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Hello, everyone, welcome to the fourth lecture of the course mathematical aspects of biomedical 

electronic system design.  
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In this lecture, we will cover discrete time Fourier transform, properties of Fourier transform, 

connection with LTI systems, Fourier transform of periodic signals. Moreover, we will also 

introduce sampling and we will see sampling theorem. So, let us begin with the lecture.  
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We will start with defining discrete time Fourier transforms. Recall that, discrete time Fourier 

series are defined only for periodic signals. However, like continuous time Fourier transform, 

discrete time Fourier transform in short DTFT are also defined for a periodic signals. Let us see 

what these are. DTFT is for a discrete time signal, x(n) is defined as x in an discrete time signal.  

Its DTFT is defined as  

𝑥(𝑒𝑗𝜔) = ∑ 𝑥(𝑛)𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 



Notice that, unlike continuous time fourier transform where we used x(𝜔) to denote fourier 

transform, here we are using a slightly different notation. I am calling the DTFT 𝑥(𝑒𝑗𝜔), so this 

notation over here, notation is different from continuous time Fourier transform.  

There is a feature that distinguishes this discrete time Fourier transform from continuous time, and 

that is this Fourier transforms are periodic. So, what I mean that, 𝑥(𝑒𝑗𝜔) is periodic, with period 

2𝜋. So,  

𝑥(𝑒𝑗(𝜔+2𝜋)) =  𝑥(𝑒𝑗𝜔) 

This is something that is easily, can be easily verified by using the definition of Fourier transform. 

As in continuous time case, this equation is called analysis equation. 

Let us see a few examples. Example 1 is, the x(n) is dirac delta function, that is it is δ(n). Then 

what about 𝑥(𝑒𝑗𝜔)? If you just apply the definition, it becomes  

𝑥(𝑒𝑗𝜔) = ∑ 𝛿(𝑛)𝑒−𝑗𝜔𝑛 = 1

∞

𝑛=−∞

 

Let us see another example. Now, I take x(n) = anu(n), where |𝑎| < 1.  

Now let us see what DTFT is, 𝑥(𝑒𝑗𝜔) is equal to, since u(n) = 0 for all negative n, I can start the 

summation from 0,  

𝑥(𝑒𝑗𝜔) = ∑ 𝑎𝑛𝑒−𝑗𝜔𝑛 = ∑(𝑎𝑒−𝑗𝜔)𝑛 =
1

1 − 𝑎𝑒−𝑗𝜔

∞

𝑛=0

∞

𝑛=0
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Let us see one more example. Now my 𝑥(𝑛) = {
1, |𝑛| ≤ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. So, if I plot this signal, it would 

look as follows, look like follows 1 2 3 dot, dot, dot up to N. Here, -1 -2 -3 dot, dot, dot, up to -N. 

Signal is 1 at all these points. And it is 0 outside this. So, what about the Fourier transform of this 

signal? Let us see, 𝑥(𝑒𝑗𝜔).  

Now, I only need to ∑ 𝑒−𝑗𝜔𝑛𝑁
𝑛=−𝑁 . Because the value is 1 in this range. And if we solve, it is easy 

to do, it turns out to be 
sin (𝜔(𝑁+

1

2
))

sin (
𝜔

2
)

 , if 𝜔 ≠ 0, and it is simply 2𝑁 + 1 , if 𝜔 = 0. So, having seen 

these examples, the next question is, if we are given Fourier transform of a signal, how can we 

retrieve the signal from this Fourier transform? So, that is how do we obtain so called inverse 

Fourier transform of a signal.  

So, let us see, just like continuous time case, we use synthesis equation for this purpose. So, next 

we are looking at inverse Fourier transform. So, for a signal, for a, for a fourier transform 𝑥(𝑒𝑗𝜔) 

its inverse is obtain using the following equations,  

𝑥(𝑛) =
1

2𝜋
∫ 𝑥(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔

2𝜋

 

So, as in continuous time case, this equation is called synthesis equation.  



Again, notice one difference visa-vise continuous time case, that is, the synthesis equation requires 

integration work only over one period. Notice that, 2𝜋 was the period of the Fourier transform. 

So, synthesis equation requires integration over only one period of DTFT. Let us see an example. 

Suppose, 𝑥(𝑒𝑗𝜔) is a periodic pulse function. So, that is 𝑥(𝑒𝑗𝜔), the following function.  

It is a function, that takes value 1 between -ωc and ωc. And where ωc < 𝜋, so 𝜋 will be somewhere 

here and then I have, then this pulse repeats. So, 2𝜋 and so on. So, what about the inverse Fourier 

transform of this? How do we obtain x(n)? As I said above, we only need to integrate the range in 

the, in over one period. So, here we can do it by integrating from -ωc and ωc.  

