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Hi all, the aim of today’s lecture is to use the transportation method which we have covered 

in the past two lectures to try to prove concentration inequalities for functions that do not 

just have the standard bounded differences property for which McDiarmid’s inequality 

applies, but the aim is to actually relax bounded differences conditions as much as possible 

and in today’s lecture we will actually see a very powerful example of such a condition 

for which the transportation method can readily give us answers. 

So, before we start let us just take a few moments to review what we have seen about the 

transportation method.  

Now the core ingredient as you recall of the transportation method or transportation cost 

or optimal transportation method for proving tail concentration inequalities is what is 

called the transportation lemma which is essentially a bridge between control of the 

moment generating function or the log moment generating function. And control of 



differences of expectations of the quantity that we want to control with respect to different 

probability measures. 

So, the transportation lemma basically says one version of the transportation lemma says 

that you can enjoy sub Gaussian moment generating log moment generating functions if 

and only if you can show that certain transportation cost type terms like E Q Z - E P Z for 

do different probability measures Q and P can be bounded let us say as square root of the 

KL divergence between them, so these two statements are equivalent. 
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And in the last lecture we were able to prove the famous McDiarmid’s inequality or 

bounded differences inequality using this very recipe which is given by the transportation 

lemma. So, in that in the course of doing that we essentially reduce the problem of showing 

McDiarmids inequality for a bounded differences function f or Z = f(x). 

By exhibiting by reducing to the problem of exhibiting a coupling between a product 

measure which is the distribution of the X’s on which the function f is applied and the 

other measure to be coupled is an arbitrary measure Q over n symbols let us call them Y 1 

through n such that the following inequality held which is that the summation of the 

squares of the discrepancies at each coordinate should be bounded by the KL divergence 

ok, the overall KL divergence between the enfold probability measures. 



And this is basically like an optimal transportation cost inequality which is called Marton’s 

transportation cost which Marton’s transportation cost lemma actually shows. So, this is 

exactly the content of Marton’s transportation cost lemma that we proved earlier. The 

ingredients in showing this result will basically Pinsker’s inequality that helped us deal 

with the n = 1 case. 

So, in n = 1 case it says that the probability of X i not X 1 not = Y 1 should be at most the 

square root of half the KL divergence between x and y between the distributions of X and 

Y and this is exactly the famous Pinsker’s inequality which was proved using the notion 

of a maximal coupling ok. And to extend it from n = 1 to general n we use an induction 

argument at the heart of which was the chain rule for KL divergence. 
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So, just to remind you of what this chain rule looks like it basically says that the divergence 

between Q on n symbols and the product measure P on n symbols or in fact, any measure 

P on n symbols is = the sum over all i of the conditional KL divergence of Y i given Y all 

the way from 1 to i - 1 with respect to the P measure or the conditional P measure for X i 

given all symbols X from 1 to i - 1. 

Recall that the notation X subscript something superscript something denotes the vector 

consisting of X starting from the lower index and all the way moving up to the upper index 

and when convenient we will omit the 1 in the subscript as a default ok. So, this is 



conditioned on the realization Q realization of Y i i - 1 and averaged out with respect to 

the Q measure of Y 1 through i - 1 ok. 

So, just to make it a little more precise this is this term is just the conditional KL divergence 

is just defined as expected value of a vector of i - 1 symbols distributed according to Q the 

marginal of Q on the first i - 1 symbols. So, once you have fixed y small y 1 to i - 1 you 

just go ahead and evaluate the standard KL divergence of the conditional measures. 

Y i - 1 = small i y - 1 with respect to the same thing done for P Y i given Y i - 1 = small y 

i - 1. So, this is the expression for the chain rule for KL divergence and we saw that you 

could essentially extend a coupling for n - 1 symbols X Y up to length n - 1 using coupling 

ideas to a new coupling which covers an extra symbol.  

