Concentration Inequalities
Prof. Aditya Gopalan
Prof. Himanshu Tyagi
Department of Electrical Communication Engineering
Indian Institute of Science, Bengaluru

Lecture - 15
Transportation lemma and a proof of McDiarmid's inequality using the transportation
method
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Welcome to this lecture. This lecture will cover what is called the transportation lemma and it
will also expose us to the first concrete application of the transportation method to prove
familiar concentration inequality which we have you shown using other methods which is the

term inequality for functions with boundary differences.

So, let us recall from the previous lecture that, a transportation inequality or a transportation
cost inequality is basically useful bound on the optimal transportation cost or the optimal cost
for a transportation problem which is defined over all couplings or transportation plans

between marginal distributions P and Q and we had this notation ¢ P, Q for it.

So, ¢ P, Q is just the minimum possible expected transportation cost over all join distributions

with given marginals and any upper bound on it is essentially a transportation inequality.
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So, how do transportation inequalities help lead to results on measure concentration? Ok. So,
the core part of this is because of the following result which is called which one can call a
transportation lemma. So, this result essentially says that bound on the log moment

generating function of a random variable Z ok.

So, any bound of the following form which is a quadratic bound exists for a random variable
Z if and only if corresponding bound exists for the differences of expectations of Z with
respect to two measures Q and P being bounded by a the \ the relative entropy or k 1

divergence between Q and P.

So, the statement that there is a sub Gaussian log moment generating function for Z for
centered Z is equivalent to the fact that for every possible probability distribution Q
absolutely continuous with respect to the original distribution P of Z. We have that the
expected value of Z according to Q - the expected value of Z according to P can be bounded
by some constant times the \ k | divergence between Q and P. So, this is the transportation

lemma.

In fact, we have already seen one side of it in the introduction to the transportation method,
we argued essentially that if we had bounds of the latter form where E Q Z - E P Z is

bounded as a square as a function of V' of the k 1 divergence. Then you could get bounds on



the log moment generating function and that was basically by appealing to the variational

formula for k 1 divergence.
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So, that is what we will exhibit again in this proof. But this lemma essentially formulizes the
fact that bounds for moment generating functions and transportation cost type bounds are
essentially two sides of the same coin. So, we start by recalling the standard Gibbs variation

formula for k | divergence which we have seen and derived in earlier lectures.

Which states that the log moment generating function of a centered random variable is in fact,
= the solution of a optimization problem over all absolutely continuous distributions Q with

respectto Pof A E Q Z - E P Z - D Q with respect to P.
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So, for showing the forward part which is the only if part or the necessity part. So, if we
assume that for all A the centered log moment generating function right. So, by the way we

will refer to the log moment generating function of Z - E Z under P as this C function.

So, if for alright. So, if for all A we have this quantity being bounded by v A %/ 2 which is the

first statement here right. In fact, we can just say that for all A non negative.
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Then for Q absolutely continuous with respect to P we can use the Gibbs variational formula
to give us that D Q P is >. So, we just. So, since the log moment generating function is the
supremum of this, we can always apply this for any Q< absolutely continuous with respect to
P and we will only get a quantity that is lower than log moment generating function and we
can rearrange terms algebraically to get that D Q P is at least L times EQZ-EPZ-v A%/ 2
ok.

Which is an upper bound on the log moment generating function and we can just treat this
right hand side as a function of A. So, if we just maximize the right hand side of this
expression. In fact, we can just maximize this over right over A gives to give DQP > (EQ Z

-EPZ)?*/2vok.
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Now, for the other side for the if part or the sufficiency part of the lemma. So, if for all
absolutely continuous Q the hypothesis is that the expected value of Z with Q - E P Z is at
mostV 2 v D QP
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Then we have that for every A non negative, the log moment generating function of Z with
respect to the measure P is at most. So, we just substitute the upper bound for EQZ-EP Z

in Gibbs variational formula.

So, we get A Y 2 v D QP -D QP and we can just treat this as a maximization problem over
the variable D Q P or v D Q P. So, the supremum over x and constraint A \ 2 vinto x - X2

and this by exact analytical minimization gives you the closed form answer A* v /2.