So, let us see -ωc and ωc and in this range the value is 1, so I have 𝑒𝑗𝜔. And at the front, we have 

1

2𝜋
, if we solve it, it turns out to be  

=
1

𝜋𝑛

1

2𝑗
(𝑒𝑗𝜔𝑐𝑛 − 𝑒−𝑗𝜔𝑐𝑛) 

which we can readily this thing we can readily recognize to be sin (𝜔𝑐𝑛). So, the signal is  

=
sin (𝜔𝑐𝑛)

𝜋𝑛
 

So, now, having seen the inverse Fourier transform as well, we will now look at a few properties 

of discrete time Fourier transform.  
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While stating these properties, I will use the same convention that I used for continuous time case, 

that is for any function and its fourier transform pair I will use the following notation x(n) is the 

signal, and its fourier transforms 𝑥(𝑒𝑗𝜔). So, this is signal the DTFT pair. So, with this convention, 

let us look at properties of the DTFT. The first property that we will see is time and frequency 

shift.  

We will see that, all these properties are counterparts of similar properties in continuous time case. 

So, similar duality observation holds here as well, time and the frequency shift. So, if x(n) had 

fourier transform 𝑥(𝑒𝑗𝜔), then the time shift property says that, fourier transform of  

𝑥(𝑛 − 𝑛0)
𝐹𝑇
↔ 𝑒−𝑗𝜔𝑛0𝑥(𝑒𝑗𝜔) 

Similarly, the frequency shift property says that Fourier transform of a  

𝑒𝑗𝜔0𝑛𝑥(𝑛) ↔ 𝑥(𝑒𝑗(𝜔−𝜔0)) 
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Let us see a special case of the frequency shift property, which is often of interest special case. 

Here I set 𝜔 = 𝜋, notice that, note that 𝑒𝑗𝜋𝑛 = (−1)𝑛. Thus, from the above frequency shift 

property, we get that Fourier transform of  

(−1)𝑛𝑥(𝑛) ↔ 𝑥(𝑒𝑗(𝜔−𝜋)) 

So, these were time and frequency shift properties. The next property, that we will see is time 

expansion property. 



Expansion property, before I state the time expansion property, let me define what it means by an 

expanded signal. So, for any nonzero integer m, say m =±1, ±2, ±3 etcetera, so the signal 

𝑥𝑚(n) = {
𝑥(

𝑛

𝑚
), 𝑖𝑓 𝑛 = 0, ±𝑚, ±2𝑚, 𝑒𝑡𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Well, so xm(n) is non zero only if 
𝑛

𝑚
 is an integer. Let us see an illustration of this. So, let us say 

my x(n) is as follows. 

Then, the expanded signal, say twice expanded signal x to n will look like as follows. So, it will 

have non zero values only at even values of n. So, I will rub this, this, this, this and all other 

positions it is value will be 0.  
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Now, time expansion property says that if x(n) has Fourier transform 𝑥(𝑒𝑗𝜔), then xm(n) will have 

Fourier transform 𝑥(𝑒𝑗𝜔𝑚). Again, an special case of this property that is quite useful is what we 

call time reversal property, time reversal. This is a special case, when, where M, M=-1. Now, time 

reversal property says that Fourier transform of x(-n) will be 𝑥(𝑒−𝑗𝜔).  

So, let us see an example illustrating Fourier, illustrating time reversal. Let us consider  

𝑥(𝑛) = 𝑒−𝑛𝑢(−𝑛) 

where as before |𝑎| < 1. We have readily seen that, the Fourier transform of  



𝑒𝑛𝑢(𝑛) ↔
1

1 − 𝑎𝑒−𝑗𝜔
 

So, using time reversal property, Fourier transform of 𝑥(𝑛)  ↔
1

1−𝑎
. Now, −𝑗𝜔 will be replaced 

with +𝑗𝜔, −𝜔 will be replaced with +𝜔.  

So, this is time reversal property. After time reversal property, time action, expansion property, 

the next one is linearity property. So, number 3, is linearity property. So, this property is similar 

to its counterpart, in continuous time case. For instance, let us assume that x1(n) has discrete time 

Fourier transform x1(𝑒𝑗𝜔). And x2(n) discrete time Fourier transform x2(𝑒𝑗𝜔). 

Then linearity property says that, for some numbers a and b, ax1(n) + bx2(n) will have fourier 

transform ax1(𝑒𝑗𝜔) + bx2(𝑒𝑗𝜔). Let us see an illustration of this property with an example. So, let 

us say that x, let us say that we want to evaluate Fourier transform of 𝑥(𝑛)  = 𝑎|𝑛|, where again 

mod, |𝑎| < 1. Observe that, so the, what we wanted is 𝑥(𝑒𝑗𝜔).  

Observe that, 

𝑥(𝑛) = 𝑎𝑛𝑢(𝑛) + 𝑎−𝑛𝑢(𝑛) − 𝜕(𝑛) 

Now, we know the Fourier transforms of each of these. Notice that, we just computed the Fourier 

transform of. So, this is a, this is a we just computed Fourier transform of 𝑎−𝑛𝑢. We had earlier 

computed Fourier transforms of 𝑎𝑛𝑢(𝑛) and 𝜕(𝑛) respectively. So, 𝑥(𝑒𝑗𝜔) can be obtained by 

combining appropriately, combining the Fourier transform of the individual functions.  

