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Hello everyone, welcome to the third lecture of the course mathematical aspects of biomedical 

electronic system design.  
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In today's lecture, we will learn about continuous time Fourier transforms, properties of Fourier 

transform, connection with linear time invariant systems and Fourier transform of periodic signals. 

Let us begin today's lecture.  
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We will start with defining what a Fourier transform is? Fourier transform unlike Fourier series, 

applied to signals here continuous time signals that are a periodic. So, a signal does not have to be 

periodic for us to define its Fourier transform, Fourier transform have continuous time signal x(t) 

is defined as for so forth. So, this is a continuous time signal, Fourier transform we will use x(ω) 

to denote its Fourier transform and it is defined as  



x(ω) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

  

Let us see an example, in fact, we will see several examples. So, here is your first example, say 

x(t) = 𝑒−𝑎𝑡𝑢(𝑡), t greater than a greater sorry, a>0, if you plot this signal looks good look like for 

it is real signal, this is 1, 𝑒−𝑎𝑡, this is E, this is 1 x(t). If we apply the above definition, we see that  

x(ω) = ∫ 𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡

∞

0

 

which is  

= ∫ 𝑒−(𝑎+𝑗𝜔)𝑡𝑑𝑡

∞

0

 

=
−1

𝑎 + 𝑗𝜔
𝑒−(𝑎+𝑗𝜔)𝑡 ∫ 𝑑𝑡

∞

0

 

And this is equal to minus 1. So, we have that  

x(ω) =
1

𝑎 + 𝑗𝜔
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Let us see another example say x(t) is pulse signal, so x(t) is 1, if t is in the range - T to T and 0 

otherwise, if you plot this, this looks like following, it is -T, T, 1. Now, if we apply the above 

definition,   

x(ω) = ∫ 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑇

−𝑇

= {

2𝑇 𝑖𝑓 𝜔 = 0 

−1

𝑗𝜔
𝑒−𝑗𝜔𝑡 ∫ 𝑑𝑡

𝑇

−𝑇

=
2sin (𝜔𝑡)

𝜔
 𝑖𝑓 𝜔 ≠ 0
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We can compactly express the, this Fourier transform in terms of the so called sinc function, sinc 

function is defined as follows 

𝑠𝑖𝑛𝑐(𝛼) = {

1 𝑖𝑓 𝛼 = 0
sin (𝜋𝛼)

𝜋𝛼
 𝑖𝑓 𝛼 ≠ 0

 

In terms of sinc function, we see that x(𝜔) can be expressed as follows,  

𝑥(𝜔) = 2𝑇𝑠𝑖𝑛𝑐 (
𝜔𝑇

𝜋
) 

If we plot this function Fourier transform, it looks like as follows, it is a symmetric function. So, 

this is how it looks this is 𝜔, so x(𝜔), these points are as follows. So, we have 0 here, this is 

𝜋

𝑇
,

2𝜋

𝑇
,

3𝜋

𝑇
 and similarly, we have 

−𝜋

𝑇
,

−2𝜋

𝑇
,

−3𝜋

𝑇
 and so on. 
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Now, let us see having seen Fourier transform of a signal, how can we retrieve the signal given its 

Fourier transform. So, this the inverse of Fourier transform namely on a, in other words, so here, 

so here is the relation x(t) if x(t) has Fourier transform x(𝜔), then I can retrieve x(t) from x(𝜔) by 

the following operation  

𝑥(𝑡) =
1

2𝜋
∫ 𝑥(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

 

Now, as in case of Fourier series, this equation is called synthesis equation, the previous equation 

that got x(𝜔) that is Fourier transform from the signal, that is called the analysis equation. So, this 

called analysis equation.  
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Let us see an example x(𝜔) is Fourier transform of the signal be 1, or |𝜔| ≤ 𝜋 and 0, otherwise. 

So, the Fourier transform itself is a plot signal, this is -𝜋, 𝜋 this is x(ω).  

So question is what is the inverse Fourier transform of the signal?  

