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Hi all today we would like to investigate a connection between Concentration of 

Measure or probability and what is called Isoperimetry, which is a very classical subject 

in geometry. So, this gives us a new geometric viewpoint on how to understand and 

approach concentration of measured results and in fact we will find out that results in 

isoperimetry, actually imply concentration of measure results. 

So, what is the high level idea behind this approach, the high level idea is that in order to 

control in probability the fluctuations of some function of n random variables by X 

where X given by X 1 through X n is a random vector it helps to view X, where X is 

given by X 1 to X n is a random vector it helps to view X as a point in n dimensions or in 

some convenient n dimensional space. So, that if we understand where this point is 

distributed in n dimensional space using results from geometry and isoperimetry. 

Then we will have some idea about how to control the fluctuations of the function f 

applied to X ok. So, what is firstly the isoperimetry view here? So, here is an example of 



a Classical Isoperimetric Theorem ok which is perhaps a statement that you would have 

seen during the course of high school or college which is regarded as well known fact by 

now. So, it says for instance that among all shapes of the same volume in Euclidean 

space, let us think of 3 dimensional Euclidean space as usual. 

So, if you are given a target volume then if you want to find the shape which minimizes 

the surface area with a given volume, then it has to be a sphere or the Euclidean ball 

more generally ok. So, this is essentially a typical or the most classical statement of 

isoperimetry there is ok. So, in some sense we are stating the dual form of the classical 

isoperimetric theorem, isoperimetry theory means shapes that have the have equal 

perimeter or surface area. 
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And the dual version of the statement is that among all shapes of a given surface area the 

Euclidean ball has the maximum volume ok. Now there are 2 terms here which are very 

important here to understand in such a statement there is a term which is indicative of a 

measure ok or volume. In the sense that it measure size and there is a term that measures 

what is called perimeter or surface area in some sense we will show that this can be 

interpreted in terms of distances ok. 

So, what we need typically to frame classical like isoperimetry statements is the notion 

of a metric measure space. So, in all that follows in the background we will always 



assume that we are working in a space that has both a notion of a metric or a distance 

measure as well as a volume measure ok.  

So, again coming back to a statement like the classical isoperimetric theorem, let us be a 

little more precise about what we mean by volume and surface area. So, here volume of a 

set A let us say line in n dimensional Euclidean space is just taken to be its standard 

measure or Lebesgue measure more precisely and this is just given by the integral of dx 

over A for instance. 
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What about surface area? So, what about surface area? How do we define the surface 

area of a set or an object or a shape? So, one of the ways of doing it is through blow ups. 

So, let us define for a given set S the epsilon blow up of that set S. So, note that S is 

sitting in a space with metric given by d and the volume measure given by vol. So, the 

epsilon blow up of a set S is defined to be let us say notation S epsilon is the set of all 

points x such that the distance of x from S is utmost epsilon ok. 

Where by the way what is the distance of a point from a set d of x comma S, is just 

defined to be the minimum distance of any point in S from x ok. So, S epsilon is 

essentially capturing the set of all points which are at a distance of utmost epsilon from 

the set S. So, its a the set S with a small expansion this you will. So, for instance in 

standard Euclidean space if B is the unit ball in a standard Euclidean space; that means, 

the metric is the l 2 metric. 



Then with respect to the usual, that means l 2 metric the epsilon blow up of any set is 

essentially obtained by taking S and adding to it in a set theoretic sense a scale multiple 

of epsilon * B. And this in turn can be explicitly defined as the set of all x + epsilon y, 

where x belongs to S and y belongs to B ok. Now once we have the notion of a blow up 

its quite natural to be able to use this to define the surface area of a set S. 
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So, here is one particular definition of the surface area with respect to a volume measure 

and a notion of distance. So, the volume so let us see. So, in the surface area in this view 

of S is defined to be the volume of the boundary of S ok and we define this in turn to be 

the limit as epsilon approach to 0 of the volume of the epsilon blow up of S - the volume 

of S divided by epsilon ok.  
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So, what this does in pictures is that if you have this set abstractly which is called S. So, 

how would you evaluate in some sense the measure its surface area its surface area is 

roughly the measure of this the size in some sense of this red curve and how you measure 

this in some sense is to try to take a small blow up. So, the epsilon blow up of S is 

essentially the set. 

The volume of the epsilon blow up of S - the volume of S in some sense is going to be 

able to give us a measure of the difference area which is the shaded area here ok and that 

is what the surface area ends up measuring. So, by the way we are not going to be 

technically very precise and assume that these limits exist, but one can always show that 

for an appropriate class of bodies or sets S. 

