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(Refer Slide Time: 00:21)

& Oneflots_ilo_Edt Vew Inse_Fomat_Notebooks Tools_Window _Help WE 4D 30T ol Q Q=
'EE

Lecture 9: Entropy Method 2: Tensorization and log-Sobolev
inequalities

lh ogunert.
oridu a v X én (Q,,Z, P) ond M['.V‘i <P Qistin Jr?f

) tx

Hello, in this lecture 9, we will continue with our discussion on Entropy Method and we will
present the two main tools used in entropy method, namely that of Tensorization and log
Sobolev inequalities. Just to refresh your memory, recall that entropy method builds on so

called Herbst’s argument and we presented what Herbst argument is last time.

But this time I will quickly review it, so that we can refresh your memory. So, consider a
random variable X, I present a slightly different form then what we saw in last time and this
form is slightly more abstract, but I think you can digest this generalization. So, we have a

random variable X, defined on a probability space.

So, what all you, recall what all do you need to define a probability space; the input set

omega, this is the universe and then the sigma is a + sigma and this probability measure P ok,



this is what a probability space is. This is set of events, this is the universe, and this is the

probability measure.

So, consider a random variable defined on this. And define a new measure Q unless of;
instead of P, we define a new probability measure Q, which has which is absolutely
continuous with respect to P and is given by. So, it is a density with respect to P given by a
density with respect to P; we can just define a density with respect to P is given by e to the

power x by expected value under p of e to the power x, ok. So, this is just a definition.

Then we showed this very nice formula for divergence between Q and P. Last time we were
writing this whole thing in a slightly different way; we were using the measure Q we were

looking at was e to the power t times f of x, ok. But it is exactly equivalent, ok.

So, the formula that we have is d Q by d P that the, that divergence between Q and P. Here let
me put, let me put a t here; this divergence is =, this divergence by t *is = the derivative of the

log moment generating function at t divided by t, ok.

So, this is some function, its derivative is d Q the that diverges between Q t and P, ok. This is
this formula which we can treat as, which leads to Herbst’s argument, ok. So, how do we use

this formula? Well, it can be, it gives us a nice formula for log moment generating function.
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It gives us phi x A is = A times integral 0 to A D Q t P by t’d t, ok. This is the alternative
form. So, if you want to derive an upper bound for the log moment generating function; then
it suffices to derive an upper bound for this. So, that is what Herbst’s argument is. So,
Herbst’s argument says that, if D Q t P by t* is less than = say v by 2, for all t >0; then phi

then the log moment generating function is <A*s.

Because integrate p /2, so that is A , A 2 v / 2 for all A >0, ok alright. So, this is Herbst’s
argument. So, we just have to derive a bound for this particular divergence and that will give

us a bound for log moment generating function and that is what we want to do now.
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Note that, so our interest we are interested in product measures in product P ok, which we
associate with different coordinates of a random variable. So, P x 1 (Refer Time: 05:53) P x 1
times P x 2, P x n. So, this is our n dimensional product measure. And X we will replace with
our function f of X 1 to X n. Note that rank, so that the sample space omega is this product

set here, ok.

So, omega is x 1 cross that is where we are interested in. And for this thing, we have to derive
a bound on D Q t by D Q t on P and it will turn out that; with the first thing we will do is, we
will show that although we want to derive a bound for n dimensional case, it suffices to

derive a bound for one dimensional case and that is what is called the tensorization part, ok.



So, which this general recipe, general entropy method recipe as we saw last time has two
parts. So, first step, has two steps; first step is tensorization, suffices to establish a bound for
1 dimension ok, n = 1. And the second step is some inequality, a basic inequality which is for

1 dimension.

Typically these are called log to see, typically you we use what are called log Sobolev
inequalities. It is not a single inequality, sort of a family of inequalities and we will not even
go into the origin of this name for now; later in the course I will return to these inequalities
and then perhaps I will have a more elaborate discussion on this, ok. But for now you can just

imagine, this is some elementary inequality for n = 1, ok.

Once we have these two things; then combined with Herbst’s argument, we get give
concentration bound with Herbst’s argument, when you combine them with Herbst argument
ok that is the general plan here. So, let me show you both these steps now, what do we do in

the tensorization step; how do we, how do we tensorize?

We want to bound this quantity; what we will show is that, it suffices to bound some similar 1
dimensional quantities ok, that is a tensorization step. And then we will show log Sobolev

inequalities, that is the plan, ok.
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So, that is s, let me start with this was all review; let me start with the first part, tensorization
of divergence, this Kullback Leibler divergence. So, before I do this, let me review some
simple properties of this Kullback Leibler divergence. So, recall that D Q P is defined as
expected value of; if Q has density with respect to P, this density is noted by d Q / d P, then it
is defined as d Q / d P log d Q by d P, density with respect to P +, otherwise it is let us say

infinite, that is how this guy is defined.