𝑥(𝑡) =
1

2𝜋
∫ 𝑒𝑗𝜔𝑡𝑑𝜔

𝜋

−𝜋

  

from definition we see that if T =0 and  



𝑥(0) =
1

2𝜋
∫ 𝑑𝜔

𝜋

−𝜋

= 1 

and if T ≠0, then  

𝑥(𝑡) =
1

2𝜋
∫ 𝑒𝑗𝜔𝑡𝑑𝜔

𝜋

−𝜋

 

which on simplifying becomes sin (𝜋𝑡), well first we get it  

=
𝑒𝑗𝜋𝑡 − 𝑒−𝑗𝜋𝑡

2𝑗𝜋𝑡
 

which is nothing but =
sin(𝜋𝑡)

𝜋𝑡
 which in turn if expressed in terms of sinc function is simply a 

sinc(t).  

So, we have  

𝑥(𝑡) = 𝑠𝑖𝑛𝑐(𝑡)    ∀𝑡 

If you plot this x(t) looks like for , here is the rough sketch of x(t), T, these points are 1, 2, 0, -1, -

2 etc. So, we see that the Fourier transform of sinc function is a pulse signal.  
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Now, in below we will use the following convention if x(t) and X(ω) are signal Fourier transform 

pair that is x(ω) is a Fourier transform of x(t), and x(t) is inverse Fourier transform of x(ω), we 

will denote as, we will denote it as for follows, it is a Fourier, this is a signal Fourier transform 

pair, or sometimes also called Fourier transform inverse transform pair, signal Fourier transform 

pair.  

So, what we just observed that, for a rectangular pulse its Fourier transform is sinc and for a sinc 

function, it is Fourier transform is a rectangular pulse. So, we see a duality between Fourier 

transform and inverse Fourier transform, we will see such duality several such dualities as we go 

along.  
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So, now we come to the properties of Fourier transform, first property is called linearity, this 

property says that if x(t) has Fourier transform, x(ω) and y(t) has Fourier transform sorry, y(ω), 

then ax(t) + by(t) will have Fourier transform ax(ω) + by(ω). This property can be easily seen 

following the definition of Fourier transform.  
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Let us see next property and this property is called time and frequency shifting property. So, 

actually these are two properties, that we combined together, time and frequency shifting 



properties. Let us see what these properties are; it says that, if x(t) has Fourier transform x(ω) then 

a shifted version of x(t), that is x(t-t0), will have Fourier transform  

𝑒−𝑗𝜔𝑡0𝑥(𝜔) 

So, this is time shifting property similarly, if we multiply x(t) with 𝑒𝑗𝜔0𝑡.So, this new signal 

𝑒𝑗𝜔0𝑡𝑥(𝑡) 

will have Fourier transform, which has shifted version of the Fourier transform of x(t). So, the new 

Fourier transform is this, so we see a duality between time and frequency shifting.  
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Let us see an example, let us consider the first example. Recall that there  

x(t) = 𝑒−𝑎𝑡𝑢(𝑡),        𝑎 > 0 

and we saw that it is Fourier transform is, its Fourier transform, its Fourier transform was  

𝑥(𝜔) =
1

𝑎 + 𝑗𝜔
 

Now, this says that the Fourier transform of 

x(t − 𝑡0) = 𝑒−𝑎(𝑡−𝑡0)𝑢(𝑡 − 𝑡0) 

Fourier transform of this signal will be 



𝑒−𝑗𝜔𝑡0

𝑎 + 𝑗𝜔
 

So, this is an illustration of time and frequency.  
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Let us move on to the next property, which is conjugation, conjugation property, it says that if x(t) 

has Fourier transform x(𝜔) then x*t which is complex conjugate of x(t) will have Fourier transform 

x*(-𝜔). So, in particular if x(t) is real, then 𝑥(𝑡)  =  𝑥 ∗ (𝑡), it is complex conjugate, this says that 

𝑥(𝜔) =  𝑥 ∗ (−𝜔) 



In particular, if I take modulus on both the sides, we will see that |𝑥(𝜔)| which is also called 

absolute value of x(𝜔), 

|𝑥(𝜔)| = |x ∗ (−𝜔)| 

So, this is called absolute value or modulus or sometimes it is called magnitude or amplitude, these 

are all same things. Similarly, ∠x(ω) often also called argument of  

∠𝑥(𝜔) =  −∠𝑥(−𝜔) 