So, X n coupling to Y n ok. So, that was basically a recap of what we did with the 

transportation method in order to prove the bounded differences inequality or McDiarmid, 

McDiarmid’s inequality. 
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Now, let us move let us try to move beyond this and try to see how much flexibility the 

transportation method allows us to deal with functions that are not strictly having bounded 

difference properties. So, let us call this beyond bounded differences ok which in other 

words is also McDiarmid McDiarmid’s inequality using transportation using ideas from 

transportation. 



Now the let us consider a setting as follows; consider a function f which is not which is 

which satisfies a property that is weaker than the bounded differences property. So, f is a 

function such that let us say f(x) - f(y) can be bounded by an x dependent type bounded 

difference vector of the form c i of x indicator that x i and y i differ ok, for all vectors x 

and y in the Cartesian product x n ok. So, this property let us call this property for future 

use as property star. 

So, note that if c i of x if the ith coefficient as a function of the entire x the vector x does 

not depend on x, but it is just some constant c i. Then this is exactly the bounded differences 

property satisfied with the vector c 1 up to c n, but; however, we have been more flexible 

in that the coefficient the sensitivity at the ith coordinate if there is a difference depends 

on c i of x and that c i can depend on x ok.  

So, this is strictly more general than the standard bounded differences property and we 

will also assume that Z is the result of applying f to x to the vector x. 

So, X is really X 1 through n or omitting the subscript where the X i are all independent 

ok. So, this is the setting and will actually show that the transportation method actually 

kicks in very neatly to help us bound the tails of set. So, before that let us recall that we 

have actually considered concentration of such functions beyond bounded differences in 

our application of the entropy method that we saw before the transportation method. 
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So, let us recall that before we move on recall a typical let us say “beyond bounded 

differences” result let me derive using the Entropy method ok earlier. So in fact, the results 

from the entropy method do help us analyze this situation above. So, if Z = f(x) and Z i is 

defined as the minimum over the ith coordinate of f when you fix all the other components 

to be the components of x. 

So, this is Z i this is really Z i as a function of x ok. In fact, yeah. So, x i - 1, x i prime and 

x i + 1 going all the way up to n for all i and if we have that the summation of i = 1 to n 

the difference between Z and Z i square is bounded above by an absolute constant v it is 

almost surely. 

Then the entropy method helped us establish an upper tail inequality saying that for all t 

positive the probability under the natural measure of X 1 through X n of Z exceeding its 

own expectation + t is at most let us say e raised to - t square by 2 v. So, we got a sub 

Gaussian tail bound with the sub Gaussianity constant depending on this upper bound on 

the almost sure upper bound on summation Z - Z i whole square ok. 

So, this was basically the way we did it one of the key ingredients in this proof using the 

entropy method was to first show a “modified log Sobolev inequality” if you recall ok and 

that helped us basically apply the entropy method to derive such a result.. 

So, how can we map this to the problem setting at hand? So, if you recall so, we need to 

satisfy this condition here ok. And if we have the condition star for our function f you can 

easily argue that an upper bound v for Z - Z i whole square is can be used with the 

summation c i x the whole square maximum over all possible vectors x ok pardon me. So, 

this is basically because if you have condition star then the least that f(y) can get ok. 

So, if you just think of holding x constant at all positions, but position i and minimizing 

and trying to find the least value of y where y is defined as x in all, but the ith coordinate 

and letting it range freely over the ith coordinate then on the right hand side you basically 

have only one term which is the indicator x i not = y i and for that term and almost sure 

upper bound is c i of x ok. 

So, by analogy you can just sum over all n coordinates of the squares of the differences to 

get v as to get summation c i square x as a proxy for v. 
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So, let me just remark here that the condition star that we have yields v = the supremum 

over all pairs x of the sum are = 1 to n c i square of x ok. So, you can use you can apply 

the entropy method to derive this inequality with v being exactly this quantity here the 

maximum over all x of c i square x. 

Now there are several unanswered questions among them is the issue of what about the 

tail bound for the other side. So, this is only a right side tail bound, what about the left tail 

and so on. So, in fact what we will show now using the transportation method are two 

things. So, we will show using the transportation method, two things one is we will recover 

the same upper tail bound here using ideas purely from transportation optimal 

transportation. 