So, this is the content of this transportation lemma. In fact, this lemma is little more general
than what we wrote as then what we just wrote. So, we will just make a remark here that the
lemma extends to any nice function nice enough function g. So, essentially we need g to be
convex and with the smooth derivatives as follows. You can check this in the textbook for the
more general version. So, for all A non negative if we have the log moment generating

function of Z - E Z being bounded by g of A.

Some function g of A this is equivalent to the statement that for all absolutely continuous Q E
P Z - E Q Z is bounded above by the dual function g star the Legendre dual of g its inverse
applied to D Q P. And so, this be specific lemma we wrote above is just a special case of the

more general result when the g function is the quadratic function ok. 1



So, with this transportation lemma in hand this transportation lemma essentially gives you the
bridge between you know transportation type inequalities like these and log moment
generating functions of random variables from which we already know there is a rout to go to

showing tail concentration using the standard Cherenkov technique.
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So, we now come to what is probably the most important initial application of the
transportation method. To derive something that we already seen before which is
MacDiarmid’s inequality or the bounded differences concentration inequality for stable

functions of independent random variables.

So, we have derived MacDiarmid’s inequality using other techniques like the entropy method
and even much more you know more basic sense by using the Asuma Hobting method. But
here we will derive it through the lengths of the transportation lemma. So, we will assume the
same hypothesis as MacDiarmid’s inequality which is that there is a function f defined on n
variables which satisfies the bounded difference property with a set of constants one per

dimensions C 1 through C n.

So, it means that if we keep all, but one coordinates x i the same and wiggle x i the function
value you can change by at most an amount C i. Let P be a product distribution over x n was

to say that f acts on a bunch of n independent random variables and let Q be any other



distribution. So, we can start by saying that for any coupling or join distribution yielding

marginals P and Q.
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We can always write that E Q f X. So, recall that we basically get want to use the
transportation lemma to get a bound on the log moment generating function and the central
object on which we need an upper bound for using the transportation lemma is expressions

like these.

EQ fX-EPfX. So, think of f X as z. So, you can interpret this so this is the power of the
coupling method. So, you can interpret this as the expected value of y distributed according

to Q of f'Y - the expected value of X distributed according to P of f X ok.

The same random variables expectation being taken under to different measures and we can
actually now use the coupling which is bold face P to actually write things under a common

expectation as the E without any subscripts which is sort of attached to this Pof Y - f X.

So, its a single expectation that is equivalent to the difference of two different expectations.
So, this is just because P is a coupling between P and Q ok. So, the individual marginals are

the right marginals and now that we have f'Y - f X inside the expectation.



We can actually use almost sure properties or point wise properties of f which in this case is
the bounded difference property to write that this expectation. In fact, the inner term is
bounded almost surely. So, applying the expectation does not change things i = 1 to n. We
know that this almost sure bound holds this is by the bounded differences property we

assumed and this now sets the states for this to look like a transportation cost inequality ok.

(Refer Slide Time: 14:57)

So, this is exactly = if you interchange summations and expectations the sum of C i times the
probability that X i and Y i are different ok and we can further upper bound this by using
something like Cauchy Schwartz sum over all i of C i* under the \ into the sum over all i of

the squares of these probabilities under the join distribution P.

This is let us say by using Cauchy Schwartz ok and so, what we have achieved using this
exercise is an upper bound on E Q f - E P f in terms of some constant which is the ¥ of the

this 1s the 1 2 norm of the C vector the bounded difference vector C into some other term.

So, we will only benefit if we can upper bound this remaining the last term here on the right
in terms of the k 1 divergence between P and Q distributions P and Q ok. So, that will help us

to directly use the transportation lemma and push things through.
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So, by the transportation lemma it stands to a reason that you know it is enough to show that
for instance there exists a couplings. So, if we show there exists a coupling a nice enough
coupling that we can find a P between P and Q such that the sum over all i of P probability

that X i not = (Y i)? use let us say at most some multiple of the k I divergence D Q P/ 2 ok.