So, this is called argument. So, you see that modulus, or absolute values have even symmetry, 

whereas angles have odd symmetry.  
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Let us see an example of this property, again recall the first example that we have taken that is  

x(t) = 𝑒−𝑎𝑡𝑢(𝑡),        𝑎 > 0 

recall that the Fourier transform of x(t) 

𝑥(𝑡) = 𝑥(𝜔) =
1

𝑎 + 𝑗𝜔
 

|𝑥(𝜔)| in this case is 
1

√𝑎2+𝜔2
, which is plotted looks as follows, its peak value is 

1 

𝑎
. So, here is ω 

and this is |𝑥(𝜔)|, 

∠𝑥(𝜔) = − tan−1 (
𝜔

𝑎
) 

If you plot this angle, it looks as follows, these values are 
𝜋

2
 and −

𝜋

2
 respectively, so here it is ω, 

this is ∠𝑥(𝜔), in this example, x(t) is a real signal. So, we would expect x |𝑥(𝜔)| to be real 

symmetric and ∠𝑥(𝜔) to be odd symmetric, which is how they are in this picture. So, this is the 

conjugation property, this is an instance of the implication of conjugation property.  
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Next property that, we will see are called derivative properties. Let us say that x(t) is a signal, that 

has Fourier transform x(ω), if we differentiate the synthesis equation with respect to t, then we get 

as 
𝑑𝑥(𝑡)

𝑑𝑡
, will have Fourier transform 𝑗𝜔𝑥(𝜔). Similarly, if you differentiate the analysis equation, 

we see that −𝑗𝑡𝑥(𝑡) will have Fourier transform that is derivative of Fourier transform of x(t), this 

is 
𝑑𝑥(𝜔)

𝑑𝜔
. 

These are called derivative properties, we see that there is certain type of duality between these 

two relations, we will see in uses of this property in a while. Likewise, if we differentiate the 

synthesis and analysis equations, k times we get the following properties, we see that the kth 



derivative of x(t) has Fourier transform to (𝑗𝜔)𝑘𝑥(𝜔) and the Fourier transform of (−𝑗𝜔)𝑘𝑥(𝑡) is 

kth derivative of Fourier transform of x(t). You will see several uses of this derivative properties 

in a while. 

(Refer Slide Time: 21:33)  

 

 

But for now, we will move to the next property that is, you will see several usage of derivative 

properties in a while, but for now, let us move to the next property, which is time and frequency 

scaling, time and frequency scaling properties. So, this says that if x(t) has Fourier transform x(ω), 

then x(at), where a≠0, will have Fourier transform  



1

|𝑎|
𝑥 (

𝜔

𝑎
) 

it is clear a is a nonzero number.  

Let us see an example recall that x(t) = sinc(t) has Fourier transform x(ω) which is a pulse signal 

as follows. So, this is 1 between -𝜋 and 𝜋, n j to otherwise. So, x(ω) = 1 for 𝜔 between -𝜋 and 𝜋 

and 0 otherwise.  

Now, if I choose a = 
𝑊

𝜋
 and consider x(at), which is 𝑠𝑖𝑛𝑐(

𝑊

𝜋
𝑡), then Fourier transform of this signal 

will be  

𝜋

𝑊
𝑥 (

𝜋

𝑊
𝜔) 

which in turn implies that Fourier transform of W by  

𝑊

𝜋
𝑠𝑖𝑛𝑐 (

𝑊

𝜋
𝑡)  

𝑓𝑡
↔  𝑥 (

𝜋

𝑊
𝜔) 

If you see this signal, this is again a pulse signal, but between -1 and 1, this is a signal that takes 

value 1 between -1 and 1 and it is 0 otherwise, this is 𝑥 (
𝜋

𝑊
𝜔).  
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Let us now see a special uses of this time and frequency scaling properties. This is a special case, 

that quite important case and this is when a = -1, then the above property implies that the Fourier 

transform of x(-t) ↔ X(-ω).  

