality holds for a q it holds for all q prime greater than that q
because of this monotonicity; is an increasing I should say non decreasing not increasing

necessarily increasing ok. So, let us define the best q, ok.
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So, let s p for this joint distribution it is a function of joint distribution, but it is maybe I
will just write it as P X s P; P XY is defined as; actually I think this notation is slightly
better. So, I am viewing it as a function of the random variables, but surface function of

the joint distribution, but this is for convenience.



This is how we indicate even sometimes in which information and information theory as
a function of random variables, but it is a function of the joint distribution. So, we will
define this guy as the infimum over q by p such that q is smaller than p, q is greater than
1 and smaller than p and P XY is p, q hypercontractive ok. And the point is that we get
an interesting more than interesting actually inequality when s p X Y is less than 1 can

you make it strictly smaller than 1.

Of course, this is it is already clear that it is less than equal to 1 because any P X Y is
hype is P P hyper contractive because P P hypercontractivity is just contractivity. And,
we want to make we want to check if it can be made less than 1, ok, that is
hypercontractivity. There are many equivalent forms of the same requirement this
inequality and we will present that, ok. So, let us do that equivalent forms simplification,

ok.

So, first we note that W f p is less than equal to f q if and only if expected value of f X g
Y is less than equal to f, yeah. So, fp prime g q ok for all functions g which have a finite
g-th moment this function is of y where. So, where this p prime by the way is the holder
conjugate this. So, you know 1 by p prime + 1 by p = 1, ok. So, that is what p prime is

ok. So, how do we show this? Proof is easy.
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This is just Holder’s inequality. Suppose this holds then expected value of f X g Y =

expected value of W fof Y g Y, because this is the conditional expectation and g when



you take conditional expectation given by g Y comes out because it is a constant given
Y, ok.

And, now we apply Holder’s inequality. So, that gives us W f; ok maybe a small change
here. So, this will be p prime and this would be q, yeah. So, W f of p and g of p prime,
right. And now, this is by Holder’s inequality. And now, this is less than equal to f q g p

prime, ok.

So, this is an improvement of Holder’s inequality because you have replaced this p-th
norm by p prime here. You could have applied Holder’s and you would have got p prime
directly you could have applied it here, but this is smaller than that. So, this is a smaller

value, so you have improved Holder’s inequality ok. So, this direction is done.

How about the opposite implication. So, this shows that hypercontractivity implies this

new form ok; by hypercontractivity of W.
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And, now for the other direction suppose this inequality holds for all g, then consider f in
L q X ok; that is what we need to consider here. So, if you look at such an f and we look
at expected value of W f to the power W fy p the p-th moment this is equal to expected
value of W £ Y times W f Y to the p - 1. So, this is exactly equal to expected value of;
expected value of f X given Y W £ Y p - 1. So, which can be also written as expected
value of f X times WY p - 1.



And, now we use the other form of hypercontractivity with this being g. And note that
this is indeed we can view this as g because; note that expected value of W f'Y of; so,
this is to the power p - 1 suppose we did it is it to the power p prime. So, that is p by p -
1, ok = expected value of W f Y to the power p and that guy here is less than this is the
contractivity property we saw earlier; f X to the power p and that is less than equal to X
to the power p. So, we must maybe we should assume this f is in p ok and this is finite.

This is the assumption here ok.

Therefore, W f belongs to L p prime Y this was a requirement here by the way.

Therefore, we can apply Holder’s inequality.
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So, expected value of we can apply that improvement that we are assuming here W 'Y if
your loss what we are trying to show is this inequality implies this inequality; suppose
this inequality holds for all function g then this must hold. So, this guy here is less than
equal to f q and W f p prime, but that is the same as this is f q and this is now W f p
prime, but what is this? This is exactly equal to this. So, this guy here is W f p to the
power p ok; looks like W f to the power p - 1 p prime norm of that.

What is the p prime norm of W fp - 17 We just saw this. This is exactly equal to W fp to
the power p by p prime ok that is this norm here. So, what we get is this is the same as

saying W f p to the power p into 1 - by p prime less than f q and since p prime is the



holder conjugate of p, so, 1 - 1 by p prime is 1 by p. So, this is just 1. So, which is the

same as saying W f p is less than equal to f q, ok.