So, the same upper tail bound for Z as above and moreover we will rather remarkably show 

without any extra effort a lower tail bound as well. So, a lower tail bound that is the 

probability that Z is less than = E Z - t with much better variance parameter in fact, with 

variance parameter of only the expectation of the sum of c i square X ok. 

Not even the supremum value of c i square X overall x supremum of summation c i square 

X, but in fact, a potentially much smaller parameter which is only the average value of 

summation c i square X ok without any extra effort ok. So, this is what the transportation 

method allows us to show. 
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As a side note if you are wondering what about the scope of the entropy method to prove 

a lower tail bound. 

In fact, there is no such lower tail bound known using ideas from the entropy method 

without additional assumptions. So, the lower tail bound not known currently not currently 

known to be drivable using the entropy method, alone without perhaps additional 

assumptions that have to be made. So, one example of an assumption that gives you a 

lower tail bound via the entropy method which is there in the textbook the concentration 

inequality textbook is of the following form that if you consider. 

So, if you consider yeah if you consider maximizing f at the ith location when all else is 

fixed x i + 1 to n ok and take the difference of this with the original f(x) then for instance 

this must be bounded by 1 almost sure. So, such an assumption helps you prove lower tail 

bounds, but even then the lower tail bound is does not have this improved variance 

parameter, you can look this lower tail bound derivation up in the textbook during the 

entropy method. 

But what is remarkable rather remarkable here is that the transportation method easily 

allows us to prove these two results with essentially the same amount of effort ok. So, let 

us go ahead and write down the formal result which we will argue in this and the next 

lecture using the transportation method. So, this is the following result. 
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So, let us assume X is a vector of independent random variables are distributed according 

to the probability distribution P which is a product measure over n coordinates and let us 

Z = f(x) and we have f satisfying the property that you can bound f(x) - sorry you can 

bound f(y) - f(x) sorry f(x) - f(y) in terms of x dependent hamming sensitivities. 

And let us also denote v as the expected value under the natural distribution of x of 

summation c i square of X and v infinity as the largest value of such a sum of squares 

squared coefficients. So, sup over all possible arguments x of i = 1 summation I = n c i 

square of x. So, v infinity is clearly lower bounded by v. 

And the result of the theorem is that under the P measure the measure of the independent 

x i s the probability Z Z exceeds E P Z + t is at most e raised to - t square by 2 v infinity 

and on the lower tail side on the left tail side probability Z Z less than expected value of Z 

- t is at most e raised to - t square by 2 v which is a much lesser sub gaussianity constant 

than v infinity in many cases in this wholes for all t positive. 

So, this is the content of this beyond bounded differences kind of result for which the 

transportation method comes in very handy as we can see. 



(Refer Slide Time: 21:13) 

 

So, let us move on to the proof of this result which will take us some time to execute, but 

at a high level the I will outline in this lecture the high level idea of the proof. So, we are 

going to use a transportation lemma. So, the first order of business is to consider 

probability measure Q absolutely continuous with respect to P. 

And let X comma Y distributed according to P we are coupling of the measures P and Q 

ok in that order. So, X is distributed to the marginal X follows the distribution P the 

marginal Y is distributed according to Q and P is a product measure ok. So, P is really P 1 

all the way up to P n if we will also abbreviate as P 1 to n or P n occasionally. 

So, let us consider bounding the expected value of Z with respect to Q - the expected value 

of Z with respect to P as the transportation lemma requires. So, by coupling this is just = 

E under the coupling measure the joint distribution P of f Y - f X ok.  

Now once you have f Y - f X together you can invoke the beyond bounded differences 

kind of property or the smoothness property for X in the in terms of the hamming distance 

to say that this is upper bounded by the sum of c i of Y into indicator Y i not = X i. So, this 

is by the f smoothness property which is also the equation star that we wrote earlier. 