Now, we can combine this property along with conjugation properties to get some interesting fact, 

in particular, if the x is real, sorry, if x is even which says that x(t) = x(-t), then x(-ω) = x(ω), this 

follows from the above equation.  

If x(t) is moreover, if x(t) is a real, that is x(t) = x*(t), then the conjugation properties is that x(-ω) 

= x*(ω), that is conjugate of x*(omega), they combine these two properties, then we infer that if 

x(t) is real and even, even and real, then x(ω) = x*(ω), in other words, x(ω) is real.  
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We have already seen several illustrations of this example for instance, let us consider just recall 

the two examples that we saw earlier, in the one x(t) was a pulse signal, this was our first example, 

the other one was where x(t) was sinc function, in both these examples, x(t) were real and so, as 

expected x(t) was real and even so as expected x(ω) also turned out to be a real in both the cases, 

x(ω) which are real in both the cases. 
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Let us now move to the next property, which is called Parseval’s relation, this relation is as follows, 



∫ |𝑥(𝑡)|2𝑑𝑡

∞

−∞

 

this can be expressed in terms of integral of mod of x, |𝑥(𝜔)|2 and integrate. So, this relation is 

called Parseval’s relation.  

Let us see an example that illustrates this, again go back to the example where  

x(t) = 𝑒−𝑎𝑡𝑢(𝑡),        𝑎 > 0 

In this case, we have seen readily seen that  

𝑥(𝜔) =
1

𝑎 + 𝑗𝜔
 

let us compute the following  

∫ |𝑥(𝑡)|2𝑑𝑡 = ∫ 𝑒−2𝑎𝑡𝑑𝑡 =
1

2𝑎

𝑒

0

∞

−∞

 

On the other hand if I compute the following  

∫ |𝑥(𝜔)|2𝑑𝜔 = ∫
1

𝑎2 + 𝜔2
𝑑𝜔 =

𝜋

𝜔
=

2𝜋

2𝜔

∞

−∞

∞

−∞

 

This last equality, you applies that  

1

2𝜋
∫ |𝑥(𝜔)|2𝑑𝜔 =

∞

−∞

∫ |𝑥(𝑡)|2𝑑𝑡

∞

−∞

 

as claimed by Parseval’s relation. So, this is an illustration of Parseval’s relation.  

(Refer Slide Time: 29:22)  



 

Next will move, you can see a few corollaries of this property that we have already seen. Namely, 

we see that the initial value of the signal n time domain can be that is  

𝑥(0) =
1

2𝜋
∫ 𝑥(𝜔)𝑑𝜔

∞

−∞

 

This relation is obtained by simply setting t = 0 in the synthesis equation. Similarly, If I set ω = 0 

in the analysis equation, I get the DC component of the signal namely, 

𝑋(0) = ∫ 𝑥(𝑡)𝑑𝑡

∞

−∞

 

See the right-hand side, it is taking to average of the time domain signal.  
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Next property is multiplication property, which says that, if x(t) has Fourier transform say x1(t) 

has Fourier transform x1(ω), and x2(t)  has Fourier transform x1(ω) then product of the two time 

domain signals that is x1(t)x2(t) will have Fourier transform, which will be  

1

2𝜋
(x1

∗𝑥2)(𝜔) 

If we expand this we get  

=
1

2𝜋
∫ 𝑥1(𝜃)𝑥2(𝜔 − 𝜃)𝑑𝜃

∞

−∞

 

So, this is Fourier transform product of two time domain signals.  
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The dual of this region is what is called convolution property, is very important property, we will 

see many uses of this. So, convolution property, it says that if x1(t) has Fourier transform x1(ω) 

and x2(t) has Fourier transform x2(ω), then convolution of x1 and x2 that is (x1* x2)(t), this will 

have Fourier transform that will be simply the product of x1(ω) x2(ω). 

Let us see an example illustrating this property, recall that if a set x(t) to be equal to pulse signal 

that is 1, |𝑡| ≤ 0.5 and a 0 otherwise, here is my x(t), this is -0.5, 0.5, 1 t, x(t) then the Fourier 

transform of x(t), 



𝑥(𝜔) =  𝑠𝑖𝑛𝑐 (
𝜔

2𝜋
) 

 This is obtained by simply setting T = 0.5 in the example that we had seen earlier. 