So, it becomes  

𝑥(𝑒𝑗𝜔) =
1

1 − 𝑎𝑒−𝑗𝜔
+

1

1 − 𝑎𝑒𝑗𝜔
− 1 

And this can be simplified, to be  

=
1 − 𝑎2

1 + 𝑎2 − 2𝑎𝑐𝑜𝑠𝜔
 

I will skip the details, but it is something that is can be easily seen. So, this was an illustration of 

the linearity property.  
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Next, we look at conjugation, and conjugate symmetric properties, conjugation and conjugate 

symmetry properties. It says that, if x(n) has fourier transform, 𝑥(𝑒𝑗𝜔), then the complex conjugate 

of x(n), that is x*(n) will have fourier transform given by 𝑥∗𝑒−𝑗𝜔. So, this has several implications 

for instance, if x(n) is real valued, then we know that x(n)=x*n.  

And so, the above relation implies that 𝑥∗𝑒−𝑗𝜔 = 𝑥(𝑒𝑗𝜔). We can combine this property along 

with the time reversal property to get many of the, many interesting results. In fact, if we use 

periodicity of 𝑥(𝑒𝑗𝜔), then we observe that this can further be written as xe raise to see, you see 

that, that you can write is the following  

𝑥(𝑒𝑗𝜔) = 𝑥∗(𝑒𝑗(2𝜋−𝜔)) 

And this is using periodicity of 𝑥(𝑒𝑗𝜔).  

And the, this equality has a couple of implications. Namely, the absolute value 

|𝑥(𝑒𝑗𝜔)| = |𝑥∗(𝑒𝑗(2𝜋−𝜔))| 

which in turn will be same as  

= |𝑥(𝑒𝑗(2𝜋−𝜔))| 

Moreover,  

∠𝑥(𝑒𝑗𝜔) = −∠𝑥(𝑒𝑗(2𝜋−𝜔)) 



So, both these properties now follow from periodicity of 𝑥(𝑒𝑗𝜔).  

We can combine the conjugation, conjugate symmetry property with time reversal property to get 

interesting inferences. For instance, if x(n) is again, if x(n) is real, then x, that is x(n)=x*(n), we 

have readily seen that 𝑥∗(𝑒𝑗𝜔) = 𝑥(𝑒−𝑗𝜔). Moreover, if x(n) is even symmetric, even symmetric. 

That is 𝑥(𝑛) = 𝑥(−𝑛) then 𝑥(𝑒𝑗𝜔) = 𝑥(𝑒−𝑗𝜔).  

Now, if we combine these two properties, we see that if x(n) is real and even symmetric and 

𝑥∗(𝑒𝑗𝜔) = 𝑥(𝑒𝑗𝜔). That is to 𝑥(𝑒𝑗𝜔). We can follow similar arguments, to claim that if x(n) is 

real and odd symmetric, what do I mean by odd symmetric x(-n)=-x(n) ∀𝑛.  
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So, if x(n) is real and odd symmetric, then 𝑥∗(𝑒𝑗𝜔) = −𝑥(𝑒𝑗𝜔). In other words, in this case 𝑥(𝑒𝑗𝜔) 

is pure imagined, which is purely imaginary. So, these were conjugation and conjugate symmetry 

properties. The next property that we will see are, differentiation or difference properties, 

differentiation or difference properties slash difference property.  

So, there are two properties here, one is frequency differentiation property, the first property is 

frequency differentiation which says that if x(n) has discrete times 𝑥(𝑒𝑗𝜔), then nx(n) will have 

discrete time fourier transform, which is 𝑗
𝑑𝑥(𝑒𝑗𝜔)

𝑑𝜔
. Notice that, in time domain we are talking of 

discrete time so, there cannot be an analogue of differentiation in time property.  
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But we can talk of a time difference property, namely we can talk of Fourier transform of x(n)-

x(n-1). So, from the time shift property, we see that Fourier transform of  

𝑥(𝑛) − 𝑥(𝑛 − 1)
𝐹𝑇
↔ (1 − 𝑒−𝑗𝜔)𝑥(𝑒𝑗𝜔) 

This property is called time difference property, time difference property. We will see uses of these 

properties in a while, but, for now, let us look at the next property, which is Parseval’s relation.  

The is similar to the relation in case of continuous time signals. In particular, we have that  

∑ |𝑥(𝑛)|2 =
1

2𝜋
∫ |𝑥(𝑒𝑗𝜔)|

2
𝑑𝜔

2𝜋

∞

𝑛=−∞

 

Again, notice that on the right hand side, the integral, integration is limited to one period only.   
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So, next property is, multiplication property. This says that if 𝑥1(𝑛)
𝐹𝑇
↔ 𝑥1(𝑒𝑗𝜔). And 𝑥2(𝑛)

𝐹𝑇
↔ 𝑥2(𝑒𝑗𝜔), then the product of these two signals, that is  

𝑥1(𝑛)𝑥2(𝑛)
𝐹𝑇
↔

1

2𝜋
∫ 𝑥1(𝑒𝑗𝜃)𝑥2(𝑒𝑗(𝜔−𝜃))𝑑𝜃

2𝜋
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Notice that, the integral on the right hand side reminds of convolution. However, this time it is 

called, this operation is called periodic convolution, because the integrand is periodic and 

integration is over one period. So, this is called periodic convolution. Let us now go to the next 

property, which is very important property and we will see several uses of it, and this is convolution 

property, convolution properties.  

