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Hi, all. This lecture is devoted to Establishing Marton’s Conditional Transportation Cost 

Inequality which is the following transportation cost inequality that we found last time 

was very useful and allowing us to prove concentration inequalities for functions which 

satisfy properties weaker than bounded differences or the MacDiarmid setting.  

So, we did that in the last lecture and all that was remaining was to prove this kind of 

transportation cost inequality. So, what is Marton’s condition transportation cost 

inequality? Just to recap it basically says that if you are given two probability measures 

one is P which is a product measure and one is Q which is some absolutely continuous 

measure with respect to P. 

Then there exists a coupling between the P and the Q measures let us say for random 

variable sequences X and Y of length n such that the expected value of the sum of the 

conditional discrepancies squared is bounded by basically the divergence between these 

measures the k l divergence between the Q and the P n ok. 



So, that was the content of Marton’s conditional transportation cost inequality. We have 

already proven a similar related inequality which is Marton’s transportation cost 

inequality basically where there was no conditioning on X or on Y as we were able to 

establish there that the inequality still holds that you can bound the left hand side by a 

quantity base in the divergence and we will follow a very similar proof template for 

doing the same exercise here. 
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So, the proof is going to the as before induction by induction on the number of variables 

n. So, just as we did earlier ok. So, for Marton’s transportation cost inequality. So, let us 

so, there are two a two arguments in an induction proof. So, one is basically the 

induction step and one is how you prove the base case. Let us look at the induction step 

before we go over to the base case. 

So, what is the induction step here? So, the induction step consists of assuming that for 

all n less than or = let us say some arbitrary integer k there exists a coupling between X n 

and X 1 through n and Y 1 through n ok which have individuals marginal P 1 through n 

and Q such that the inequality star holds where star is going to be denoted. So, this is star 

here. So, let me make it red ok.  

So, let us assume that this statement holds for all n at most some integer k what we will 

do is to show that the same inequality holds for n = k + 1 by building a new coupling. 
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Let us build a coupling. Let us now a couple using this one length so, the sequences of 

length one extra. So, X K + 1. Let us couple X K + 1 to Y K + 1 with desired marginal’s 

P K + 1 and Q such that. So, note that when we say P K + 1 and Q this it is just sufficient 

to consider Q or that the marginal distribution of Q in the first K + 1 symbols such that 

star holds for n = K + 1 thereby extending the induction hypothesis by 1 unit. 

So, it is that the idea is exactly the same as what we did to extend the induction 

hypothesis for Marton’s transportation cost inequality. So, what is the idea here? So, in 

words what you have is that you have let us say you have a coupling in your hand which 

can couple X 1 through X K to Y 1 through Y K, ok. So, you basically have a coupling 

between these two and what we would like to do is to extend this to a coupling between 

K + 1 length sequences on the top and the bottom. 

So, what you do is that having the Y sequence condition on the first K Y’s this basically 

gives you a conditional distribution for the K + first place. So, Q of dot given so, let us 

see Q of the K + first entry being something given the first K entries and you also have a 

target marginal distribution for the top side the X K + 1 which is just the distribution of 

X K + 1 which we also called P K + 1. 

So, having conditioned on the realization of y one through K what you do is you take 

these this measure the conditional distribution of Y K + 1 given the first K Y’s. And 

couple it to the X target distribution which is P K + 1. So, couple these couple 



conditionally because we are conditioning on the Y K here Y Y 1 through K here using 

the n = 1 result. 

So, recall that we have assumed induction hypothesis to hold for all n less than = K. So, 

that means, it also holds for n = 1 and basically that allows us to find a coupling or a use 

a coupling between P K + 1 and this conditional distribution of Y K + 1 given Y K to 

generate this new pair X K + 1 Y K + 1 which we just append to the end ok. 

And, we will be able to argue that the entire joint thing between X 1 to X K + 1 and Y 1 

through Y K + 1 is the desired coupling on K + 1 length sequences with the designed to 

have the appropriate marginal’s that is P on the top part on the X-side and Q on the Y-

side ok. 
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So, formally what we do is we begin by using the n = 1 construction conditionally on so, 

conditionally on basically the previous K realization of the y’s. So, this just means for all 

realizations y 1 through y k.  

So, what is this construction that we are guaranteed to that is guaranteed to exist? There 

exists a coupling between X K + 1 and Y K + 1 distributed that couples the distributions 

P K + 1 or P x K + 1 with the conditional distribution of Y K + 1 given the first K Y’s or 

= small y 1 through K ok. 