Now, in this case the convolution of x with itself that is (x*x)(t) turns out to be a triangular pulse, 

namely it is this function and the above convolution property states that, the Fourier transform of 

this pulse is (𝑠𝑖𝑛𝑐 (
𝜔

2𝜋
))

2

. So, in this way we get Fourier transform of a triangular pulse from 

Fourier transform of rectangular pulse.  
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Let us now see such few uses of convolution property, as I indicated earlier this property has many 

uses and the first use is in computation of convolution of functions. The convolution of xi, suppose, 

I have two signals x1(t) and x2(t), I can use this property to compute (x1* x2)(t), not always but in 

several interesting problems.  

So, here is an example, let us say  

𝑥1(t) = 𝑒−𝑎𝑡𝑢(𝑡)         

And 

𝑥2(t) = 𝑒−𝑏𝑡𝑢(𝑡) 

here a b are both positive and a and b are unequal, they are not same. We readily know that, the 

Fourier transforms  

𝑥1(𝜔) =
1

𝑎 + 𝑗𝜔
 

𝑥2(𝜔) =
1

𝑏 + 𝑗𝜔
 

 

In this case, the product of the two Fourier transforms is,  

𝑥1(𝜔)𝑥2(𝜔) =
1

(𝑎 + 𝑗𝜔)(𝑏 + 𝑗𝜔)
 

We know that the inverse of this Fourier transform, inverse of this product would give convolution 

of x1(t) and x2(t).  

So, let us try to find out the inverse of this, towards this we will use the technique of partial fraction 

expansion, which says that we can write this right hand side is  

=
𝐴

𝑎 + 𝑗𝜔
+

𝐵

𝑏 + 𝑗𝜔
 

for two numbers a and b. This can further be worked out to the Ab + Ba + j,  



𝐴 + 𝐵

(𝑎 + 𝑗𝜔)(𝑏 + 𝑗𝜔)
 

If we equate the constant and, and multipliers of 𝜔, then we get that we see that Ab + Ba = 1 

whereas A + B = 0, on simplifying this gives  

𝐴 =
1

𝑏 − 𝑎
= −𝐵 

So, we see that  

𝑥1(𝜔)𝑥2(𝜔) =
1

𝑏 − 𝑎
.

1

𝑎 + 𝑗𝜔
−

1

𝑏 − 𝑎
.

1

𝑏 + 𝑗𝜔
 

We readily know that the Fourier transform of this signal inverse, rather inverse Fourier transform 

of this signal is 𝑒−𝑎𝑡𝑢(𝑡) and for this function it is your inverse Fourier transform is 𝑒−𝑏𝑡𝑢(𝑡).  

This says that inverse, inverse Fourier transform of  

𝑥1(𝜔)𝑥2(𝜔) =
1

𝑏 − 𝑎
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡)𝑢(𝑡) 

and from (convo) from the above property, this is equal to convolution of x1* and x2 sorry x1 and 

x2. So, we see how convolution property allows us to compute convolution of two functions.  
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Let us see another example. I again take  

x(t) = 𝑒−𝑎𝑡𝑢(𝑡),        𝑎 > 0 

Now, I am interested in convolution of x with itself, we see that we cannot use the partial fraction 

expansion property used ever, however, I can use convolution property along with derivative 

property to compute this convolution, to see that observe that (x*x)(t) will have Fourier transform 

which is   

𝑥(𝜔)2 =
1

(𝑎 + 𝑗𝜔)2
 



= 𝑗
𝑑

𝑑𝜔
.

1

(𝑎 + 𝑗𝜔)
 

We can compute the derivative and can verify this assertion.  

So, this in turn is 

= 𝑗
𝑑

𝑑𝜔
𝑥(𝜔) 

We know that 
𝑑

𝑑𝜔
𝑥(𝜔) has inverse Fourier transform, which is  

= −𝑗𝑡𝑥(𝑡) 

this have inverse Fourier transform −𝑗𝑡𝑥(𝑡). This says that this whole thing 𝑗
𝑑

𝑑𝜔
𝑥(𝜔) will have 

inverse Fourier transform, which will be −𝑗2𝑡𝑥(𝑡), this says that convolution of x with itself is 

nothing but 𝑡𝑥(𝑡), notice that −𝑗2 = 1, which in this case is 𝑡𝑒−𝑎𝑡𝑢(𝑡). 

