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Fourier Series 

Hello everyone, welcome to the second lecture of the course Mathematical Aspects of 

Biomedical Electronic System Design. We are studying the module signals and systems and 

today in this second lecture, we will learn about Fourier series. 
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To elaborate, we will learn about continuous-time periodic signals, continuous-time Fourier 

series, properties of Fourier series, and similar things same concepts for discrete-time signals 

as well. So, let us begin with today's lecture. 
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So, let us begin with looking at what are periodic signals. A continuous-time signal x(t) is 

called periodic with period T if x(t+T) = x(t) ∀ t. Moreover, if x(t) is periodic then smallest T, 

smallest capital T such that the above equation holds that is x(t+T) = xt  ∀ t is called 

fundamental period of x. Notice that fundamental period is a period of x(t) and any integer 

multiple of fundamental period is also a period of x. 

Here are examples, let us consider x1(t) = cos(
2𝜋

3
𝑡) , observe that x1(t) is periodic with period, 

so let us see, if I compute x1(t+3), it becomes cos(
2𝜋

3
(𝑡 + 3)), which is x1(t). So, x1 is periodic 

with period 3, 3 is fundamental period of x1 in this case. Let us look at another example, say 

x2(t) = sin(
𝜋

10
𝑡), as in case of x1 we can verify that x2(t+20) is x2(t) ∀ t, x2 is periodic with 



period 20. So, here is a question support x1(t) and x2(t) are periodic is the sum of periodic 

signals also periodic. 
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Question is the sum of periodic signal also periodic, more precisely if x1 is periodic with 

fundamental period T1 and x2 is periodic with fundamental period T2, is x1 + x2 periodic? Here 

is the answer, x1 + x2 each periodic if and only if  
𝑇1

𝑇2
  is rational. Notice that if  

𝑇1

𝑇2
  is rational 

then there exists integers n1 and n2 such that n1T1 = n2T2 in this case, say this is equal to T, then 

T is a period of x1 + x2. In fact, in this case, least common multiple LCM of T1 and T2 is the 

fundamental period of x1 + x2. 



(Refer Slide Time: 07:24) 

 

 

Let us see examples. In the above example, we saw that x1 was periodic with period 3 and x2 

was periodic with period 20, then the least common multiple that is 60 which period of x1 + x2 

and x1 + x2 is periodic, let us see in the above example, 
𝑇1

𝑇2
=  

3

20
  which is rational. So, x1 + x2 

is periodic with fundamental period 60. 

However, let us see another example, where x1(t) = cos(2𝜋t). So, its fundamental period is 1, 

x2(t) = cos(t). What is it fundamental period? It is fundamental period is 2𝜋,  
𝑇1

𝑇2
 is not rational. 

So, this time x1 + x2 is not periodic. Having seen periodic signals, let us now also recall the 

notion of complex exponentials. 
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Let us recall complex exponentials. We call that x(t) = est, where s is a complex number is 

called a complex exponential, so these are complex exponentials. Notice that, if s the complex 

number is 𝜎 + 𝑗𝜔, then  

𝑒𝑠𝑡 = 𝑒𝜎𝑡𝑒𝑗𝜔𝑡  ,  

which in turn is 

𝑒𝜎𝑡(cos 𝜔𝑡 + jsin 𝜔𝑡). 

Here, this, sorry jsin 𝜔𝑡, this sin and cos functions they constitute the periodic part. So, this is 

a periodic signal, these are, whereas this is envelope of e complex exponential. Now, this 



periodic signal is called a sinusoid. So, formally a signal of the form cos (𝜔𝑡 + 𝜑) or say 

sin (𝜔𝑡 + 𝜑) is called a sinusoidal signal. 

So, what we see that in exponential, complex exponential can be written as a weighted sum of 

sinusoidal signals. A complex exponential can we written as a weighted sum of sinusoidal 

signals we can say. On the other hand, if I take any sinusoidal signal let us say cos (𝜔𝑡 + 𝜑) 

this can be written as 

 
𝑒𝑗(𝜔𝑡+𝜑)+𝑒−𝑗(𝜔𝑡+𝜑) 

2
 

which in turn can be written as 

𝑒𝑗𝜑

2
𝑒𝑗𝜔𝑡 +

𝑒−𝑗𝜑

2
𝑒−𝑗𝜔𝑡 . 