So, also we know that this n = one conditional coupling also satisfies the inequality for n 

= 1. So, that the inequality basically reads expected value of the probability. So, this is 

the n = 1 form. So, the variables being measured for discrepancy are just X K + 1 and Y 

K + 1 given. So, this is all conditional on conditioned on Y 1 through K. So, we should 

always condition on Y 1 through K. 

Firstly, there is the conditioning on one of these variables itself followed by the 

background conditioning Y 1 through K = small y 1 through K whole square + the same 

thing where the conditioning is on the X variable. So, X K + 1 and we will add to it the 

background conditioning Y K = y K the whole square is upper bounded by twice this is 

the induction hypothesis for n = 1 twice the divergence between Q Y K + 1 given Y K = 

small y 1 through K with P K + 1, ok.  

This is what the induction hypothesis guarantees us. This let us call this statement a 

statement 1. And, now how do we build this coupling? So, now, we are going to define 

the formal extension or a new coupling between X 1 through K + 1 and Y 1 through K + 

1. 
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So, let us say P X K + 1. So, the joint distribution between the K + first X and the K + 

first y condition on X K Y K the previous scale and segment to be =; let us define this to 

be = generating using this guaranteed coupling for the last two variables of the X and the 

Y sequences X K + 1 Y K + 1 conditioned on Y K alone, ok. 



So, what this means is basically that it is exactly executes this diagram you take the first 

K y’s from then that gives you a conditional distribution on the K + first Y and just use a 

coupling that can couple this conditional distribution for y K + 1 with the standard 

distribution P K + 1 for the X K + 1 ok. 

So, this is how the inductively defined so, this basically defines a probability distribution 

on X 1 through K + 1 and Y 1 through K + 1, ok. So, now we have basically by doing 

this we have ensured a Markov chain we have defined basically a Markov chain that say 

that if you have X K from it you can generate Y K just because you have a joint 

distribution between X K and Y K. This is using the existing coupling. 

The induction hypothesis coupling for n equals K and from there Y K alone is enough to 

generate the next pair X K + 1 Y K + 1 ok. And, thus as a consequence of this we can 

write that the probability X K + 1 not = Y K + 1 given X K + 1 and Y K. So, recall a that 

this is just this term here ok this term is being analyzed conditioning is on X K + 1 and 

the background conditioning on Y K. 

This is just = so recall what happens here if you map it to the Markov chain diagram here 

it is the probability of some event involving the rightmost Markov chain element 

conditioned on a part of it itself which is X K + 1 and the Y K. So, we can add by the 

Markov property X K for free X 1 through K for free ok. 

So, what the Markov chain picture means is that for free because of the Markov property 

we can add X K + 1 Y K and we can add for free X 1 through K. And, now if we just 

combine these two elements it is just the entire vector X 1 through K given X 1 through 

K + 1 with Y 1 through K. So, let us record this as statement 2.  

So, we are just analyzing the terms in this n = 1 inequality ok. Now, let us come to trying 

to prove, so we can manipulate this inequality further if we can find a lower bound for 

the first time your first conditional probability here and so, that is done by using Jensen’s 

inequality. 
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So, notice that so, let us say also by Jensen’s inequality so, in fact, expected value of the 

probability of X K + 1 not = Y K + 1 given X K + 1 the whole square. So, let us analyze 

this term an expression of this form. So, in fact, let us write the Jensen inequality 

condition on in its conditional form X K + 1. 
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So, this is just the same as the expected value; probability it is just expectation of an 

indicator and one can write. So, let us start let us write the step by step. The inner 

probability which is being squared is just the expected value of an indicator event 



conditioned on X K + 1 the whole square ok whose expectation is being taken outside 

ok. 

Now, what we can do is we can write the inner expectation which is the inner conditional 

expectation as a further conditional expectation where in the first level you take the 

expected value of X K + 1 not = Y K + 1 conditioned on two things: one is X K + 1 as 

usual to it we add an additional Y K ok and imagine taking the conditional expectation of 

this with respect to X K + 1. 

So, by the law of iterated expectation this double expectation is the same as this 

expectation ok. And so, all we are doing is we are writing the inner conditional 

expectation as a further expectation on an extra quantity which is Y K and then we are 

squaring it ok. 