So, we see how we could use these properties to get convolution of x which is, in fact we can 

repeat this process k times to get k times convolution of x(t) and the result turns out to be as 

follows. So, Fourier transform k times convolution of x with itself t turns out to be  

=
𝑡𝑘

𝑘!
𝑒−𝑎𝑡𝑢(𝑡) 

So, we see that this quite useful property. 
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Now, we will see uses of these properties in analyzing LTI systems. So, we will see connections 

to LTI systems, to LTI systems. Recall that in LTI system whose impulse response is h(t), if we 

give input x(t), the output y(t) is convolution of x(t) and h(t), it is convolution of x(t) and h(t). So, 

from the convolution property mentioned above, we know that Fourier transform of y(t), that is  

𝑦(𝜔) = 𝑥(𝜔)𝐻(𝜔) 

there 𝐻(𝜔) is given by, where 𝐻(𝜔) is a Fourier transform of h(t), so that is  

𝐻(𝜔) = ∫ ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

If we recall the first lecture, this is what we call, we defined as frequency response of the system, 

response of the system. So, we see that frequency response of the system is nothing but Fourier 

transform of impulse response, form of impulse response. 
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Let us now use the relation that we have just derived to get frequency response of continuous time 

LTI systems, frequency response of continuous time LTI systems, recall that systems, for systems 

are characterized by following differential equation  

∑ 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘

𝑁

𝑘=0

= ∑ 𝑏𝑘

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘

𝑀

𝑘=0

 

If we use time, if use derivative property we can write a Fourier transform of both the sides as 

follows  



∑ 𝑎𝑘(𝑗𝜔)𝑘𝑦(𝜔)

𝑁

𝑘=0

= ∑ 𝑏𝑘(𝑗𝜔)𝑘𝑥(𝜔)

𝑀

𝑘=0

 

which in turn implies that from the definition of frequency response 

𝐻(𝜔) = 𝑌(𝜔) = ∑ 𝑏𝑘(𝑗𝜔)𝑘𝑥(𝜔)

𝑀

𝑘=0

 

which from the definition of frequency response further implies that frequency response  

𝐻(𝜔) =
𝑌(𝜔)

𝑋(𝜔)
=

∑ 𝑏𝑘(𝑗𝜔)𝑘𝑀
𝑘=0

∑ 𝑎𝑘(𝑗𝜔)𝑘𝑁
𝑘=0
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Let us see an application of it. So, an example, consider the following system called first order, a 

first order system given by differential equation  

𝜏
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝑥(𝑡) 

𝜏 here is often referred to as time constant. If we compute the Fourier transform of both the sides 

using derivative property, we see that  

𝑗𝜔𝜏𝑦(𝜔) + 𝑦(𝜔) = 𝑥(𝜔) 

which in turn gives the frequency response  



𝐻(𝜔) =
𝑌(𝜔)

𝑋(𝜔)
=

1

1 + 𝑗𝜔𝜏
 

Notice that the modulus or the absolute value of this function  

𝐻(𝜔) =
1

√1 + 𝜔2𝜏2
 

which if we plot looks as follows. So, this is absolute value of 𝐻(𝜔), peak value is 1 and at 𝜔 =
1

𝜏
 

the value is 
1

√2
. So, this value 

1

𝜏
 has special significance.  

In fact, we can compute the inverse Fourier transform of 𝐻(𝜔) to get an impulse response of the 

system which turns out to be  

=
1

𝜏
𝑒−

𝑡
𝜏𝑢(𝑡) 

Here we have used scaling property of Fourier transform and earlier result on Fourier transform of 

such functions. So, this was an example of Fourier transform to LTI systems.  
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Let us now take a step back and look at the definition of Fourier transform. Notice that, recall that 

Fourier transform for a signal  



𝑥(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

this very definitions raises a few questions for instance, does this integral, when does this integral 

exist? Are there any sufficient condition for existence of this integral? What happens for x(t) for 

which this integral does not exist? So, let us try to answer a few of these questions.  