So, now, we see that we can write a sinusoidal as a convex aggerated sum of complex 

exponential. So, we see that interchangeably we can write complex exponentials as weighted 

sum of sinusoidal and vice versa. So, for this region, so now, we have sinusoidal signals, 

sinusoidal as weighted sum of complex exponentials. 

So, one can be represented in terms of others. For this region, we also refer to a weighted sum 

of, we refer to a weighted sum of complex exponentials as weighted sum of sinusoidals. With 

this notion in mind, let us now look at what a Fourier series is. 
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Fourier series represents a periodic signal as a weighted sum of sinusoidal, a periodic signal as 

a weighted sum of sinusoidals. In particular, let us consider x(t) a periodic signal with 

fundamental period T, fundamental period capital T in this case we call 𝜔0 =
2𝜋

𝑇
  to be the 

fundamental frequency of x(t), to be the fundamental frequency of x(t). 

For x(t) we can represent it as  

x(t) =  ∑ 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡∞
𝑘=−∞ .  

This series on the right is called Fourier series. This equation itself is called synthesis equation. 

It is called synthesis equation because it synthesizes a periodic signal from sinusoidal 

components. 

Notice that  

                                  𝑥(𝑡) =  𝑎0 + 𝑎1𝑒𝑗𝜔0𝑡 + 𝑎2𝑒2𝑗𝜔0𝑡 + ⋯  

 and then  

+𝑎−1𝑒−𝑗𝜔0𝑡 + 𝑎−2𝑒−2𝑗𝜔0𝑡 + ⋯ 

 In this expansion, the first term which is a constant, this is called DC term, DC component. 

These two terms are called first harmonics; they are called first harmonics since they oscillate 

at fundamental frequency omega naught. Similarly, these terms are called second harmonics 

and so on. So, these two are first harmonics, these two are second harmonics. 
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Let us take an example.  

Let 𝑥(𝑡) = 1 +
1

2
𝑐𝑜𝑠2𝜋𝑡 + 𝑠𝑖𝑛4𝜋𝑡 +

2

3
𝑐𝑜𝑠6𝜋𝑡.  

We can write these sinusoidals as weighted sum of complex exponentials and can write the 

whole thing 1 +
1

4
𝑒𝑗2𝜋𝑡 and the corresponding other term will be 𝑒−𝑗2𝜋𝑡. Here, we will 

have
1

2𝑗
𝑒4𝜋𝑡 −

1

2𝑗
𝑒−𝑗4𝜋𝑡 +

2

3
 , this will become 

1

3
𝑒𝑗6𝜋𝑡 and then there will be a one more term 

1

3
𝑒−𝑗6𝜋𝑡. 

So, we see that the signal x(t) has a DC term these are first harmonics, second harmonics, and 

third harmonics. In this example, a0 = 
1

2
, sorry 1, a1 = 

1

4
 = a-1, a2 = 

1

2𝑗
  = a-2, a3 = 

1

3
  = a-3. 



In general, this terms ak are called Fourier series coefficient of x(t), in general, ak is for k=0, 

±1, ±2, etc in the expansion, in the Fourier series of x(t) are called Fourier series coefficients 

of x(t). Before we proceed let us see a couple of important properties of Fourier series. 
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Properties for Fourier series. We will see more properties as we go along. So, the first property 

is, if x(t) has Fourier series coefficients ak then x*(t) which is complex conjugate of x(t) has 

Fourier series coefficients a*-k, so let me write it, if x(t) has Fourier coefficients ak then let us 

say x^(t) = x*(t) conjugate of x(t) has Fourier series coefficients bk = a*-k complex conjugate. 