So, this is a standard way of expressing the these norm inequalities in terms of this inner
products here, ok. So, you may have seen it in function analysis where you show some
bound holes for all test functions in this class, then the same bound holds for all function;
if this holds for this then this also holds. Yeah, these kind of tricks are used. And, we

have chosen g carefully here, but it works out ok.

So, in other words we see that this particular form of hypercontractivity is form is

equivalent to this strengthening of this strengthening of Holder’s inequality, ok.
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The next simplification that we introduce is the familiar tensorization property. So, if you
want to establish hypercontractivity for product measure it suffices to show
hypercontractivity for individual coordinates. In particular, remember this quantity s p X;
Y it was defined as the least value of the ratio q by p such that this joint distribution P
XY is this is the least of all q greater than exceeding 1, but less than equal to P. And such
that P XY is p q hypercontractive, ok.

We have defined this quantity. Now, suppose you want to evaluate this quantity for
product measures so, X n and Y n denote two independent distributed random variables.

So, let us say X 1Y i for i equal to 1 to n are iid P XY. Then this the quantity s p of X n



Y n which must be less than 1 is equal to max over 1 of i over 1 ton of s p of X 1Y i, ok.
This is the so called tensorization property. In particular, if they are identically

distributed then they are then s pof X nY n=sp of XiY i. So, how do we show this?

I will present the proof sort of an old proof of this result from a paper by Ahlswede and
Gacs, a little less known paper, but it is one of the initial papers looking at

hypercontractivity.

So, this is how they prove it. Note that it suffices to show this for n equal to 2 and that is
what we will do we will fix n to 2. So, we need to show that s p of X and X 2 Y 2 = this
is what we need to show; max of spof X 1, Y 1, s p of X2, Y 2 let us call this guy
something let us call it r, the max we are denoting this max with r ok. So, how do we

show this?
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So, consider a function f from x 1 cross x 2 to R and denote W 2 = W 1 cross W 2, the
two channels in applied independently. That is what this W 2 is to be applied to the
function f. The condition the; so, we will use this W 2 operator as before W 2 of f will be
the conditional expectation of f given y 1 Y 2. So, this is again Y 1, Y 2 W 2 this is
expected value of f(x) 1, X 2 given Y 1 =small y 1 and Y 2 = small y 2 that is the W 2

operator. And maybe one more convenient notation.



If you have a function say g, for a function g which has two arguments Z 1 and Z 2 we
define g subscript Z 1 as a function of Z 2 as gof Z 1 Z 2. And, similarly gZ2 of Z 1 is
g of Z 1 comma Z 2, ok. This is just for convenience ok. So, all the notation is set. So,

what do we want to show?

Let us look at. So, we show that expect that for all f that are I think an L P expected to an
W 2 of f p is less than equal to f of r p ok that will complete the proof. Yeah, I am being
a little bit informal here there is an inf in this definition and I am treating it like a min in
the sense that I am thinking there is indeed a number for which there is an indeed a q for

which this is q p hypercontractive.

You can make it formal very easily by replacing this r with r - r + epsilon and then taking
limit epsilon going to 0 that is the standard way of handling this inf and sup. So, I am not

bothered about that. So, we will show this. How do we show this?
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So, let us start with this conditional expectation; conditional expectation of f X. So, X
here denotes the vector X 1, X 2 maybe it is better to write the whole thing Y 1, Y 2 to
the power p whole to the power; whole to the power p let us look at this guy. This can be
written as expected value of. So, here the expectation is over X 1. So, expected value of f
of W2of fof Y1,Y 2 to the power p I will writeitas Y 1; Y 1 of Y 2 to the power p,
ok. Thisisfof Y1, Y2l am W2 fof Y 1, Y 2 I am using a notation here to simplify
this, ok.



And what is this quant this quantity here? So, for each Y 1 this guy here is simply
expected value of the p-th norm of this guy this expectation is over Y 1 outside this
point. So, the functions are different, but for each of these random variables which is just

dependent Y 2 now, this is this expectation ok.

So now, let us focus on this quantity here. So, for this quantity we note that this W 2 of f
of Y 1 it is p-th norm this is equal to expected value of. So, Y 1 is fixed in this parts
maybe [ will use a small Y 1 here. So, then this is X equal to expected value this
expectation will be over Y 2 W 2. The conditional expectation of f(x) 1, X 2 given Y 1 =
y 1, Y 2. This is my random variable whose expectation I am taking over Y 2. So, this

random variable to the power p whole to the power 1 by p, ok.