This property says that, the Fourier transform of convolution of x1 and x2, that is (x1*x2)(n), its 

Fourier transform is simply a product of individual Fourier transforms. That is𝑥1(𝑒𝑗𝜔)𝑥2(𝑒𝑗𝜔).  

We will now see several examples or applications of this property. So, we will show in this, in the 

first example, we will show how we can use this convolution property to calculate convolution of 

two signals, so computing convolution.  

So, let us assume that x1(n)=𝛼𝑛𝑢(𝑛), where |𝛼| < 1. And x2(n)=𝛽𝑛𝑢(𝑛), where again |𝛽| < 1. 

We have already seen that,  

𝑥1(𝑛)
𝐹𝑇
↔

1

1 − 𝛼𝑒−𝑗𝜔
 

 And, 

𝑥2(𝑛)
𝐹𝑇
↔

1

1 − 𝛽𝑒−𝑗𝜔
 



Now, from convolution property, the convolution of x1 and x2 is nothing but inverse Fourier 

transform of multiplication of the terms on the right hand side.  

That is, we would be interested in computing the inverse Fourier transform of let us say, this is 

𝑥1(𝑒𝑗𝜔) and 𝑥2(𝑒𝑗𝜔), then our interest is in computing the inverse Fourier transform of this 

product. That is  

𝑥1(𝑒𝑗𝜔)𝑥2(𝑒𝑗𝜔) =
1

(1 − 𝛼𝑒−𝑗𝜔)(1 − 𝛽𝑒−𝑗𝜔)
 

Like in the similar example, for continuous time case, we can use partial fraction expansion to 

simplify the right hand side, to get it in a convenient form.  

(Refer Slide Time: 33:48) 

 



 

So, let us say that this  

=
𝐴

1 − 𝛼𝑒−𝑗𝜔
+

1

1 − 𝛽𝑒−𝑗𝜔
 

We can solve this partial fraction expansion to get 𝐴𝛼 + 𝐵𝛽 rather 𝐴𝛽 + 𝐵𝛼 = 0 to be equal to 0. 

And 𝐴 + 𝐵 = 1. And on solving, we get  

𝐴 =
𝛼

𝛼 − 𝛽
 

and  

𝐵 =
−𝛽

𝛼 − 𝛽
 

 

This says that convolution of x1 and x2 is 

(𝑥1
∗𝑥2)(𝑛) =

𝛼

𝛼 − 𝛽
𝛼𝑛𝑢(𝑛) −

𝛽

𝛼 − 𝛽
𝛽𝑛𝑢(𝑛) 

Which in turn can be written as,  

=
1

𝛼 − 𝛽
(𝛼𝑛+1 − 𝛽𝑛+1)𝑢(𝑛) 



Let us see another example, where we cannot use simple partial fraction expansion, but a huge 

convolution property in conjugation with differentiation in frequency property to compute 

convolution.  

So, again I consider 𝑥(𝑛) = 𝛼𝑛𝑢(𝑛), where |𝛼| < 1. And now my interest is in computing 

convolution of x with itself. So, this is what I am interested in. Towards that, I will start with 

recognizing that discrete time fourier transform of this convolved signal is (𝑥(𝑒𝑗𝜔))
2

, which is  

(𝑥(𝑒𝑗𝜔))
2

=
1

(1 − 𝛼𝑒−𝑗𝜔)2
 

Which can be seen to be 

=
𝑒𝑗𝜔

𝛼
𝑗

𝑑

𝑑𝜔
(

1

1 − 𝛼𝑒−𝑗𝜔
) 

Notice that, this is 
𝑑

𝑑𝜔
𝑥(𝑒𝑗𝜔). This will help us in proceeding further. Now, before we take the 

inverse fourier transform, let us notice that, fourier transform of nx(n) will be 

𝑛𝑥(𝑛) = 𝑗
𝑑𝑥(𝑒𝑗𝜔)

𝑑𝜔
 

Which is 

= 𝑗
𝑑

𝑑𝜔
(

1

1 − 𝛼𝑒−𝑗𝜔
) 

Now, using, but notice that the terms here on the right hand side in this equation are quite different 

from this, that is I see an additional 𝑒𝑗𝜔. This is where I will invoke time shift property. Now, this 

was differentiation property, differentiation, to be precise frequency differentiation. Now, I will 

invoke time shift property.  