So, it is enough to show this kind of property to get. So, using the transportation lemma we
can just push this through to get the log moment generating function of Z at A being bounded

/i=1tonCi?intoA?/ 8 for all A non negative.

Which in turn will imply a right side tail bound for the deviation of f f of X about its mean ok
by Chertoff or sub Gaussian random variables. The original P probability of f of x the random
variable f of X exceeding its own expectation by a number t is at most it has a sub Gaussian

type tail modulated by the constants C 1 ok.

So, the main thing that the transportation lemma assures us is enough to show is a statement
of the following form that one can couple P to Q while keeping this sort of transportation cost

like expression on the left not more than a multiple of its k I divergence.

So, this statement or property that we require which we will let us we will call hash is
essentially a unique quality involving transportation costs because for each i1 probability we

have already seen that for each specific i1 the probability that X i is not = Y 1 is actually an



expected transportation cost where the cost structure is given by the indicator that X i not =Y

1 for every individual tuple X i and Y i ok.

So, its the hamming coster hamming transportation cost and so, this is essentially an
inequality that involves transportation cost and a bound on them ok. So, the strong result that
Marton actually established is basically this exact result this transportation cost inequality

that allows us to prove successfully the bounded differences inequality.
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So, in fact, let us remark that this property the existence of such a coupling star was shown
affirmatively it was answered. So, was shown to hold by first time by Catlin Marton in 1986
and there have been several development after this in the use of transportation inequalities to

bridge to concentration of major inequalities.

So, let us go ahead and study Marton’s transportation cost inequality which is the last Ps
remaining in this exercise to successfully derive MacDiarmid’s bounded differences
inequality. So, here is Marton’s transportation cost inequality. It says that you have a bunch of
random variables X 1 through X n distributed independently according to the joint measure P.

So, P with the ith marginal of P being denoted as P i P 1 through P n.

And Q is any absolutely continuous distribution with respect to P for the set of random

variable X 1 through X n in fact, let us assume that Y is a bunch of random variables n



random variables distributed jointly according to Q. Then there actually exists a coupling
between P and Q for these n random variables X 1 through n and Y 1 through n satisfying the
property that the summation was the disagreement probability squared over all i between X i

and Y i is at most '% times the k 1 divergence between Q and P.

So this is exactly Marton’s transportation cost inequality which completes the derivation of
MacDiarmid inequality MacDiarmid’s inequality via the transportation lemma and finally,
using Chernoff ok. So, the last part of this lecture is going to be the proof of Marton’s
transportation cost inequality we will were again we will actually build a build or find an
explicit coupling which satisfies this property, just as we did with the maximal coupling for

instance.

(Refer Slide Time: 22:28)

-
B FVVYV
s wyY TV

Pmo;f‘ inc[vtcjflorl ower n -

7%@52 (ese h=1 Bf mayfmsj Cs‘u\}f.ndar , J Pe ﬁO(X‘,Yr).‘
?P[XJ 7‘ >'] - dT‘l(ﬁ/QQ'

Lemna (Pmshv‘s Jnuwl'w!’y) L For Q<< [
2 |
dv(P8) € 4 D(qIr)

So, let us go ahead and do the proof of Marton’s transportation inequality. The proof is going
to be by induction over the number of elements n over the number of random variables to be
coupled. So, for the base case this is itself an interesting problem see n = 1 case and we
already know by the maximal coupling lemma that there exists one nice maximal coupling

which can couple X 1 through Y 1.

PX1not=Y1=dTVtdTV P, Q ok. So, there exists a P which can couple X 1 to Y 1 such

that this holds and so, all that is required to show is that the square of this quantity which is



the total variation distance P yeah. So, P 1 and Q 1 I would say. So, all we need to show by
the theorem for the base case is that the square of the total variation distance is at most 1/2 k 1

divergence that is exactly what is Pinsker’s inequality which we will now prove.