That is what, that is what this quantity is there is another power we will come back to

that later.
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And so, this part here if you look at this inner part here it can be viewed as expected
value of. So, let us make some space 1 by p and let us look at this inner expectation here
there is something to the power p, ok. So, what is this inner expectation here? So, this
inner expectation is over X 1 is over X 1 and X 2, but let us look at the expectation over

X 1 part.



So, that is look like, this is the conditional expectation. So, we will do d of this is
notation for convenience, so, that things become explicit. This is the conditional
distribution given Y 1, X 1 and it does not depend on Y 2 because of independence. So,
we can just do this part and we have expected value of f(x) 1 and so, this part is f(x) 2.
Now, if you look at this particular conditional expectation you have to average over both
Y 1, Y 2, but there is no dependence. So, given Y 2, X 2 is independent of Y 1 and X 1

and therefore, we can only write it as this.

So, once again the point here is that this inner part can be written as W 2 just the W 2
operator not the superscript to the second channel of f(x) 1 that is this conditional
expectation evaluated at Y 2, ok evaluated at Y 2 that is the random variable we have d
of px 1 giveny 1. And, what we are looking at is the, so, this is a function of Y 2 and we

are looking at the L p norm of this random variable of this random variable.

Now, by Minkowski inequality this is less than equal to the L p norms of individual guys
weighed by this thing ok this is Minkowski inequality ok. Because this is just the fact
that L p norm is a norm and this is roughly the triangular inequality for L p norm which

is called Minkowski inequality.

Now, here once we have this part, now we can see that this part here only entails the W 2
function for the second channel. And therefore, by using the by using definition of r and
the fact that the second channel is p r become hypercontractive this is less than equal to
f(x) 1, X 2 ok that is the function here given g-th norm of this sorry, r p-th norm of this
ok that is what this green expression here can be bounded and we have used now the
hypercontractivity for the second coordinate. So, we will substitute this guy in this form

here.
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So, on substituting what we get is; yeah let us maybe zoom out to see both of them at the
same time, right. So, we will substitute this we will substitute this in this guy here. So,

therefore, expected value of W 2 fof Y 1Y 2 p is less than equal to expected value.

Now, I will substitute this guy. This is just the conditional expectation given of X 1
given Y 1 and then there is an expectation of Y 1. So, that is just expectation of Y 1.
And, this whole part of the whole thing to the power p, so that is conditional expectation
of fx 1 f X 1 X 2 the r p-th norm of this random variable this expectation given Y 1

whole to the power p, ok that is what we have, that is where we have reached ok.

So, we have already used hyper contractivity for the second coordinate and now, it is
time to use hypercontractivity for the first coordinate. So, towards that end this is less
than equal to. So now, we apply hypercontractivity for the first coordinate you see this is
exactly that form. This is exactly equal to expected value of we will think of this function

as some we will name this function something.

Let us call this function here as this norm already takes expectation over X 2 and this is
only some function of X 1. So, we will call this h of X 1 ok or maybe g of X 1. And so,
this is just W 1 of g evaluated at Y 1 to the power p that is what this is. And, now using
the hypercontractive; using hypercontractivity for the first coordinate this is less than

equal to g of X 1 r p-th norm to the power p ok. Which implies that W 2 of f p-th norm is



less than equal to g X 1 r p-th norm this is where we use hypercontractivity for the first

coordinate.

So, let us expand what this g looks like. So, what is its r p-th norm that is expected value
over X 1 g of X 1 to the power r p and whole to the power 1 by r p and then this is equal
what is g I to the power r p? Well, this is g of X 1 is this norm this norm to the power r p.

So, that is f(x) 1 X 2 r p to the power r p.

So, what is this inner norm? This inner norm is nothing but expectation of f(x) 1 this
expectation is over X 2 and this one is over X 1, ok to the power r p given X 1 just to
explicit here and this is nothing but f(x) 1, X 2 this is just f(x) 1, X 2 to the power r p ok.

So, essentially we have obtained ok, alright. So, that is what we get, ok.
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And, this is exactly this exactly shows that thus s p of X 2 Y 2 is also less than equal to r
ok and indeed s p of X 2, Y 2 must be greater than equal to r, because we can consider
functions which are just depending on one coordinates and for them the
hypercontractivity coefficient the best one here will depend only on the hypercontract;
will equal the hypercontractivity for that coordinate and, so, s P X 2, Y 2 must be greater
than equal tomax of sP X 1, Y l and s P X 2 X Y 2, ok. So, this must be equal to r that
is the proof.