Such a surface area measure is well defined in the sense that the limit exists. So, again 

some examples, so one can use this to understand the usual surface area of sets in 

Euclidean space. So, for the unit ball B in Euclidean space of dimension n the following 

is well known which is volume of let us say a scaled version of the unit ball r * the unit 

ball, which is basically the ball of radius r is scales as r to the n with some constant that 

depends on the dimension. 

And the volume the surface area of this ball of radius r which is volume of the boundary 

of r B. So, recall that when we say the volume of the boundary of r B its really an n - 1 

dimensional volume which is the surface area, it is known and this = n it is really in fact 



the derivative of the volume evaluated with respect to r. So, this is n c n r raised to n - 1 

ok. 

And this reduces to for 3 dimensional space we have the usual high school formulae that 

the volume of a sphere of radius r in 3 dimensions is some constant 4 by 3rd πr cube. So, 

4/ 3 rd πis basically the c of n c of 3 and the volume of the surface area of a sphere is 

basically 4 π r square ok.  

So, this generalizes to any dimension in the Euclidean in the standard Euclidean 

geometry in n dimensions with the standard Lebesgue measure which measures volume 

ok. Next we go to investigating the connection the exact connection between statements 

of isoperimetry such as this ok. 

So, statements of isoperimetry will broadly be taken to mean the solution of problems 

where a surface area or a volume is given and you have to try to optimize over all shapes 

of either the volume or the surface area respectively to find sort of optimal shapes in 

some sense ok. So, that is an isoperimetry statement. 
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Now, what is the connection between such isoperimetry statements and concentration of 

measure inequalities? The basic idea here is that isoperimetric inequalities essentially in 

a critical way. Tell us exactly how much mass or probability is accumulated near the 

boundary of a set ok. So, that is what an isoperimetric statement is really trying to say 



ok. So, for instance in the classical isoperimetric theorem, its basically saying that the 

sphere sort of has a certain distribution of mass on its boundaries which is optimal 

compared to any other body with the same volume ok. 

So, towards this let us define let us start by defining this very key quantity or function 

alpha of t. So, this is by the way defined for all t positive or in fact non negative. As the 

largest probability of a complement A t complement where A t is the t blow up of any set 

A of all sets A which have a minimum probability measure of half. So, imagine so by the 

way something that is useful to keep in mind is that the setting here is that of a metric 

probability space. 

So, we are imagining a space that is endowed both with a probability measure and as 

well as a metric. So, here we are trying to define alpha of t as the largest probability of 

the t blow up of the complement of the t blow up of any set, which has probability at 

least half for every t greater than 0 and this is also called alpha of t is also called the 

concentration function. So basically measures you know how much mass there is in the 

in if you blow up A by a small amount t, when the set A itself is sizable ok. 

And another definition that we will often need is that of a median of a random variable. 

So, what is the median of a random variable? A median of a random variable is any 

value such that the probability that the random variable is either utmost that value or at 

least that value are both at least half ok. There can be many medians for a single random 

variable its not unique, but we will call M to be a median if this property satisfied ok. 



(Refer Slide Time: 14:45) 

 

So, yeah now the main bridge between isoperimetry or concentration functions and 

concentration inequalities themselves is what is called Levy’s inequality. Which says 

that consider any Lipschitz function f with respect to the metric d ok, so let us say there 

is a metric probability space on which there is a function f defined which is a Lipschitz 

function. 

Now, by Lipschitz function what do we mean? We mean exactly that for all x and y in 

the space we have f(x) - f(y) to be bounded in absolute value by the distance between x 

and y the metric distance between x and y, that is what it means to be a Lipschitz 

function. So in fact, for any Lipschitz function any such Lipschitz function f on this 

metric probability space for all positive t we have these inequalities probability that f(x) 

is larger than any median of it M f(x) + t less than equal to alpha t. 

Let us write M f(x) in boldface just in analogy with expected value, even though this is 

not unique and on the other hand as well probability f(x) is short by - t is short by t from 

it is median is also bounded by the concentration function t ok, for any median M f(x) of 

f(x) of this random variable that would x.  

So, Levy’s inequality basically says that if you can bound the concentration function 

which is a purely geometric quantity, then that at once gives you concentration results of 

a function of Lipschitz functions about their median values about their medians ok. 



So, this is not concentration about the expected value, but this is very differently 

concentration about the median although in many cases one can show that the median 

and expected value are fairly close by themselves. But the natural spirit of Levy’s 

inequality is to state it in the sense of the median concentration about the median ok. 

(Refer Slide Time: 17:19) 

 

So, let us go ahead and show the proof of this inequality. So, define A as the set of all x 

let us show the first inequality.  