So, the base case for Marton’s transportation cost inequality is Pinsker’s inequality. So, it is a
generalization of Pinsker’s inequality. So, which simply says that for any Q absolutely
continuous with respect to P. The total variation between P and Q ? is at most 1/2 of D Q P ok

and the proof is by appealing to the transportation lemma.
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So, let us put A as the let us define A as the set where d Q / d P the radon Nikodym
derivatives of Q with respect to P or in the discrete case. Ah. So, this is larger than = 1
discrete case A is just the set of all elements whose Q probability is at least the P probability.
So, that d T V the total variation distance between P and Q is Q A - P A which one can write
equivalently as E Q Z - E P Z for the random variable Z being defined as the indicator

random variable for the set A.

Now, by Hoeffding’s lemma for the bounded random variable Z which takes values only 0
between 0 and 1 we have that the log moment generating function of Z if we center it is at

most its a sub Gaussian log moment generating function ok A %/ 8 there is a bound for it.
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And so, using the transportation lemma we can convert this into a bound on the EQZ - E P
Z. So, this by the way holds for all A ok follows that the E Q Z - E P Z must be at least must
be at most 1/2 D Q P ok. And that finishes the lemma because E Q Z - E P Z is exactly the
total duration distance d TV P and Q ok. So, the base case is done which is the familiar
Pinsker inequality that relates that helps us control total variation distance in terms of the k 1

divergence.
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Now, for the induction step let us assume that the claimed inequality in the theorem holds for
n = k. So, suppose the inequality in the theorem let us call it. So, we have already called it
star. So, suppose that the statement star holds the conclusion of the theorem holds for

collection of K random variables X 1 through K and Y 1 through K.

That means there is coupling that gives you the desired property. So, we will just extend that
coupling we will extend the coupling between X k. So, X superscript k will be used to denote
X 1through X k. The collection of variables random variables x one through X k and Y 1
through Y k to get. So, we will extend this coupling between these random variables to a
larger collection X up to k + 1 and Y up to k + I to get star to hold again for the larger

collection.
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So for n = precisely for n = K + 1. So, the key to doing this extension of the existing coupling
is as follows. So, let us first couple the last part so build a coupling. So, let us build a grand
coupling of the k + 1 collection of random variables. X from 1 tok+ 1 and Y from 1 to k + 1

as follows. So, first for any fixed Y. So, first for any fixed configuration of the first K Y’s.
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So, the first K y’s let them let me let us denote them as y small y 1 up to small y k or small y
superscript k. Let us define P y k to P subscript y k you should read this as bold P given the
configurations small y k small y superscript k as a coupling. So, let this P y K denote a
coupling that couples the k + first marginal of x which is P k + 1 with the K + first join

distribution of K + was conditional distribution to y k + 1 given the previous y ks.

So, denote this as Q the distribution the Q distribution of the k + first y given that the
previous k ys have been observed to have configuration small y k ok. So, let this be a
maximal coupling of these two distributions of. So, as random variables we can say its a
maximal coupling of X k + 1 the single random variable X k + 1 and Y k + 1 given Y k =

small y k.

We all we always know by the maximal coupling lemma we know that such a maximal
coupling always exists ok such that the discrepancy probability between these two random
variables that it couples is exactly = the k 1 divergence between the marginals that it couples

ok.

So, let. So, just get hold of. So, for any given conditioning or fixed past configuration small y
k of the ys let P y k denote maximal coupling that jointly delivers a pairx k+ 1 andy k + 1

given that small y k has happened ok.



And which also achieves the total variation constraint with equality in the transportation cost
problem. So, we will write it down explicitly later. So, given the past ys this basically gives

you a joint pair a fresh joint pairx k+ 1 and y k + 1 ok.
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Now, having done this take a coupling P let us call it that couples X k the first K X’s and the
first k Y’s. So, this couples P X k and Q Y k that is guaranteed to satisfy the inequality star
for n = k. We know that this is guaranteed to exist by the induction hypothesis. So, grab hold
of any coupling between X k and Y k that satisfies the inequality star and we will now use

this conditional extra coupling to extend the original coupling P X k, Y k ok.