First, we will state a result that ensures existence of this integral. So, here is a theorem that says 

that, if  

∫ |𝑥(𝑡)|𝑑𝑡

∞

−∞

< ∞ 

then this integral exists, not only it exists, X(ω) is continuous and moreover it approaches 0 as ω 

goes to ∞ or -∞, so X(ω) approaches 0 as ω approaches ±∞. However, notice that this is a sufficient 

condition as we will see soon it is not a necessary condition for existence of Fourier transform in 

the sense discussed here. So, this is sufficient, but not necessary.  
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Let us revisit a few of the examples that we saw earlier to clarify this point, one of the examples 

as x(t) to be equal to pulse signal -T to T, let us call this signal xT(t). So, this is xT(t), clearly this 

is absolutely, so this notion of, this notion, this in the left hand side, this is called absolute 

integrability.  

So, absolute integrability is enough to ensure existence of Fourier transform. So, this xT(t) is 

absolutely integral. So, its Fourier transform is guaranteed to exist, the same goes for the signal, 

let us say a triangular signal. Recall this signal which was convolution of two rectangular pulses. 

This is also absolutely integral, also absolutely integral. So, above theorem, implies existence of 



Fourier transform for this absolute, this is absolute, implies existence of Fourier transform of the 

signals.  

On the other hand, if we see the sinc, yeah, if we consider the sinc function where 𝑥(𝑡) = 𝑠𝑖𝑛𝑐(𝑡), 

this is not absolutely integrable. I will not get into details of why it is not absolutely integrable. 

But it is important to notice that even though it is not absolutely integrable, it is Fourier transform 

exists, that is the integration that defines Fourier transform is well defined,  

∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

is well defined.  
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But what about the signals for which this integral, Fourier transform integral is not well defined? 

Let us see, for instance, x(t) =1 ∀𝑡. So, this is a constant signal, for this signal,  

∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

is not well defined. The same holds for x(t) equals to, so the same holds for x(t) equals to sinusoidal 

signal. That is, that is the same holds for 𝑥(𝑡) = 𝑐𝑜𝑠𝜔𝑡. So, what do we do in these cases? It turns 



out that in this case we can appeal to a generalized, more generalized notion of Fourier transform. 

And that is what I have explained, now via an example.  
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So, let us consider, so this is what we are going to see is a generalized notion of Fourier transforms 

that does not necessarily require the Fourier transform integral to exist, generalized notion of 

Fourier transform. Let us recall the signal xT(t) just mentioned above, so xT(t) is -T to T, so 1 and 

it is 0 everywhere else. 



Recall that its Fourier transform is 2𝑇𝑠𝑖𝑛𝑐(
𝑇𝜔

𝜋
). Let us call this xT(ω), I am writing subscripts 

capital T just to show the dependence on capital T. Now, as T goes to ∞, as T goes to ∞, this xT(t) 

converges to the constant function, why, its period becomes longer and longer. So, it converges to 

constant function, where. 

So, we would expect that the Fourier transform of the constant function will be given by  

lim
𝑇→∞

𝑋𝑇(𝜔). Now, let us see what this right hand side is. So, this 𝑋𝑇(𝜔) has a couple of interesting 

properties, first property says that if I integrate  

∫ 𝑋𝑇(𝜔) 𝑑𝜔

∞

−∞

 

I know from the initial value property that  

1

2𝜋
∫ 𝑋𝑇(𝜔)𝑑𝜔 = 𝑥𝑇(0) = 1

∞

−∞

 

So, one of the properties of  

∫ 𝑋𝑇(𝜔) 𝑑𝜔

∞

−∞

= 2𝜋 

Let us call this property star and observe another quite interesting property of 𝑋𝑇(𝜔) which is 

following. If a compute  

lim
𝑇→∞

𝑋𝑇(𝜔) = {

lim
𝑇→∞

2𝑇 = ∞ , 𝜔 = 0

lim
𝑇→∞

2sin (𝜔𝑇)

𝜔
, 𝜔 ≠ 0

 