Here the proof was a bit tedious because of notation, but I think this is a very delicate
proof. For example, here instead of taking the p-th norm if you take p-th norm to the
power p and used Jensen’s inequality here instead of Minkowski inequality, then you
will not get this bound you will get a weaker bound which will not give you this

hypercontractivity, ok.

So, long story short. This s p tensorizes just max of each coordinate ok. So, great. So, if
you want to show hypercontractivity for product distribution its suffices to show
hypercontractivity for individual coordinates. This is something we have been doing for
other inequalities as well and it is good to see that it works for hypercontractivity too ok,

alright. So, this was the second simplification.

Now, 3rd simplification so, from now from; so, from here on before we go to the third
simplification. So, where are we currently? Let me take a big eraser. So, from here on we
focus only on the one dimensional case because by tensorization the result for general

dimensions follows naturally for product distributions, ok.

Now, 3rd simplification, this is very interesting. This one will relate hypercontractivity to
so called strong data processing inequality. So, we have seen tensorization, we have seen
this alternative form and now we are seeing that in fact, you can relate hypercontractivity

to strong data processing inequality.
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So, recall the data processing inequality. If you look at divergence between W P and W
Q these are the output distributions when the input distributions are P and Q pass to the
same channel. This must be less than equal to D P Q. This is the Kullback Leibler
divergence. This inequality is called the data processing inequality. In fact, the same

inequality holds for a larger family of divergences.

So, let us introduce that larger family. The same inequality holds for so called Renyi
divergence. So, what is Renyi divergence? So, what is this Renyi divergence? So, Renyi
divergence of order alpha between two distributions P and Q, let us say P that is

absolutely continuous with respect to Q.

So, it has a density with respect to Q is given by D alpha. So, this alpha here is
something that is greater than 0, but not equal to 1. P Q 1 by alpha - 1 log it is a natural
log expected value of. So, P has a density with respect to Q take that density and take its
alpha-th bar alpha-th moment.
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So, this looks yeah. So, this is what Renyi divergence is. And for discrete case you can
simplify this. D alpha P Q for discrete case can be written as 1 by alpha - 1 summation
let us say distributions are both on X log summation x P x. So, P x by Q x to the power
alpha into this expectation with respect to Q, that is, the bigger measure Q x into Q x. So,

you get P x to the power alpha Q x to the power 1 - alpha ok. You may have seen this



form, but yeah this is Renyi divergence expected value of this d P Q to the power alpha
ok.

So, just like Kullback Leibler divergence you can show this is not a difficult group this
Renyi divergence also satisfies data processing inequality. So, D alpha WP WQ is less
than equal to D alpha P Q, this is also true, ok. So, that is true. Now, suppose P XY is p,

q hypercontractive, where p is where q is less than equal to p.
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Suppose, this is true, then consider this function consider f X =d P by d Q ok then D. So,
we have to make an assumption; we have to make consider this such that and assume
that the p-th norm of the X is finite, ok. So, what do we have? By hypercontractivities
into this p q hypercontractive W of f p-th norm is less than equal to f g-th norm, ok. So,
what is this guy here? Well, let us take log on both sides. So, that we can related to

divergences, this is less than equal to log of f of q.

And, let us make this Renyi divergence. So, which is the same as saying that so, this
right side here this guy here is exactly equal to q - 1 into the g-th Renyi divergence
between P and Q. But what is this left side? We will see what this left side is, ok.

So, note that this W of f of y is equal to conditional expectation of f X given Y =y.
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So, what is this guy? This is the conditional expectation of dP by dQ given Y equal to y.
So, what is this quantity on the right? We claim that this quantity on the right expected
value of dP by dQ which is the function of X actually given Y =y is exactly equal to it is
almost surely equal to the density of the measure WP with respect to WQ.

Since P has a density with respect to Q the output distribution when you pass through
channel W also has a density with input distribution P also has a density with respect to
this W Q, if that density is exactly this conditional distribution ok. Now, this proof is a

bit technical, but we will just show it for the discrete case where it is easy to see.