Now, let us apply Jensen’s inequality to this conditional expectation with respect to X K 

+ 1 which is being square ok. So, when we do that so, it is the square of an expectation 

because the square the square is a convex function we can basically bring the conditional 

expectation outside the square. Sorry, we can bring the conditional expectation outside 

the square, yes. So, less than = the expected value the outer E remains the same and so, 

imagine bringing the conditional expectation outside the square.  

So, what you have is the thing that comes out combines with the E outside ok and then 

what you what is left inside is the probability that X K + 1 not = Y K + 1 given X K + 1 

comma Y K the innermost probability which gets squared ok. So, this is basically 

Jensen’s inequality for the square function that is in it is conditional form that we apply. 

So, let us put 2 and 3. So, if you take 2 2 gave you an equivalent form let us put 2 and 3 

into 1. 
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So, let us go back to equation 1 here. If you look at equation 1 above what equations 2 

and 3 have helped us do is to basically give a lower bound for the second term on the left 

hand side. So, we can now go back and using 2 and 3 into 1 we can write the following. 
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So, let us say putting 2 and 3 into 1 get. So, we get this following simple form expected 

value of P the conditional probability of discrepancy at the K + first position given the 

entire expected + P X K + 1 not = Y K + 1 the same conditional probability given the Y 

vector up to K + 1 is just at most the divergence between the conditional measure Q K + 



1 given Y 1 through K with respect to P X K + 1 or P K + 1 it is the same thing 

conditioned on Q Y K, ok. 

So, this notation is just saying that right so, what we have is basically that. So, what we 

do to equation 1 to inequality 1 is just that we put in these expressions and then since the 

left hand side now and then we take expectation over Y K. You take just take a 

expectation over Y K to get this ok. Now, right, so we get this equation for and so, now, 

what we want. So, we can now go ahead to finish the proofs of the induction step the 

extending the induction hypothesis. 
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At the top level what we wanted to do to extend the induction hypothesis was to prove a 

bound on the following expression sum over i = not K, but K + 1 expected value of P X i 

not = Y i given X upto K + 1 square + P X i not = Y i given Y upto K + 1 whole square 

ok. 

So, we wanted to basically bound this using the KL divergence, but we can already see 

the following from. So, let us now look at it from the point of view of the coupling we 

have constructed between X 1 through K + 1 and Y 1 through K + 1 we have that for all 

i. So, let us look at i at most K ok.  

So, let us look at the first K terms of the sum any any term in the first K terms of the 

sum. So, for any such i that is at most K we have. So, we have that this expression is just 



= probability X i not = Y i given X K and X K + 1 this is by definition X this is 

everything up to K and then the K + (Refer Time: 22:00).  

But, by our coupling construction basically it does not matter whether K + 1 is there or 

not ok because K X K + 1 is really independently generated of X K comma y K ok x K + 

1 just follows it is own distribution P K + 1. So, once X K is there the conditional 

distribution of X i comma Y i just depends on X K does not depend on X a + 1; just 

because of the nature of our particular coupling here ok. 
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So, since X K + 1 is independent of X K, Y K ok that is the reason. The other term here 

for any the conditioning or Y K + 1 so, this is just = so, for any i at most K this is just = 

the probability that X i not = Y i ok given. So, recall that Y K + 1 consists of Y K and 

the Y all the way up to K and then the last Y K + 1. 

So, again we can drop Y the last Y K + K + first element of Y since we have the Markov 

chain Y K. So, Y K + 1 just depends on Y K and it does not depend on X K ok. So, Y K 

+ 1 is irrelevant to find the conditional probability of X i not = Y I given all the first K + 

1 elements ok because of this Markov chain structure here. 

So, what we have finally, is that this is = if you split the sum into two parts – one 

containing all terms up to K and one containing the K + first term. So, in the first term up 

to i = 1 through K we will use these equivalences and we can essentially this allows us to 



replace K X all the way up to K + 1 with X all the way only up to K + P X i not = Y i 

given Y all the way up to K only. 

And, then we have the last term which is the term initialize that K + 1. So, that is P X K 

+ 1 not = Y K + 1 given X all the way up to K + 1 the whole square + the same thing 

same event conditioned on Y K + 1 whole square.  