Notice that, Fourier transform of 

(𝑛 + 1)𝑥(𝑛 + 1) = 𝑒𝑗𝜔𝑗
𝑑

𝑑𝜔
(

1

1 − 𝛼𝑒−𝑗𝜔
) 

So, this is star.  
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Now, I can compare this right hand side with star to recognize that the inverse fourier transform 

of (𝑥1(𝑒𝑗𝜔))
2

 that is  

(𝑥∗𝑥)(𝑛) =
1

𝛼
(𝑛 + 1)𝑥(𝑛 + 1) 

By substituting the value of x(n), which each 𝛼𝑛𝑢(𝑛), I see that the right hand side becomes     

=
1

𝛼
(𝑛 + 1)𝛼𝑛+1𝑢(𝑛 + 1) 

So, this becomes  

= 𝛼𝑛(𝑛 + 1)𝑢(𝑛 + 1) 

Notice that, this is same as nu(n), because only point where the two could differ was n=-1, but at 

n=-1 both of these functions are achieved. So, this can be written as = 𝛼𝑛𝑛𝑢(𝑛). So, we see how 

we use several properties to compute the convolution of x with itself. So, this was all about the 

properties of discrete time Fourier transform. Now, we will see how to, we can use this convolution 

property to compute the frequency response of a discrete time LTI system. 
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So, this is yet another application of discrete time Fourier transform. And this is in computing 

frequency response, response of discrete time LTI system. Notice that, a discrete time LTI system 

is characterized by the equation,  

∑ 𝑎𝑘𝑦(𝑛 − 𝑘) = ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

𝑁

𝑘=0

 

Now, we will substitute 𝑥(𝑛) = 𝛿(𝑛) and y, 𝑦(𝑛) = ℎ(𝑛), that is impulse response, to obtain 



∑ 𝑎𝑘ℎ(𝑛 − 𝑘) = ∑ 𝑏𝑘𝛿(𝑛 − 𝑘)

𝑀

𝑘=0

𝑁

𝑘=0

 

Notice that, we did so because by definition, when we input 𝛿(𝑛) to this LTI system, the output 

𝑦(𝑛) = ℎ(𝑛). So, it was perfectly valid to substitute 𝑥(𝑛) = 𝛿(𝑛)  and 𝑦(𝑛) = ℎ(𝑛). Now taking 

Fourier transform of both the sides, we find that  

(∑ 𝑎𝑘

𝑁

𝑘=0

𝑒−𝑗𝜔𝑘) 𝐻(𝑒𝑗𝜔) 

Where 𝐻(𝑒𝑗𝜔) is Fourier transform of h(n). And we have used time shift property here.  

This becomes  

= ∑ 𝑏𝑘𝑒−𝑗𝜔𝑘

𝑀

𝑘=0

 

This says that,  

𝐻(𝑒𝑗𝜔) =
∑ 𝑏𝑘𝑒−𝑗𝜔𝑘𝑀

𝑘=0

∑ 𝑎𝑘
𝑁
𝑘=0 𝑒−𝑗𝜔𝑘

 

We will now give a couple of examples, to illustrate how we can use this relationship compute 

impulse response of a discrete time LTI system. So, let us see examples.  
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So, first example is say y(n) is input and output of the discrete time system as related as follows, 

𝑦(𝑛) −
3

4
𝑦(𝑛 − 1) +

1

8
𝑦(𝑛 − 2) = 2𝑥(𝑛) 

Question is, what is the impulse response of this system? Let us observe that in this system 𝑎0 =

1, 𝑎1 = −
3

4
, 𝑎2 =

1

8
, 𝑎𝑘 = 0  ∀𝑘 > 2. Similarly, 𝑏0 = 2, 𝑏1 = 𝑏2 = 0, 𝑏𝑘 = 0  ∀𝑘 > 2 as well.  

Hence, from the above relation we can see that  

𝐻(𝑒𝑗𝜔) =
2

1 −
3
4 𝑒−𝑗𝜔 +

1
8 𝑒−2𝑗𝜔

 



Which can further be written as  

=
2

(1 −
1
2 𝑒−𝑗𝜔)(1 −

1
4 𝑒−𝑗𝜔)

 

We can use partial fraction expansion, to see that the right hand side is  

=
4

(1 −
1
2 𝑒−𝑗𝜔)

−
2

(1 −
1
4 𝑒−𝑗𝜔)

 

Now, we can compute, we can easily compute the inverse Fourier transform of the two terms on 

the right hand side to obtain  

ℎ(𝑛) = 4 (
1

2
)

𝑛

𝑢(𝑛) − 2 (
1

4
)

𝑛

𝑢(𝑛) 
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Now, we are given an LTI system, which impulse response is, ℎ(𝑛) = 𝛼𝑛𝑢(𝑛), where |𝛼| < 1. 