In particular for discrete distributions Q and P on the same set X, so discrete set X; D Q P is

= summation over X.

Note that when I am, P is the bigger measure here; whenever I am not writing an expectation
here, it is clear that the expectation is with respect to P. So, since you take expectation with
respect to P, it is the same as taking expectation of this guy with respect to Q, it is the same

thing ok; because that is how this expectation is defined, these are some small gymnastics.

So, once you get comfortable with this idea of densities with respect to another distribution,
Radon Nikodym derivative; these are called Radon Nikodym derivatives, then you can do
this manipulations, ok. So, that is the whole idea of density, when you want to compute
expectation with respect to Q; you can actually compute expectation with respect to P, but

multiply it with the density.

So, that is why these two things are exactly the same, ok alright. So, for the discrete case, we
can write this as summation over x Q X any expectation with respect to Q of the log
likelihood ratio of this density, that is Q x / P x. And this is only true when Q is absolutely
continuous with respect to P, which in discrete case happens if the support of Q; the set of

point where Q is non zero is contained in the support of P and it is infinite otherwise, ok.

So, this is what Kullback Leibler divergence is, we saw this last time and this comes up in our

in Herbst’s argument, alright.
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So, now I will quickly recall quickly review two very basic properties of this guy. So, first
property is that it is non negative. How do we show that? So, we will use Jensen’s inequality
for this. For discrete case you can perhaps show it easily, actually it can all will be shown
easily D Q P, the general definition is expected value with respect to P of; this expected value

with respect to Pofd Q/dPlogd Q/dP.

So, if we think of this guy as a random variable; this guys are random variable X, let us just
call it X, just defining it as X. So, this guy is expected value over P of X log X, ok. And so,
which is the same as expected value, just dropping this p part here of f of X, where f of t is
defined as t log t. So, what do we know about this function t log t? So, at this function t log t,
how does it look? So, as t goes to infinity, this goes to infinity and as t goes to 0, what

happens to this function?

So, in the limit as t goes to 0, this function also goes to 0, ok. So, this function f prime t is, it
looks like what is f prime t here; f prime t is 1 + log t, f prime time t is 1 / t and which is >0

fort > 0, implies f't is convex, right.

And therefore, the average so it is convex, maybe we can just try to plot it is convex and it is

negative for t between 0 and 1 and then it is for and at t = 1, it is 0 and O here and then it goes



up all the way to infinity. So, it is something like this ok; note that it has only one point,

where the derivative is 0. So, that also comes out here.

And yeah that is what this function looks like; therefore the since this is a convex function, so

the value at its average at average is <average of values.
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So, this implies by Jensen’s inequality expected value of f X exceeds. So, this is what our d P
D Q P was expected value of X, this exceeds f of expected value of X. So, what is this f of

expected value of X for r x? Our choice of X is f of expected value under p of d Q / d P, ok.

I am deliberately writing it in this language of Radon Nikodym derivative, so that you
become comfortable with this. So, now, note that this the way this density is defined; if you

want to take expected value of a function with respect to Q ok, you can do that.

And you can switch to expectation with respect to P by multiplying it d Q /d P, right. So,
these two are equal. So, this is = this and this is 1, so this guy is just 1. So, that is just = f of 1.
If you want to understand this proof further, you try to rewrite it for the discrete case; you
will understand each of the steps better ok, yeah I think that is a very important exercise you

should do, alright.



So, now, what is fof 1? So, this is 1 log 1, which is 0, alright. So, we got our form. So, this is
just by Jensen’s inequality, D Q P is non negative; that is the first property you want to cover

that, D Q P is non negative. So, first property D Q P is non negative.
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Second property that we have is, about is what is called chain rule sometimes. So, suppose
you have P and Q are probability distributions on say X cross Y, ok. So, we will use the
notation P X Y and Q X Y ok for the joint distribution. So, we will imagine this random

variable X and Y and P and Q are distributions for this x and y.

Then we can relate this let us just. So, then we can relate this Q X Yto P X Y, thisis =X
actually. So, the divergence of the first coordinate, this is called the chain rule for diversion.

So, divergence of the first coordinate is Q X P X+ D of Q Y given X, PY given X.

Note that these guys are both random variables, because these are conditional distributions,
ok. So, first guy and then the conditional distribution of next two conditional distributions.
And you have to you have to average this guy; because these are conditional distribution, so

this becomes a random variable.