And extend it to a coupling let us call the new coupling P X k + 1, Y k + 1 coupling these two
sequences with one extra element each which we will insist couples P X k+1and QY k+ 1

by. So, its defined in the usual manner.
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So, symbolically what one can say is that if we want the join distribution on X k + 1, Y k + 1
how you can generate a join sequence X k + 1 comma Y k + 1 with the respective marginals
is that you first generate X k Y k ok. So, you first generate X k comma Y k using the existing
coupling that is guaranteed by the induction hypothesis. Now having the Y k sequence in
your hand the previous Y all the way from 1 to k in your hand you use this new extra

coupling PY k.

So, you take small y k as the actual y k that has happened in the past and using that you can
basically generate a new X k + 1 and anew Y k + 1 conditioned on the exact Y k in the past.
There is no condition required in required on X k in the past because the new X is going to be
independent from the past Xs. So, what you do is you take. Firstly, you generate X and Y up

to length k and then you generate the P Y k.

So, you generate X k + 1 and Y k + 1 conditioned on y all the way up to k using the extension
coupling the conditional coupling to basically give you a sample from the entire sequence X
uptok+1and Y up to k + 1. So, this part gives you X k and Y k and this part by definition
of P'Y k gives you a new tuple X k + 1 and Y k + 1 that you can append to the existing
sequence X k Y k.



So, now, what we can; what we can write is that by the maximal coupling property of the
tailed the tail coupling P Y k for each possible value of the configuration in the past y

superscript k.
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We have that. So, this is the maximum couple maximal coupling property which ensures that
the probability under this y k of X k + 1 been unequal from Y k + 1 given X k=x kand Y

sorry. So, we do not need the subscript P y k this is under the extension coupling.
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So in fact, let me just be more precise and say that P under X k + 1 Y k + 1 let me just
constructed of X k + 1 not being = in the k + first symbol Y given the past of X is small x k
and the past of Y is small y k must be = the total variation distance between the distributions
that the tail and coupled which are P k + 1 and conditional distribution of Y k + 1 given Y k =
Y k small y k.

And by Pinsker’s inequality we know that this is at most V1/2 the k 1 divergence between the
conditional distribution Q Y k + 1 given Y k =y k with respect to the P k + 1. Distribution of
the k + first X k + first X by Pinsker which is just a one dimensional inequality and so, we
can just take expectation over the conditioning here to make it a single probability. So, this

implies that we when we take expectation over the past of x and the past of y up to time k.
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We get that under. So, of course, I am omitting the subscript X k + 1 Y k + 1, but all of this is
under the new coupling for X up to k + 1 and Y up to k + 1. So, this satisfies the property that
probability X k unconditionally X k + 1 not being =Y k + 1 is at most the expected value
under Q Y k of the v of 1/2 the k I divergence Q Y k + 1 the conditional distribution with
respectto Pk + 1.

And this by Jensen’s inequality for the concave \ function is bounded by the Y 4 the
expected value of the divergence of the conditional divergence ok right. So, this is by

Jensen’s inequality.
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So, finally, what we have is that the statement star for n = k + 1 its left hand side is simply the

sum over all i going fromito 1 to k + 1 of the probability square that X i not =Y 1.

So, you can spilt this into the sum from 1 to k and then the k + first term the induction
hypothesis gives us a bound for the first k terms sum of the first k terms as D Q Y k with P X
k this is by the induction hypothesis + the additional term the last square term at position k +
1 which we just bounded above as 1/2/1/2 the k I divergence between Q Y k + 1 with respect
to P k + 1 conditioned on Q Y k its the expectation expected k 1 divergence which we just

written under this notation.

So, its the conditional k I divergence of Q Y k + 1 given the entire past of Y with respect to P

k + 1 and then average doubt across the past Q Y k.
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And this precisely by the chain rule of k 1 divergence equals what we want which is D
between Q Y up to k + 1 and P up to of X up to k + 1. So, this is by the chain rule for k 1
divergence which we seen earlier and that completes the proof. So, this was MacDiarmid’s
inequality or the bounded difference inequality derived using a very different method which

is via the transportation lemma.

Thank you.