And, now we are in a position to finally, bond this we will use the induction hypothesis 

on the first sum ok. Note that we have massage the first sum into exactly the form that 

the induction hypothesis for n = K guarantees us and we will use inequality for only K + 

1 part ok on the remaining part. 
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So, let me say induction hypothesis for n = K + inequality 4. This is what gives us the 

authority to write this as upper bounded by D Q Y K with P X K + by 4 it is a right hand 

side of 4 is basically Q Y K + 1 given Y all the way up to K with P X K + 1 which is 

itself the conditional distribution of X K + 1 with respect to X K given Q Y K and by the 

chain rule of KL divergence this is exactly what we need which is 2 D Q by K + 1 with P 

X K + 1 this is by the KL divergence chain rule ok. So, that basically completes the 

induction argument. 
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It only remains to now show the base case of Marton’s conditional transportation cost 

inequality which is n = 1. So, we just have to show the inequality holding for the n = 1 

case. So, for this let us introduce some new notation. Let us introduce this new notion of 

a distance between two probability measures which we will call d 2 Q P distance or 

divergence between probability measures as the sum over X of P x - Q x. 

So, we are doing this for discrete distributions only, but it can easily be extended by the 

Radon-Nikodym derivative mechanism for arbitrary distributions ok all under the square 

root ok where the + notation just means that. So, x +, for instance, is just taking max of x 

with 0 which just gives you the positive part of x. 
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You can also write it in terms of the two norm over of random variables as the is the L 2 

norm of the Radon – Nikodym and derivative of 1 - dQ by dP. So, the + sign here and 

the two norm as defined in the standard. So, it is the two norm of any random variable is 

the square root of the expected value of its square, this is ok. Square root of its second 

moment. 

So, here is a lemma which is very similar to the sort of a transportation cost lemma for 

the total variation distance. So, we have that given any two random variables any two 

distributions P and Q there exists a coupling X, Y of P and Q such that the least value of 

E P X not = Y given X the whole square + P X not = Y given Y the whole square equals 

d 2 Q, P square + d 2 P, Q square ok, this is actually an optima. 
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So, it basically says that d 2 Q, P square + d 2 P, Q square is in some sense an optimal 

transportation cost. So, it is the solution to a transportation cost problem ok because the 

left hand side is a variational problem over all couplings of P and Q. Now, before 

proving this lemma so, let us say before showing this lemma let us use it to. So, let us 

use it to show the base case of Marton’s conditional transport conditional transportation 

inequality ok. 
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So, let us define again the Radon-Nikodym derivative between Q and P as r so let r of x 

for every discrete outcome x we defined as the ratio Q of x by P of x for all x. Then, we 

can write this equality that says that d 2 Q, P whole square + d 2 P, Q whole square is 

nothing, but the expected value under the P measure of this quantity 1 - r X + square + r 

X - 1 + square divided by r X. This is easy to check. 

And, let h of t denote the function 1 - t log 1 - t + t for t less than 1 and h of 1 is defined 

to be 1. So, this is the familiar h function that we have seen before while analyzing the 

tail of the Poisson distribution it is connected intimately to moment generating functions 

of the Poisson random variable. 

So, one can prove this easy inequality that says that h of t is lower bounded by t square 

by 2 if t lies between 0 and 1 and t square by 2 1 - t if t is negative. So, this is something 

that you can easily check and these (Refer Time: 32:04) will come in very handy.  

By the way h is also the same function that was used to in the manipulations to derive the 

Bennett and Bernstein inequalities. So, moving on let us, so with these lower bounds for 

h we can actually use these lower bounds for h to bound each of these terms in the right 

hand side of the t Q d 2 Q, P square + d 2 P, Q square expression. 
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So, thus with this we can write that 1 - r of x for any x 1 - r x + square just at most 2 * h 

of 1 - r x + ok.  



Note that 1 - r x + is always bounded between 0 and 1 and on the other hand, we have r x 

- 1 + square by r x is at most twice h of the negative of r x - 1 + ok which in turn yields 

that if you go back to d 2 Q, P square + d 2 P, Q square and plugging in the upper bounds 

on the right hand side we have d 2 Q, P square + d 2 P, Q square is at most twice the 

expectation under P of h of 1 - r X + + h of the negative of r X - 1 +. 

And, this is your write out explicitly turns out to be exactly the sum over all x of t x the 

expectation under P of r x log r x + 1 - r x, ok. So, the second term just becomes 0 

because it is the sum of P x which is 1 - the sum of Q x which is again 1. So, 1 - 1 

cancels out and what remains is just twice the KL divergence between Q and P ok. 

So, what we have shown is that d 2 Q, P square + d 2 P, Q square assuming this lemma. 

So, this lemma allows you to relate it is a transportation cost lemma that allows you to 

basically say that there exists a coupling for which this equals d 2 Q, P square + d 2 P, Q 

square and what we have shown is the right hand side is upper bounded by twice D Q P. 