So, if you define A as the set of all vectors or points x where f(x) is utmost it is median 

sorry M f of capital X as a random variable, then by definition we know that the 

probability of A is at least half this is by the median property or median definition. And 

then we have that the t blow up of A which is defined as the set of all y S in the space 

where for which there exists an A exists an x in A with d x y utmost t belong. 

So, this itself is a subset of all points y where. So, recall that if x and y are such that d x y 

less than equal to t then. So, we can say that the set of all such ys is a subset of ys where 

M f(x) is less than equal to f(y). So, any x belong any such x is assumed to belong to A, 

so we know that for X f(x) is upper bounded by M f(x). 

And we can say that f this we can replace M f(x) by f(y) sorry by sorry. We can replace 

M f(x) by f of small x ok, because of precisely this reason and we know that f is 



Lipschitz. So, basically this is upper bounded by d x y and we know that d x y is upper 

bounded by t ok.  

So, this is what gives us this inequality A t is a subset of y such that f(y) is utmost M f(x) 

+ t and this in turn implies that the probability that f(x) is larger than M f(x) + t must be 

bounded by the probability of A t complement and by definition probability of A t 

complement can be utmost it is concentration function alpha of t. 

So, we have the first inequality and the other inequality follows in a very similar manner 

and it is a symmetric counterpart of this one. So, that completes the proof of Levy’s 

inequalities. In fact, Levy’s inequalities are tied in a certain sense. 
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In the sense that there is this following converse, so the converse reads if beta of t is 

another function of positive t, such that for any Lipschitz function f where we have the 

same definition of Lipschitz functions with respect to this metric d. The if always a 

probability of f(x) larger than it is median + t is bounded by beta of t, then beta of t must 

be at least alpha of t ok.  

So, this theorem Levy’s inequalities are essentially tied over all Lipschitz function f and 

the reason why this is true is because of the proof of this converse which basically says 

that you take define this function f A of x for any given set a we can define a function f 

A of x as the distance of x from the set A. 



It can be easily checked that f A is Lipschitz continuous this is a Lipschitz function and 

the median of well the median of f A of capital X ok as a random variable is 0 if the 

probability of the set A is at least half ok. So, 0 is a valid median for f A of capital X, if 

the probability of A is at least half. So, for any such A the probability that probability of 

A t complement is the probability that f A of X this is just by definition greater than 

equal to t. 

And we know by the hypothesis that so this is exactly P f A X greater than equal to 0 + t, 

0 plays the role of a median in by hypothesis this is at least beta of t right. And so if we 

just take the supermom on both sides with respect to all such sets A with probability at 

least half, we get therefore that alpha of t is upper bounded by beta of t ok.  

So, this basically establishes the other side of Levy’s inequality and so the summary 

from this connection between ISO between the concentration function and fluctuations 

about the median is that upper bounds for alpha of t imply upper bounds for the 

concentration of Lipschitz functions about their medians ok. 

Now, the so with this essentially the effort shifts to trying to find good ways to upper 

bound the concentration function in general or given metric probability spaces.  
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So, what we know so far is that in fact if you have an exact ioperimetry theorem. So, 

what do you mean by an exact isoperimetry theorem, it is a statement that says that in 



some sense given a volume the shape or body or subset S minimizes it is surface area. 

So, these are essentially called exact isoperimetry statements.  

So, mathematically it has the form that there exists a B a subset B or a shape B the 

probability of B at least half, such that for every other shape A with probability at least 

half. The volume of the blow up of A is at least the volume or probability of the blow up 

of B. And this in fact implies that the concentration function alpha of t can just be 

bounded above by the probability of the complement of the blow up of P for every value 

positive t of positive t.  

So, this is what an exact isoperimetry theorem gets you. So, in some lucky cases a set 

like this is explicitly definable and so here are 2 classical examples the first one is 

Isoperimetry statements of isoperimetry for the uniform measure or uniform probability 

distribution on the surface of the unit ball in n dimensions. 
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So, S n - 1 is notation for the surface of the unit ball in n dimensions is the set of all x in 

R n, such that their l 2 norm is exactly equal to 1 and imagine that there is a distance 

measure a metric on the surface of the unit ball. 

So, one can have two different metrics which both work for this example, we can have 

what is called geodesic distance between two points on the surface. So, roughly speaking 

in 3 dimensions if this is the ball in 3 dimensions, then if you want to measure the 



distance between 2 points on the surface of the unit ball all you say is that you find the 

equator that connects them. So, if this is the segment of the equator that connects them 

on the surface of the unit sphere. 