Now, if I plot this function 𝑋𝑇(𝜔)  for larger and larger values of capital T, I see the following, I 

observe the following. 
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Suppose for some T, I have the following plot, if I increase T the amplitude at ω=0 increases and 

at the same time the plot gets compressed. So, I see something of the following sort. So, we can 

imagine that this picture along with these two properties namely star and double star will imply 

that as we increase T to ∞, this 𝑋𝑇(𝜔) converges to Dirac delta function, more precisely it 

converges to 2𝜋𝛿(𝜔). See 2𝜋 here coming from, is coming from the fact that  

∫ 𝑋𝑇(𝜔) 𝑑𝜔

∞

−∞

= 2𝜋 

for all values of capital T that gives rise to this  

2𝜋𝛿(𝜔) 
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So, from the above we can conclude that this constant function has Fourier transform  

2𝜋𝛿(𝜔), even though the above argument looks a little complicated, the same can be verified from 

the following observation. If we use synthesis equation for Dirac delta function, then we see that 

for  

𝑋(𝜔) = 2𝜋𝛿(𝜔) 

𝑥(𝑡) =
1

2𝜋
∫ 2𝜋𝛿(𝜔)𝑒𝑗𝜔𝑡𝑑𝑡

∞

−∞

= 1 

So, we can follow the similar logic to get dual results as follows.  
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So, the dual to the above pair is if x(t) is Dirac delta function, then its Fourier transform is 1 for all 

ω, it is constant function for all ω. Again, this can be justified with analysis equation which says 

that for 𝑥(𝑡)  =  𝛿(𝑡) analysis equation implies that  

𝑋(𝜔) = ∫ 𝛿(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

= 1 

Now, we can use frequency shift property to derive a generalization of the above relation, shift, if 

we do a frequency shift to get 𝑥(𝑡) = 𝑒𝑗𝜔0𝑡 then its Fourier transform turns out to be  

𝑋(𝜔) = 2𝜋𝛿(𝜔 − 𝜔0) 

So, this is a more general result.  
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Now, let us see a few of the implications of this result, few of the uses of this result until now, we 

have seen Fourier transform for aperiodic signals, but what if we are faced with periodic signals, 

Fourier transform of periodic signals. Let us say we have a periodic signal x(t) for which we can 

write the Fourier series. So,  

𝑥(𝑡) = ∑ 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡

∞

𝑘=−∞

 

We can then use linearity along with the above property to write the Fourier transform of x(t) to 

be  



= ∑ 2𝜋𝑎𝑘𝛿(𝜔 − 𝑘𝜔0)

∞

𝑘=−∞

 

Let us see an example, if  

𝑥(𝑡) = 𝑐𝑜𝑠𝜔0𝑡 =
1

2
𝑒𝑗𝑘𝜔0𝑡 +

1

2
𝑒−𝑗𝑘𝜔0𝑡 

And accordingly, the Fourier transform of x(t) can be written as  

𝑋(𝜔) = 𝜋𝛿(𝜔 − 𝜔0) + 𝜋𝛿(𝜔 + 𝜔0) 

Let us see another example, suppose, x(t) is an impulse stream that is  

𝑥(𝑡) = ∑ 𝛿(𝑡 − 𝑘𝑇)

∞

𝑘=−∞

 

In this case, we can compute the Fourier series coefficients of x(t) as follows. So, xt as,  

𝑎𝑘 =
1

𝑇
∫ 𝛿(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑇
2

−
𝑇
2

=
1

𝑇
  ∀𝑘 

So, now, I can write the Fourier transform of x(t)  

𝑋(𝜔) = ∑
2𝜋

𝑇
𝛿(𝜔 − 𝑘𝜔0)

∞

𝑘=−∞

 

Notice that 
2𝜋

𝑇
 is constant so I can get out of the summation and Fourier transform can also be 

written as follows. 

𝑋(𝜔) =
2𝜋

𝑇
∑ 𝛿(𝜔 − 𝑘𝜔0)

∞

𝑘=−∞

 

 So, this brings us to the end of our discussion of Fourier transform for continuous time signals. In 

next lecture we will look at Fourier transform on discrete times.  

 