So, we have an LTI system, which impulse response h(n) is as given here, and we need to find a 

relation between input and output of this system. Notice that, 𝐻(𝑒𝑗𝜔), that is Fourier transform of 

the impulse response also called frequency response is  

=
1

1 − 𝛼𝑒−𝑗𝜔
 



If we compare this expression of frequency response with the general initial that we had earlierly 

write, let us say star then we find that, 𝑎0 = 1, 𝑎1 = −𝛼, 𝑏0 = 1, 𝑏1 = 0 and so on. And thus we 

can say that input and output are related as  

𝑦(𝑛) − 𝛼𝑦(𝑛 − 1) = 𝑥(𝑛) 

 So, we see how we could use discrete time Fourier transform to get a relation between input and 

output of the system if the impulse response of the system is known. Now, let us take a step back, 

as we did in the case of continuous time case. And see what are the conditions, under which the 

infinite sum defining discrete time Fourier transform is well defined.  
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So, that is, let us recall that, discrete time Fourier transform of a signal  

𝑥(𝑛) = ∑ 𝑥(𝑘)𝑒−𝑗𝜔𝑘

∞

𝑘=−∞

 

Now, we are asking the question, is it that the sum on the right hand side and finite sum on the 

right hand side always defined? What are the conditions that we can put on x(t) to ensure that this 

sum is always defined? To recall that, we had a condition, we had a sufficient condition in the case 

of continuous time Fourier transforms, we get an similar condition here as well.  

So, let us see what that condition is. The infinite series defining DTFT is guaranteed to converge, 

if  

∑ |𝑥(𝑛)| < ∞

∞

𝑛=−∞

 

However, notice that this is a sufficient condition not necessary. Several of the examples, that we 

saw earlier for instance, 𝑥(𝑛) = 𝛿(𝑛) or 𝑥(𝑛) = 𝛼𝑛𝑢(𝑛), where |𝛼| < 1 satisfy this condition, 

this condition.  

But there are many other signals of interest, for which this condition is not satisfied. What do we 

do in that case? Notice that, recall that in the case of continuous time Fourier transforms, we devise 

a notion of, we introduced a notion of generalized Fourier transforms to handle that, such cases. 



Even now, we can develop even, even in this case, we introduced the notion of generalized Fourier 

transforms to deal with the cases, where signals are not absolutely integrable.  

So, this condition is called when the signals are not absolutely summable. So, this condition is 

called absolute summability, absolute summability. For instance, let us take a few cases, where the 

signals are not absolutely summable, not absolutely summable signals, as I said in this case we 

will talk of generalized fourier transform, generalized DTFT.  
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So, let us say x(n) is equal to constant, that is 1 ∀n. In this case, it turns out that x, the fourier, 

generalized fourier transform of  

𝑥(𝑛) ↔ 𝑥(𝑒𝑗𝜔) = 2𝜋 ∑ 𝛿(𝜔 − 2𝜋𝑘)

∞

𝑘=−∞

 

It this equation can be easily verified using synthesis equation. So, if I just substitute 𝑥(𝑒𝑗𝜔) in the 

synthesis equation, I get 𝑥(𝑛) = 1 ∀n, this is the equation.  

Similarly, if x(n) is raised to is, similarly, if 𝑥(𝑛) = 𝑒𝑗𝜔0𝑛, now since I know the Fourier transform 

of x =1, I can use the time shift property to infer that. Now, since I know the fourier transform of 

x(n) = 1, I can use the frequency shift property to infer that fourier transform of this  



𝑥(𝑛) ↔ 𝑥(𝑒𝑗𝜔) = 2𝜋 ∑ 𝛿(𝜔 − 𝜔0 − 2𝜋𝑘)

∞

𝑘=−∞
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We can use this property, this star, let us say double star we can use this property double star along 

with linearity property to compute the Fourier transform of periodic signals. Let us see how it is 

done. So, Fourier transform of periodic signals. So, let us say x(n) is a discrete time signal, which 

is periodic with period N such that, I can write the discrete time Fourier series for  

𝑥(𝑛) = ∑ 𝑎𝑘𝑒𝑗𝑘
2𝜋
𝑁

𝑛

𝑁−1

𝑘=0

 

Then the fourier transform of xn can be computed using linearity as follows,  

𝑥(𝑛) ↔ 𝑥(𝑒𝑗𝜔) = 2𝜋 ∑ ∑ 𝑎𝑘𝛿(𝜔 − 𝑘
2𝜋

𝑁
− 2𝜋𝑖)

𝑁−1

𝑘=0

∞

𝑖=−∞

 

And this can be simplified to be equal to  

= 2𝜋 ∑ 𝑎𝑘𝛿 (𝜔 −
2𝜋

𝑁
𝑘)

∞

𝑘=−∞

 



This simplification is not straightforward and it evolves as fewer steps, I will skip those in the 

interest of time.  
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This completes our discussion of Fourier transform for discrete time signals. Next, we will look at 

the notion of sampling. Suppose, we have a continuous time signal x(t). For instance, say this is 

x(t), and say we sample it every T units of time, this T 2T 3T 4T we take these samples. So, we 

sample it every T units of time, sample it every T units of time. So, often question is, can we 

reconstruct x(t) from the samples, can we reconstruct x(t) from the samples which are x(nT) n∈z+?  