So, you average it over some distribution of x and that distribution is the first one here, so Q
X, ok. So, this is the formula; yeah yes this is called chain rule for divergence and this will be

this will be very useful for establishing the tensorization property we are looking for. So, if



you have divergence between Q X Y and P X Y; it can be decomposed into divergence

between the first part and the conditional divergence.

This second quantity here you can verify; you can verify that this is by just the form for
discrete case you can easily verify, this is also = divergence between Q X Yand Q X P Y
given X. That is the distribution between X and Y, when x is distributed with this with X and
Y is distributed as P Y given X.

So, this guy here is Q X P Y X x of x comma y, the joint let us say pm fis Q x x P y given X
y given X, alright ok. So, this is = this and it has other, this is another notation; it is denoted
by conditional divergence D Y given X, P given X, condition on this averaging major cubics.
These are all the same things, this guy this is equal and this notation denotes these guys that

1s what we will show.
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And an important consequence in particular if Q X Y equals to Q X Q Y, so it is a product
measure, they are independent of Q and P X Y equals to P X P Y; then it is then divergence is
just additive DQ X YP X Yis=DQXPX+DQYPY, ok. So, that is the claim. So, how

do we show this?

Proof is simple, you can just expand things, I will give an informal proof; first you notice that

we can assume that Q X Y is absolutely continuous with respect to P X Y, ok. This is just



some, maybe I should not prove this for the general case, it will look very technical; I will

give the proof for discrete case, for discrete distributions.
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So, discrete distribution the proof is very simple; this divergence here Q X Y P X Y is =
expected value with respect to Q X Y, when the support is contained, otherwise they are both
infinite. So, I can assume without loss of generality, assume support of Q X Y is contained in
the support of P X Y; because if not if this is not true, then both sides here will become

infinity, you can check that.

So, then you have Q X Y of X comma Y. So, this expectation is for this X comma Y by P X
Y of X comma Y, ok. So, this these are the random variables and the expectation with respect
to these random variables. So, this is = expected value with respect to Q X Y of log of Q X
by PX +1log QY given X/PY given X, ok.

And this guy here is exactly =. So, what is the expectation of; this is a function only of X. So,
this part of Y over Y disappears. So, what you get is just this guy here, + now expected value

over Q X and expected value over Q of Y given X, because that is how expectation works.

This is the conditional expectation given X under Q of log of Q of Y given X Y given X P of
Y given X Y given X. So, this is, this notation is a bit ugly; but what I am saying is the

expectation of this guy can be written as expected value of the conditional expectation and



the conditional expectation will happen to be with respect to Q of Y given X and the outer

expectation is Q X.

So, when you do this what you get here is, this is just the first term is just D Q P and second
term is expected value over Q X of what you see inside is D Q Y given X P Y given X more
or less elementary ok, it is by definition, ok. So, that is what we get. So, this was the second

property that we wanted to cover that, this chain rule here, ok.
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So, note that we did it for two random variables, but you can do it for multiple random
variables. So, if you have X n and P X n, that is = £ t = 1 to n or maybe rather i = 1 ton
divergence between Q of X 1 given the past under Q, P of X i given the past under P. And
now this is a random variable depending on X-X the past and so, you take expectation with

respect to the past, but under the measure Q.

So, most essentially this is represented as conditional divergence. Somehow this conditional
divergence notation is very handy; but it is not so popular outside the information theory
literature, ok. So, that is what this divergence is, alright. So, we have these two properties,

chain rule and the non-negativity of divergence.

Now, using these two properties, we will establish our main result. So, some notation, recall

that we had this measure we were showing P i and P i was measured when you; P i was



basically conditional distribution, given everything, but the ith, right. So, given X i- 1 and X

1+ 1 ton, ok.

So, we will introduce some, we will introduce a notation for this guy; let X i be defined as
everything, but the ith one. This is a random variable which appears in, which appeared in
Efron-Stein inequality, ok. So, with this is the notation, X superscript i; superscript because
this is a vector and it is everything, but the ith guy, just like these notations this, i - 1 was

everythingup toi- 1.

This one is everything starting from 1 - 1 + 1 to n and this is everything, but the ith.
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With this notation, here is a lemma and I will call this the entropy tensorization lemma. So,
consider independent random variables X 1 to X n under P; let Q X 1 to X n be any other
distribution. Then divergence between Q. Q is the overall thing and P this is basically (Refer
Time: 32:09) divergence between Q X 1 to Xnand P X 1 to X n.