So, that completes the proof Marton’s transportation conditional transportation cost 

inequality modulo the proof of the lemma. 
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So, let us now do the proof of the lemma to wrap up this entire discussion. So, what does 

the lemma ask us to show? The lemma basically says find a coupling between X and Y. 

So, with that in some sense the probability the conditional probabilities of discrepancy 

between X and Y are kept to the least possible amount ok. 



So, given so, let us take any coupling of X and Y following the marginals P and Q given 

marginals P and Q we have that the probability of X = Y given so, not discrepancy, but 

equality. So, probability that the joint pair lines on the diagonal given X = small x is by 

definition probability X = x, Y = x divided by probability X = x. 

And, you can from the top numerator you can factor our probability Y = x into the 

conditional probability of X given Y = x to show that this is bounded above. So, because 

this is a conditional probability it has to be bounded by 1 above and it is also bounded by 

Q x by P x which is what you get when you factor in factor out the numerator as P Y into 

P X given by ok. 

So, therefore, the expected value of E X not = Y given X the whole square which is one 

part of the lemma is left hand side is lower bounded by the expected value 1 - Q x by P x 

+ the whole square just by algebra and this we know is = d 2 square Q, P ok or d 2 Q, P 

square ok. 

Similarly, if you condition on Y we have expected value in that of a P X not = Y given Y 

whole square is at least d 2 P, Q whole square ok. So, what we have shown is basically 

that the left hand side in the lemma is lower bounded by the right hand side. So, this left 

hand side. So, the minimum value is at least the right hand side. Now, what we have to 

complete in order to show the to finish the proof is to show that there actually exists a 

coupling that attains equality. 
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So, we next exhibit a coupling attaining exactly d 2 Q, P square + d 2 P, Q square and 

what is this coupling? In fact, we can reuse the same coupling that we used to show the 

maximal coupling lemma ok. 
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In fact, this is the same coupling your use used to show the maximum coupling lemma, 

ok. Recall what was the maximal coupling lemma we showed? Basically we showed that 

there exists a coupling. So, rather the minimum over all couplings between P and Q of 

the probability of X not = Y and = the total variation distance between P and Q. So, we 

will use the same coupling and just to recall what that coupling was so, we drew a 

picture let me just recall that picture. 
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So, if you define A as the set where. So, let us say A is the set of all x where P dominants 

Q. So, we basically split this 2D square into a and a compliment this is a on the X part a 

compliment on the X part a and a compliment on the X and Y parts and this was the 

diagonal where we put as much probability mass as possible. And the remaining 

probability mass was all put on the northwest quadrant here, ok. 

So, now, let us just use the same coupling. So, just to put it down formally this coupling 

we called P star x, y which is this define to be min p x, q x q y if x = y, it was defined to 

be p x - q x into q y - p y the northwest quadrant divided by d TV the total variation 

distance between P and Q on x belonging to A and y not belonging to A and 0 otherwise 

ok. So, that was exactly this coupling which put mass exactly on the diagonal and the 

remaining mass on the northwest corner. 
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So, we have in this case so, for this coupling we can easily so, we can evaluate P star X 

not = Y given X = small x; now, what is probability X not = Y given X = small x? Well, 

if X is = small x and small x is in A, then there is some problem some there is potentially 

some nonzero probability of Y not equal in X.  

But, on the other hand is X is in a compliment then in fact, Y can Y always has to be = X 

by our construction ok. So, this is only non this is this can only be nonzero if small x lies 

in A, ok. So, this in fact, is just by our construction it is p x - q x + divided by p x, ok. 

So, the conditional probability for any.  

So, if you look at the first vertical black line here the probability that Y is not = X given 

X is at this vertical X is at = small x is simply the probability of the segment in the 

northwest the probability on the segment in the northwest corner divided by the total 

probability of this vertical line which is p x and that is exactly what we have written. 
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And, this implies that the expected value of this probability conditional probability 

square is just the sum over all x of. So, imagine squaring the right hand side expression. 

So, divided by p x square, but you also multiply by a p x because you are taking 

expectation with respect to small x. We just get p x in the denominator sorry, as opposed 

to a p x square this is exactly d 2 Q, P ok. 

And, exactly along the same lines we also has expected value of P star X not = Y given 

Y = small y whole square just by symmetry in fact, we have this = d 2 P, Q. And, that 

completes the proof of this lemma and hence of Marton’s conditional transportation cost 

inequality. 

Thank you. 