So, this property is called conjugate symmetry property. The other property is and it follows 

from the first one, it says that if x is real valued, if x(t) is real valued and Fourier series 

coefficients ak, then ak is equal to a*-k. In particular, this says that if x(t) is real value, we only 

need to compute ak for non-negative k and we can recover or we can retrieve ak for negative k 

from these values. So, next point is given a periodic signal x(t), how do we find Fourier series 

coefficients ak for x(t). 
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Finding Fourier series coefficients. So, given x(t) with period T, that the fundamental period 

T, let me write it, fundamental period T and fundamental frequency 𝜔0, 𝜔0 =
2𝜋

𝑇
 . The Fourier 

series coefficients are obtained using, coefficients are obtained using the formula,  

𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)

𝑇

0
𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 . 

Now, this equation that gets Fourier series coefficients from the signal itself this is called 

analysis equation. Notice that the integrand in this equation, integrand that is 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡 is 

periodic with period t. So, rather than integrating it over 0 to T, we can integrate it over any 

interval of with T and we will get the same coefficient, same outcome. So, we can also define 

𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑡0+𝑇

𝑡0
  



 for some t0. So, this is alternate definition of Fourier series coefficients. Let us see an example. 
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So, example that we take is of periodic square wave. Here is the example, so it is a square wave 

with period T, so this is 0, T, -T and the square pulse width is to T1. So, this  -T1 to T1 will be 

T-T1 to T+T1 and so on. So, clearly, this is a periodic signal with period T and the coefficients 

can be computed as follows,  

𝑎0 =
1

𝑇
∫ 𝑑𝑡

𝑇1

−𝑇1
=

2𝑇1

𝑇
 .  

Similarly, for K ≠ 0, 

 𝑎𝑘 =
1

𝑇
∫ 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑇1

−𝑇1
 , which if we work out it turns out to be 

1

𝑘𝜋
sin (2𝜋𝑘

𝑇1

𝑇
). Let us see 

another example. 
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And this time, we look at triangular weight surveys consisting of triangular pulsation. This is 

called Periodic Triangle wave. It looks as follows. The height of the triangular pulse is 0.5, on 

the other hand, its period is 1. We can compute the Fourier series coefficients for this way 

following the similar procedure as for the square pulse above, and it turns out that for instance, 

a0 will be simply the area under this, the average value of this, so -0.5 to 0.5. 

And before I compute it, let us also see that this mathematically, this wave can be written as 

follows x(t) = (0.5 - |𝑡|)  ∀ t in -0.5 and 0.5, and then it repeats with period 1. So, with this in 

mind, with this in view, I can write a0 as -0.5 to 0.5, 1 by 1 which is the period, and here it will 

be (0.5-|𝑡|)dt. 



And this turns out to be equal to 0.25. If we compute coefficients for ak for k ≠ 0, we find that 

𝑎𝑘 =
1

2𝜋2𝑘2
(1 − 𝑐𝑜𝑠𝜋𝑘) which is equal to since 1 − 𝑐𝑜𝑠𝜋𝑘 is 0, when K is even and 2 when 

K is odd, it turns out to be 0 is K even and 
1

2𝜋2𝑘2, if K is odd. So, this is how we compute 

Fourier series coefficients. Now, let us look at a more fundamental question. 
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In particular, let us recall the definition of Fourier series. Recall Fourier series definition, we 

defined Fourier series for a signal  

𝑥(𝑡) = ∑ 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡∞
𝑘=−∞ .  

In writing this, we assume that the series on the right-hand side converges well but the question 

is does the series converge? 



In particular, what we I mean that, if I define a signal xM(t) to be in other words, if we define 

xM(t) to be a finite sum where I only take terms between  -M and M. So, 𝑎𝑘𝑒𝑗𝑘𝜔0𝑡, then as I 

take M to ∞ does xM(t) approach x(t). So, this is the question that we would like to answer 

because the very existence of, very definition of Fourier series relies on convergence of this. 

We answered this question by the following theorem. 
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So, here is the theorem. Suppose we make two hypotheses, suppose x is periodic with 

fundamental period T and fundamental frequency 𝜔0 =
2𝜋

𝑇
. This has been the standing 

assumption all through and the second hypothesis is, x is piecewise linear, it is a piecewise 

continuous with piecewise continuous derivative. Under these hypotheses, if x is continuous at 



a point t, if x is continuous at t then the limit that we would have liked to adjust indeed exists, 

so limit M tends to infinity xM(t) is equal to x(t).  