This divergence is less than or = mention i = 1 to n, expected value with respect to this Q of
X everything, but the ith guy ok; divergence between Q X of the ith guy given everything, P
the ith guy given everything, that is the key, sort of a very interesting claim. Looks something

like chain rule, but we are not conditioning on the past.



We are conditioning on everything, but the ith entry. So, all these divergences are just
changing one part of the function ok, it of the measure. So, it fixes everything, but just
changes one point. And I am calling it entropy tensorization lemma, but we do not see
entropy anywhere, we will see entropy later. By the way I never reviewed in this class what

entropy is.

Recall that in the last class, we introduced this entropy of f and we showed that this entropy
of f is exactly =; I mean we defined it as yeah, this is some side note, it is a little bit of a
regression. So, entropy of any function we had defined as expected value of f X log f X -
expected value f X log of expected value f X, that is what we defined entropy to be and

divergence between this Q of f.

So, Q of f we had defined as a tilting with respect to f. So, this was "X that is a tilting; from
the from this P is exactly = entropy of f by expected value of, I am sorry this divergence is

exactly = entropy of e’ by expected value of e to the power, ok.

So, this formula from last time, this divergence can also be related to this ratio, this is just by
definition, ok. So, since we are since we are establishing some tensorization property for this

divergence that will tend to amount to tensorization property for entropy, ok.

Of course we are assuming here this expected value of ¢ " is 1, that is why divergence looks
like entropy and that we can do for most of our proofs. So, we are just calling it tensorization

of entropy, but actually we are showing some tensorization for divergence, ok alright ok.
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So, now we have this claim, how do we show this? So, proof justby chain rule for divergence,
by chain rule for Kullback Leibler divergence D QP, DQPis=Xi=1ton D of Q let me
write in a different way expected value over the past divergence of Q X i given the past from

P X1 given the past ok, that is equal. So, and we want to show this less than this.

So, we can just take the difference of these guys and show that the difference is non negative.
So, consider Xi = 1 to n expected value over Q of X i of divergence between Q X i given X i,

ok so right. So, this, claim I was; the most important thing in this claim is that these guys are

independent under P.
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And so under P, there is no past ok, just P X, that is the most; otherwise actually this bound
does not hold [Laughter], you can find the counter example. So, this is only for independent
case, so yeah this is P X i. And similarly this guy, because they are independent; this is only P

X 1, does not depend on what the past is, ok.

So, the difference of these two terms would be this from P X i - the expected value under Q
of the past of divergence between Q X i given X i- 1 from P X i, ok. And so, let us now look

at each term here.
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So, we just considered this guy here. So, this guy is, it can be written as expected value of
this and let us just look at a discrete key. So, there will be expectation with respect to this
conditional distribution of log of probability here and probability here. It can all compactly be
written as first term expected value over Q, the entire Q. Q of X n of log of Q of X 1 given the

past /P of X 1, ok.

This is what the first term will turn out to be. So, there are two steps here, I had an
expectation of a Q X 1 outside and then there is an expected value which comes in the
definition of divergence; you could have done this here also, maybe it is something good to

put it down, I have to put down here.
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So, I had all these guys here, right. So, one more way to define conditional divergence is you
can take expected value with respect to Q X Y of log of Q Y given X by P Y given X; I
should put some derivative, but let us just look at the discrete case. So, that is just y of,

because this Y and X are generated from Q, that is what this divergence is, it is equivalent.

So, we will have this conditional expectation inside that makes the conditional divergence
and then the outside expectation, which you can combine to get the overall expectation, ok.
So, this is first term and the second term again is expected value with respect to Q of X n log
of Qof Xigiven X1i-1X1igiven Xi—1/P of X i. So, this sort of harmless trick of writing
both in terms of common distribution is something which will come up again and again in

this course.

And this is sometimes called couplings; they in principle these two, these two quantities did
not did not require a common joint distribution, they were two different quantities related to
two different distributions. But we realize that they can both be expressed as coming out from

the same joint distribution Q X n.

And the advantage of doing that is that, I can take this expectation, the common expectation
outside and take both these quantities inside. We have log of this - log of this; is P X 1 part

cancels and this is where we have used independence, because that is because, otherwise you



would have conditioning on X i here and X past X - 1 here and X past here. So, now, you just

have this one.
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So, now what is this guy X i given X 1 - 1; this again can be written in terms of this is your P,
this is your Q and you are looking at this conditional divergence. So, this is conditional
divergence (Refer Time: 41:49) remove, may be the, we have better notation as that of

conditional, this is the conditional divergence between X i given X past.