Now, what we can do is, we can take we can condition this expectation iteratively on Y 

itself the entire vector Y. So, imagine taking a double expectation with respect to Y and 

so if you do that you basically get the expected value of sum i = 1 to n c i of Y into the 



expected value of the indicator given Y that is just the probability of Y i not = X i given 

the vector Y. So, this is just by the property of iterated expectation ok. 

And now what we can do is the thing inside the expectation looks like an inner product it 

is the summation of i = 1 to n into sum a i into sum b i. So, to upper bounded we can use 

something like Cauchy Schwarz whereby we get i = 1 to n c i Y square under the square 

root into another summation of all these probabilities Y i not = I am sorry X i continue 

given Y the whole square under the square root ok. 

So, this is basically by Cauchy Schwarz and which is inside the expectation nothing about 

the expectation is being used here, at this point to continue upper bound in this we can now 

use the probability version of Cauchy Schwarz. So, which basically says that the expected 

value of a product of random variables. So, there are two random variables sitting here this 

is the first random variable and this is the second random variable. 

The product of two random variables the expected value of two random variables is at 

most the L 2 norm in some sense of these the product of the L 2 norms of these random 

variables were L 2 norm defined with respect to the expectation operator. So, formally this 

just becomes the expected value of some c i Y square under the square root into another 

square root of the expected value of the sum of all these probabilities conditional 

probabilities square ok. 

This is again by Cauchy Schwarz in its probabilistic flavour ok and it useful to notice here 

that the quantity inside the first expectation by definition is almost surely upper bounded 

by the infinity ok, as per our definition of v infinity, v infinity is basically the largest 

possible value of the sum of c i squares ok. 
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So, finally, we get that E Q f E Q Z - E P Z is upper bounded by square root v infinity into 

the square root of this sort of transportation cost like them ok. So, we get this now along 

very similar lines we can apply the same technique to the random variable - f(x) or - Z ok 

to get the following.  

So, E Q - Z - E P - Z can in a very similar fashion be upper bounded. So, what you will 

have now is, basically you will have the expected value of c i summation c i X square 

through expected value. So, we will have X instead of Y ok. 

We will have X playing the role of Y into the same square root of the expected value of 

the sum of these conditional probabilities given X instead of given Y ok and by definition 

this is exactly = v because now the expectation is over the X or the P measure ok. So, 

notice that we have basically obtained two bounds one for the difference of expectations 

of Z and one for the difference of expectations of - Z. In both cases there is a constant that 

shows up which is either v infinity or v. 

So, the Z inequality will help us give a right tail bound for Z and the - Z inequality will 

help us give a left tail bound concentration bound for Z and all we need to handle is that 

we need to show that the second term which is this transportation like cost which is the 

expected value of sum of conditional probabilities of discrepancy square should somehow 

be related or upper bounded by the divergence between the measures ok. 
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So, therefore, the upshot of this calculation is that via you know via the transportation 

lemma we will be done if we can show ok what is called Marton’s conditional 

transportation cost inequality which is essentially the statement that there exists a coupling 

of X and Y or of the measures P and Q, such that the under that coupling the expected 

value of the conditional probability of discrepancy the square of it given X + the same 

symmetric version given Y ok. 

So, the sum of these two conditional discrepancy probability squares is at most 2 D Q P 

for all probability measures Q absolutely continuous with respect to P which is basically 

assumed to be a product measure ok. So, this is exactly Marton’s conditional transportation 

cost inequality which we will show in the next lecture. 

But assuming this what one can do is one can just go and use it in the appropriate tail 

bounds to bound these conditional probabilities, they are bounding the sum of these 

conditional probabilities probability squares. So, that naturally implies the same bound for 

each of these conditional probability squares and you can relate it to the divergence and 

then use the transportation lemma to sort of transfer it to be control of the log moment 

generating function. 

And finally, Chernoff will kick in to give you the appropriate tail bound ok. So, that 

basically is the summary of how the transportation method gives you both tail bounds with 



the appropriate variance parameters v infinity or v just by invoking this powerful Marton’s 

conditional transportation cost inequality which will be the subject of a next lecture. 

Thank you. 