That is n = 0 1 2 3 4 etcetera. This is the question, which answer is given by sampling theorem by 

Shannon and Nyquist. So, here is the answer, sampling theorem by Shannon and Nyquist. These 

two gentlemen have shown that the answer is affirmative. That is we can indeed retrieve x(t), if 

the following conditions are met. First condition is x(t) is band limited. That is, its Fourier 

transform x(ω)= 0 ∀|𝜔| > 𝜔𝑚 for 𝜔𝑚 > 0.  
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Second condition is, the sampling frequency, say 𝜔𝑠 =
2𝜋

𝑇
> 2𝜔𝑚. So, this is twice the band width 

of the signal that is being sampled. And the third condition is, use a scale and time shifted sinc 



function is being used for reconstruction for interpolation. A scaled and the time shifted sinc 

function is used for interpolation. More precisely, we obtain the interpolated signal say  

𝑥𝑟(𝑡) = ∑ 𝑥(𝑛𝑇)𝑠𝑖𝑛𝑐 (
𝑡 − 𝑛𝑇

𝑇
)

∞

𝑛=−∞

 

So, this is shifted as well as scale sinc function.  

Notice that each sinc function and the summation on the right hand side is centered at a sample 

point. Moreover, if we evaluate the right hand side at the sample points, then the value return is 

same as the value of the original function at the sample points. In other words, if I compute say 

𝑥𝑟(𝑚𝑇) = ∑ 𝑥(𝑛𝑇)𝑠𝑖𝑛𝑐 (
(𝑚 − 𝑛)𝑇

𝑇
)

∞

𝑛=−∞

=  {
1  𝑖𝑓 𝑚 = 𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

So, the value of  

𝑥𝑟(𝑚𝑇) = 𝑥(𝑚𝑇) 

So, clearly the original signal and reconstructed signal agree on the sample points. The interesting 

feature of sampling theorem ensures that the two signals match each other at all the points. So, 

here is the formal statement of the theorem.  
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It says that if 𝑥(𝜔) = 0   ∀|𝜔| > 𝜔𝑚 and 
2𝜋

𝑇
 is, which is equal to sampling frequency. So, if fs 

equals sorry, if 𝜔𝑠 =
2𝜋

𝑇
> 2𝜔𝑚 then x rt as given by the above equation. Let us say, let us call this 

star as we refer to it again and again that 𝑥𝑟(𝑡) = 𝑥(𝑡)  ∀𝑡. Why, we will, we will not see the 

formal proof of the sampling theorem in this lecture.  

I will explain a few key ingredients that lead to this theorem. So, here are key ingredients. Let us 

first observe that the signal 𝑥𝑟(𝑡), reconstructed signal 𝑥𝑟(𝑡) can be viewed as output of an LTI 

system, with input 𝑥𝑝(𝑡) and output and impulse response ℎ𝑟(𝑡). Where,  

𝑥𝑝(𝑡) = ∑ 𝑥(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)

∞

𝑛=−∞

 

And  

ℎ𝑟(𝑡) = 𝑠𝑖𝑛𝑐 (
𝑡

𝑇
) 

So, what we claim is that, 𝑥𝑟(𝑡) is convolution of 𝑥𝑝(𝑡) and ℎ𝑟(𝑡). 

To see the properties of 𝑥𝑟(𝑡), let us see these two signals individually. So, first we will see 𝑥𝑝(𝑡). 

It can be seen that 𝑥𝑝(𝑡) itself can be written as a product of two signals x(t) and p(t), where  

𝑝(𝑡) = ∑ 𝛿(𝑡 − 𝑛𝑇)

∞

𝑛=−∞

 



Notice that, this p(t) is an impulse train, it is a periodic signal.  
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And so, the x(t) is called 𝑥𝑝(𝑡) is called impulse train sampled signal, called impulse train sampled 

signal. Further notice that, p(t) is a periodic signal and we can write its Fourier transform, using 

the theory that we have learned earlier to be the following. So, p(t) fourier transform is,  

𝑝(𝑡) ↔ 𝑝(𝜔) =
2𝜋

𝑇
∑ 𝛿(𝜔 − 𝑘

2𝜋

𝑇
)

∞

𝑘=−∞

 

which is 𝜔𝑠.  

Moreover, I can use the convolution property of fourier transform to compute  

𝑥𝑝(𝜔) =
1

𝑇
∑ 𝑥(𝑗(𝜔 − 𝑘𝜔𝑠))

∞

𝑘=−∞

 

Notice that, 𝑥𝑝(𝜔) is nothing but sum of, scale sum of shifted copies of 𝑥(𝜔). So, what I mean is 

that if my 𝑥(𝜔) is like this, so this is −𝜔𝑚, 𝜔𝑚. And if 𝜔𝑠 > 𝜔𝑚, then 𝑥𝑝(𝜔) would indeed look 

like this. 