So, for when x y when random variables X Y are discrete. In that case expected value of
dP by dQ as a function of X given Y = y = summation over X; by the way this
expectation is with respect to Q x this ratio is P x by Q x the density is just P x by Q x.
And you want to look at this probability of; you want to look at probability of x given y
that is probability of x y it is Q x into W y given x by probability of y.

What is probability of y? Probability of y is simply summation over x Q x W of y given
x. Let us write slightly better this is equal to P x by Q x that is this function times Q x W
y given x divided by the marginal which is this guy ok that is what the density is.
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But, if you look at this guy here, this is the probability of Y under W and if you look at
this guy here this Q x canceled. So, that is probability Y under P by probability of Y
under Q this is essentially this is exactly equal to W P, ok.

So, indeed this conditional expectation is equal to this density and this can be proved in
general under some conditions on the channel some technical conditions of channel. We
will not get into all that. I the way I need; the way I know how to show this proof is by
defining the channel having what is called regular conditional densities, but maybe there

are more general proofs available ok.

So, very nice so, even this W f is actually the density of the output measures P WP with
W Q. And therefore, just as we could write this guy as a divergence we can write this
guy also as a divergence. So, therefore, P XY is p, q hypercontractive implies D p of WP
WQ is less than into p - 1. So, we will take this guy this side. Actually there is this 1 by q
power here which must be which must be brought down. So, it is here ok because we do

not need this 1 by q power and D Q and so, this is less than equal to so, thisisp - 1 by p
q-1bygDqPQ.

So, the only difference between this and the hypercontractivity statement is that
hypercontractivity it holds for all function and this one only holds for functions which
can be expressed as these densities, which means they must be normalized to 1. But note

that hypercontractivity inequality is homogeneous. If you divide both sides; if you divide



if you replace a function f with ¢ times f, the inequality continues to hold. Therefore, we

can always normalize.

So, this is actually if and only if it is p q hypercontractive; I will just replace it with if
and only if condition. If and only if for all Q that have density with respect to P such that
D p P Qs finite D WP WQ is less than equal to 1 - 1 by gby 1 - 1 by pinto D q P Q ok.
This is the same as; this is exactly equivalent to hypercontractivity that is what we are

claiming, ok. This is not so clean, ok. So, this is hypercontractivity.

So, what is important here is that if you look at this constant here this part here this part
here, this is less than 1 if 1 by Q is greater than 1 by p; if q is less than p ok. So, if you
can show that because if we show that s p X; Y is less than 1, then the data processing
inequality holds with this constant less than 1. By the way if q is less than p this D q P is

actually an increasing function of non-decreasing function of q or order alpha.
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And therefore, thus D p W P W Q is less than equal to C q times D q this, and which is
less than because see this is less than 1, so this guy is also less than 1. This is less than D

q which is less than equal to D p P Q ok; or alternatively D p ok.

And, therefore, that this is the data processing inequality we saw earlier, except that this
constant can be made less than 1. And when is this constant the smallest? This constant

is the smallest when this guy is the smallest, that is the best we can do, ok.



Note that s P is not exactly this guy s p is related to q by p; this is q - 1 this is slightly
different, but related quantity ok. And, in fact, there is a lot of work on connection
between the best data processing constant which is obtained by taking sup over this C q
here and which is obtained by minimizing over the C q here and this s P X; Y. Mostly
this guy is attained when p goes to infinity ok, and that quantity coincides with the best

data processing constant that is usually the case. But here is an exact equivalence.

So, at P X Y is P Q hypercontractive if this Renyi divergence of order p satisfies strong
this particular strong data processing inequality. The Renyi divergence of order of p
between WP and WQ is less than equalto 1 - 1 by gby 1 -1 by p D qP Q ok. So, this is

another alternative form of hypercontractivity.

So, in conclusion. We have seen that hypercontractivity is actually equivalent to strong
data processing inequality for Renyi divergence. We have also seen two different forms
of hypercontractivity. We have seen tensorization which says that it suffices to show
hypercontractivity for one dimension and then you will automatically get it for any

arbitrary dimension.

In improving this equivalent of equivalence of hypercontractivity and strong data
processing inequality for Renyi divergence. Along the way we remark that it suffices to
show hypercontractivity for functions which are normalized in any norm. In fact, if that
inequality holds for f it must also hold for C f. So, this is all I wanted to show say about

hypercontractually different form.