On the other hand, then on the other hand, if x is not continuous at t then also not everything is 

lost, then if it has left hand and right-hand limits, left and right limits x(t-) and x(t +) limit M 

tends to infinity, still the sequence xM(t) converges, but it converges to the mean value of this 

left and right limits, x(t-) + x(t+). So, let us see a couple of examples. 
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Let us again go back to that triangular pulse, triangular wave example that we saw just a while 

ago, triangular wave signal. Notice that for this signal x(t) is continuous everywhere. So, the 

above theorem implies that the theorem implies that Fourier series converges at each point, the 

theorem implies that the Fourier series converges at each point. 

On the other hand, if we see the rectangular wave signal, here we see that x(t) is either 1 or 0 

or there is a jump, then the above theorem implies that limit t, sorry M tends to infinity xM(t) it 

will be same as x(t) that is 1 if x(t) i= 1, 0 if x(t) = 0, and it will be 
1

2
(1+0), that is 

1

2
 if t is a jump 

instead, if t is a what we call jump epoch. So, this is about convergence of Fourier series. Let 

us now see a few properties of, few more properties of Fourier series. 
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We have already seen a few properties of Fourier series. So, the first property says that if there 

are two signals x and y with identical periods, and their Fourier coefficients ak and bk, then 

Fourier coefficient of a linear combination of x and y can be written as a linear combination of 

Fourier coefficients ak and bk. To be precise let us see, if x(t) and y(t) have same period, I would 

say the same fundamental period x(t) has Fourier series coefficients ak, y(t) has Fourier series 

coefficients bk, then  

𝛼x(t) + 𝛽y(t) will have Fourier series coefficients 𝛼ak + 𝛽bk.  

This property as we can see it, it is referred to as linearity. Let us look at the next property, if 

x(t) has Fourier series coefficients ak, then the time-shifted version of x(t) that is  

x^(t)=x(t) - t0 

has Fourier series coefficients  

𝑎𝑘𝑒−𝑗𝑘𝜔0𝑡0.  

So, see, there will be 𝑗𝑘𝜔0𝑡0. So, we see that the time shift reflects in the exponential here. Let 

us look at another property that is called time reversal. 

So, this was time shift. The next property that we will see it is called time reversal. So, what 

does it say? It says that if x(t) has Fourier series coefficients ak then x^t = x(-t) has Fourier 

series coefficients a-k, has Fourier series coefficients a-k. To be precise if I denote Fourier series 

coefficients of x^t by bk, then bk = a-k ∀ k. So, this is called time reversal. 

The next property, well this is a property that we have already seen, but let me put it again for 

recollection if x(t) has a Fourier series coefficients ak and x(t) is real then a*k will be same as 

minus, sorry a-k. So, this is a property that we had seen earlier also but I have put it here so that 

all the properties are there at one place. Finally, real and even symmetric. So, what I mean by 

even symmetric is x(t) =x(-t) ∀ t then we have 𝑎𝑘=a*k ∀  k, that is 𝑎𝑘’s are real. This is obtained 

by combining 3 and 4. We now turn our attention to discrete-time signals. 
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So, to begin with, let us look at discrete-time periodic signals. So, x(n) is called the discrete-

time periodic with period N and N≠0 if  

x(n) = x(n+N)  ∀ n.  

So, here is a question, is x(n) = cos(𝜔0n) periodic for all 𝜔0? Answer is, x(n) = cos(𝜔0n) is 

periodic if 𝜔0 is rational, sorry if 
𝜔0

𝜋
  is rational. Here are the few examples cos(n), clearly 

1

𝜋
 is 

not rational, so this is not periodic cos( 
𝜋

5
n), what about this, this is periodic with period N=10. 
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Next question, as in continuous time case we can ask if we have two periodic signals will their 

sum always be periodic? The answer is, so is sum of periodic signals, periodic. Well, the answer 



is similar to the continuous-time case, if x1(n) is periodic with fundamental period N1 and x2(n) 

is periodic with fundamental period N2, then x1 + x2 is periodic if and only if  
N1

N2
 is rational and 

if x1 + x2 is periodic fundamental period of x1 + x2 is LCM of  N1 and N2. But we did not 

exactly, we did not define the fundamental period of discrete-time periodic signals. 