This is, 𝜔𝑠, 0, −𝜔𝑠 and this is 
1

𝑇
 whereas this was 1. And if the peak value of 𝑥(𝜔) = 1, peak value 

of 𝑥𝑝(𝜔) =  
1

𝑇
. Now, let us shift focus to ℎ𝑟(𝑡).  
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Recall that, ℎ𝑟(𝑡) = 𝑠𝑖𝑛𝑐(
𝑡

𝑇
) and so, its fourier transform will be simply the pulse signal with width 

the blue 𝜔𝑠. This peak value is T, this is my 𝐻𝑟(𝜔). Now, since 𝑥𝑟(𝑡) was convolution of ℎ𝑟(𝑡) 

and 𝑥𝑝(𝑡), so its fourier transform will be simply 𝐻𝑟(𝜔)𝑋𝑝(𝜔). If we observe the two Fourier 

transforms on the right hand side, you will notice that, 𝑋𝑝(𝜔) you will notice that 𝑋𝑟(𝜔) = 𝑋(𝜔).  

Which means that, if we reconstruct, which which means that the reconstructed signal 𝑥𝑟(𝑡) =

𝑥(𝑡). Notice that, if 𝜔𝑠 < 2𝜔𝑚, then the copies of 𝑥(𝜔) in 𝑥𝑝(𝜔) they overlap. For instance, for 

the above example, we get a signal that looks something of this sort. When the copies overlap, the 

low pass filter outputs as signal that differs from the original signal.  
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Low pass filter outputs a signal that is different from the original signal. This phenomena is 

referred to as aliasing. We now see a couple of examples that illustrate this phenomena of aliasing. 

So, here is example one, which is 𝑥(𝑡) = cos (𝜔0𝑡). In this case, notice that 𝑥(𝜔) will be these 

two impulses at −𝜔0 and 𝜔0 each with amplitude 𝜋. Moreover, 𝑥𝑝(𝜔) will be sum of shifted 

version of these impulses. 

So, I get this 𝑥𝑝(𝜔), −𝜔0, 𝜔0. In this case, the reconstruction filter, that is 𝐻𝑟(𝜔) would look like 

this. So, this is between −
𝜔𝑠

2
 to 

𝜔𝑠

2
. And we see that the reconstructed signal will have Fourier 



transform with to pulses exactly as the original signal, so which two impulses exactly as the 

original signal. And so, there is no aliasing in this case and 𝑥𝑟(𝑡) is equal to 𝑥(𝑡).  
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Let us now look at another example, where now 𝑥(𝑡) = cos (𝜔0𝑡) as before, but 𝜔𝑠 =
3𝜔0

2
 < 2𝜔0. 

In this case, 𝑥𝑝(𝑡) will be as follows. So, we have −𝜔0, 𝜔0 and then the shifted version of this. 

But those shifted versions will be like this. So, this is one shifted version. This is another shifted 

version. So, this value is 𝜔𝑠 − 𝜔0, this one is −𝜔𝑠 + 𝜔0 and so on.  



This will be −
𝜔𝑠

2
, this will be 

𝜔𝑠

2
 and in this case if we employ a low pass filter, the reconstructed 

signals Fourier transform will not be same as the original signals transform. In fact, reconstructed 

signals Fourier transform will be this. So, this pulses will be at 𝜔𝑠 − 𝜔0, which will be, which is 

𝜔0

2
. And similarly here at −

𝜔0

2
 respectively. And so, 𝑥𝑟(𝑡) = cos (

𝜔0

2
𝑡) ≠ 𝑥(𝑡). So, this illustrates 

the phenomena of aliasing.  
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Now, there is one question that remains, what if 𝜔𝑠 = 2𝜔𝑚. We will give an example that will say 

that, setting 𝜔𝑠 = 𝜔𝑚 does not suffice, that is we are not we will not be able to reconstruct the 

signal. In particular, when 𝑥(𝜔𝑚) ≠ 0. So, we may not reconstruct the signal spatially, if 𝑥(𝜔) ≠

0 𝑎𝑡 𝜔 = 𝜔𝑚.  

Let us see, it with an example. So, let us consider x t to be equal to sine omega naught in this case. 

Notice that, x omega will be as follows. This is omega naught, this is plus omega naught, these 

amplitudes as before are pi and minus pi respectively. Now, in this case, if I use 𝜔𝑠 = 2𝜔0, in this 

case 𝑥𝑝(𝜔) will be obtained as follows. I will draw copies of 𝑥(𝜔).  

So, this is 𝑥(𝜔), this is the next copy. At each point 𝑥𝑝(𝜔) is nothing but sum of all these signals. 

See that, the two pulses at all the points neutralize each other because they have same amplitude 

but opposite signs. So, 𝑥𝑝(𝜔) = 0  ∀𝜔. Clearly in this case, we cannot recover, we cannot 



reconstruct x(t) from 𝑥𝑝(𝑡). This brings us to the end of the module on signals and systems. In the 

next lecture, we will begin with few topics in linear algebra. Thank you. 

 

 

 

 

 

 

 

 