From another measure where we just take the marginal given only the firsti- 1, not-1i 1 and
averaged over X of i ok and this guy must be non-negative. So, this guy is non-negative,
alright. So, this difference each term in this difference is non negative; therefore the overall

difference is non negative and therefore, this guy exceeds this guy, that is the proof.

Nothing very difficult, actually that is it looks all very simple; because that is how profound
this method is. So, now, what we do is, we apply this sort of tensorization property of
divergence to get a tensorization property of entropy; because we have called this entropy

tensorization lemma. Let us see how we get tensorization of entropy from this.
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And recall that the definition of entropy for us was expected value of f log f ok - expected,
this is the definition of entropy that we have. And for the particular case where, so the
entropy of f by expected value of f; it will be better way to say is, if expected value of f
equals to 1, which is something we will assume for now. By the way this entropy is defined

only for non-negative functions f, ok.

Other otherwise they have a log of a negative function, it does not make sense. So, this is the
definition; for now let us assume just this part that, expected value of fis 1 and we will see
that this can be removed later. So, under this assumption, consider a Q which is defined by d
Q/ d P equals to f; just like we had seen earlier that we had e **, now we are defining d Q /d P

equals to f.

For this Q we saw that the divergence between Q and P, which could be bound, could be
bounded above using that tensorization property; but this divergence is exactly equals to
expected value of d Q /d P, log d Q / d P and this is exactly = entropy of f, ok. So, for this Q,

this divergence is exactly the entropy of f, ok.

And we saw that we saw that, this entropy of this divergence is less than = Xi =1 to n
expected, divergence expectation over expected value over this Q X i. So, Q of all, but the ith

guys of divergence between Q X i given I will put the ith guy and P X 1.
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Now, if you look at this guy, this can be expressed as summation i = 1 to n expected value
over Q, the whole Q now X n of log of Q X i given X i/ P X id Q X. So, now we need to
convince ourselves that, in fact this measure is absolutely contents with respect to P X i and

their log likelihood ratio can be expressed in some nice form.

So, let us look at that. So, d of Q X i given X i/d P X i and this random variable we will look
at it as a function of x i; but of course, we have conditioned on all the paths, so I will use this
notation of conditioning here, ok. This guy here is = ok, you can verify this part, may be by
using a discrete case; this is = the f of x 1 given x 1 ok, f of x 1 given x 1/ the conditional

expectation under P of f of x 1 given X i, ok.

I am sorry. So, this I will this conditional expectation over p of X i, this is the random
variable given the past; but P this does not matter, because P for independent measure this is
just leveraging only over X n. So, this is something you can verify, you can verify for discrete

case; because the product form of P, you can show that this one also has this form.
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And therefore, by observing this guy here, if you continue from this point; this expression
here is exactly =Zi = 1 to n expected value over Q log of, I did not define this notation, this is
just my notation for X i- 1 x1, x1+ 1 to n, right. So, you have all the remaining arguments in

the ith argument, is just for convenience. So, this becomes log of f of X.

So, then the Q by fof X divided by expected value the P expected to write it as f of X 1 given
X 1 and under P f of X i given X i. So, if you look at this quantity here, this would look like X
i =1 to n expected value under P of f X and we have assumed that expected value of X is 1,

so there is no division required.

Log and this f X we can write as f of X 1 given X 1 log f of X 1 given X i; this is just fof X
differently for a specific reason, - expected value over P of f of X i given X i log of expected

value of P fof X 1 given X 1, ok.
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So, essentially what this thing we have written here is, 1 = 1 to n expected value of entropy;
but given all, but the ith coordinate of f ok, that is that this is similar to the Efron-Stein form
that we saw earlier, ok. So, we have the Efron-Stein for entropy we show that, entropy of; we
have shown that entropy of f is less than =Xi = 1 to n, sorry even n expected value entropy

given everything, but the ith coordinate of f, ok.

And we have shown it only for the case when expected value of fis 1; but now you note that
if you divide both these sides with the constant ok, this is true for expected value of f, this is
if expected value of f = 1. But, if this inequality holds and then you divide both these sides

with a constant, then still the inequality holds.

And therefore, this can be removed. So, this condition can be removed by dividing both sides
with expected value of f; it is a non-negative function, so we can do that, ok. So, this is
something that we will retain from this lecture; this is the Efron-Stein counter part of entropy
and we will call this a tensorization property of entropy. And it just follows from the
tensorization property of this divergence ok and that is something we have retained from this

lecture, ok.

So, I think this is becoming a long lecture already. So, we will stop here and in the next class,

I will show the show the binary logs Sobolev inequality.