Then the length of that segment of the equator is their geodesic distance, equivalently 

one can also use a notion of distance like the Euclidean distance to measure distance on 

the surface of the sphere. But in any case imagine that there is this distance metric 

defined on the surface of the sphere which is symmetric and translation in variant over 

the surface of the sphere and you have the uniform probability distribution on the surface 

of the sphere ok. So, that defines the metric probability space for this example.  
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So, there is a famous isoperimetry result called again Levy’s isoperimetry theorem, that 

says that that essentially specifies the sets of least sets of least volume given a surface 

area on the surface of the of the n dimensional units sphere. So, for B equal to let us say 

all points in on the surface of the sphere with the their first coordinate being non negative 

which is exactly a hemisphere. So, in the usual sense this would mean the northern 

hemisphere for instance any hemisphere will work for the purposes of this theorem. 

We must have that your P of B = half and for all A such that probability of A is at least 

half the probability of the epsilon blow up of a is lower bounded by the probability of the 

epsilon blow up of this northern hemisphere or any hemisphere ok. And this finally 

implies that alpha of t is upper bounded by the probability of B t complement ok. And 



one can also do explicit calculations to show that the measure of the complement of B t 

can be upper bounded by something like e to the - n - 1 t square by 2 ok. 

So, in other words what this says is that if you again go back to the unit sphere I mean let 

us say 3 dimensions. So, S 3 is S 2 is what we are talking about the surface. So, the 

probability metric probability space is the surface of the 3 dimensional sphere, then what 

it says essentially is that let us say there is this hemisphere which is let us say one 

hemisphere. Let us call this set B and the probability of the complement of B. 

So, if you take a blow up so if this is B let us define a small blow up of it is so that the t 

blow up of B is the Northern hemisphere union the strip which is shaded here. So, go a 

little South of the equator. So, the solid line is the equator is an equator, if you go a little 

South of the equator by an amount proportional to t there is extremely there is very little 

mass in the complement ok. So, the probability of this part the remaining part falls off 

very rapidly with t so it is bounded above e raise to n - 1 t square by 2 ok. 

And in fact, one can run the same argument with the southern hemisphere to basically 

say that you know you could form you go a little north of the equator ok and whatever is 

remaining mass is has extremely low probability. So, all it so finally by sort of basic 

probability it says that almost all the mass is near an equator ok. 

So, most of the probability mass is near an equator and this in fact in high dimensions 

gives rise to very surprising consequences or non intuitive consequences, because you 

know if one argued that all the mass there is a lot of probability mass almost probability 

one on this equator. 
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Well you could ask you could run the same argument for any equator, so this is another 

equator ok. So, this equator also has mass close to 1 probability mass close to 1. And so 

it must mean that their intersection also has probability mass close to 1 ok.  

So, essentially it means that any two equators in high dimensional spaces in the surface 

of spheres in high dimensional spaces essentially have a lot in common ok; which is 

somewhat counterintuitive given our understanding 3 dimensional geometry. But in any 

case this is true of such metric measures basis.  

The second well known example of an isoperimetric theorem is what is known for 

standard Gaussian measure. In n dimensions endowed with usual metric and we have 

standard normal measure which is essentially independent measure Gaussian measure in 

all coordinates, so here the statement of isoperimetry. So what are the optimal sets? 
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The optimal sets essentially turn out to be half spaces. So, take any B which looks like 

the set of all x S in R n with let us say one coordinate being non negative, this is 

basically a half space. So, its known so its obvious that probability of B = half because of 

the definition of independent Gaussian measure. 

And for all a with probability of a at least half, we have that probability of the epsilon 

blow up of any such a is at least lower bounded by probability of epsilon blow up.  

So, this is the Gaussian isoperimetric theorem. So, this statement is the Gaussian 

isoperimetric theorem that is the content of the Gaussian isoperimetric theorem and as a 

consequence of it we get that alpha of t is upper bounded by the probability of the t blow 

up the complement of the t blow up of any half space passing through the origin. And 

this because of properties of independent Gaussian measure is just P of X 1 exceeding t 

ok. 

Which is the probability of a standard normal exceeding a value t which is what is 

defined to be the q function of a Gaussian which can be for instance upper bounded by e 

raise to - t square by 2 ok. So, alpha of t is it is possible to bound alpha of t by 

probability of B complement just by virtue of using this very powerful Gaussian 

isoperimetric theorem and as we know bounds on alpha of t can easily translate to 

bounds on the concentration of Lipschitz functions about their medians ok. 



So, in this lecture we have seen how isoperimetry results or very strong or exact 

isoperimetry results help us to bound the concentration function alpha of t. But what if so 

such occurrences are more the exception rather than the norm, often its not explicitly 

possible to prove such exact isoperimetric results.  

So, what happens when we do not have access to isoperimetric results for our given 

metric probability space of interest is there are there other ways to sort of understand 

bounds on alpha of t and that is what we will explore in the next lecture. 

Thank you. 