(Refer Slide Time: 49:18) 

 

So, for that let us see the following fundamental period. If x(n) is periodic then we saw that, so 

let us see if x(n) = cos(𝜔0n) is periodic then we saw that 
𝜔0

𝜋
 is rational. So, then there exists 

integers M and N. Such that 
𝜔0

2𝜋
 = 

M

N
 or 𝜔0N = 2𝜋M. The smallest M, sorry the smallest N for 

which equality holds is called fundamental period of x. So, for which this equality holds is 

called fundamental period of x(n). Let us see an example. 
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Consider x1(n) = cos( 
5𝜋

7
n). Following above definition, it can be seen that x1(n) is periodic 

with fundamental period N1 =14. We have already seen that x2(n) = cos( 
𝜋

5
n) periodic with 

fundamental period. Then notice that 
N1

N2
 is rational, so x1 + x2 is periodic and its period is, its 

fundamental period rather is LCM of 14 and 10 which is 70. So, I have not define periodic 

signals. Let us now move to definition of discrete-time Fourier series. 
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As before, Fourier series expresses a sequence a discrete-time signal, with period n as linear 

combination of complex exponentials, so Fourier series expresses a discrete-time signal as 

linear combination or weighted sum combination of complex exponentials. 

For instance, if x(n) is periodic with fundamental period n, then we can express x(n) as 

summation of or okay as rather I would say, x(n) as, we can express x(n) as linear combination 

of complex exponentials 

 𝜑𝑘(n) = 𝑒𝑗𝑘𝜔0, 𝜔0 = 
2𝜋

𝑁
. 

And as in continuous time case, it is called fundamental frequency. Notice that  

 𝜑𝑘+𝑁(n)= 𝑒𝑗𝑘𝜔0(𝑁+𝑛) = 𝑒𝑗𝑘𝜔0𝑁𝜑𝑘(𝑛) and this term is 1. Why? Because 𝜔0𝑁 = 2𝜋, so this is 

𝜑𝑘(n). So, we see that there are only finitely many independent functions 𝜑𝑘(n)’s. 

So, we see that 𝜑𝑘(n) = 𝜑𝑘+𝑁(n) plus which is, which in turn is equal to 𝜑𝑘+2𝑁(n), and so on 

and there are only capital N independent functions. Namely, 𝜑1(n), let me start with 0  

𝜑0(n)…𝜑𝑁−1(n). So, as a consequence, we can represent x(n) as a finite sum. 

So, unlike continuous-time case where we had an infinite series in discrete time, a periodic 

signal x(n) is represented as a finite sum of complex exponentials, more precisely I can write 

xk(n) as this. As in continuous time case, this equation is called synthesis equation. Let us see 

an example. 
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Let us just fix capital N =6. In this case, 

𝜑𝑘(n) = 𝑒𝑗𝑘
2𝜋

6
𝑛

  

And we have already seen that for any value of small n there are only capital N independent or 

rather, yeah there are only capital N independent functions 𝜑0(n) to 𝜑(n) or 𝜑1(n) to 𝜑 2 6 n. 

Let us see how this, how these values will look like. 

So, K =1, in this case, we will have 𝜑’s complex exponential as follows. So, here is 𝜑1(0), 

𝜑1(1), this will be 𝜑1(2), 𝜑1, sorry so this is 𝜑1(2), 𝜑1(3), 𝜑1(4), and this is 𝜑1(5). From what 

we discussed earlier 𝜑1(7) will be = 𝜑1(1), 𝜑1(0) will be = 𝜑1(6), and so on. 

Similarly, if I choose K =2, I get only three distinct complex exponentials which are as follows. 

Here, I have 𝜑2(0), then this is 𝜑1(1), so 𝜑2(1), and this is 𝜑2(2), 𝜑2(3) because your 

periodicity will be same as 𝜑2(0). Similarly, I can write compound, complex exponentials for 

K =3 and K =4 as well, I leave those as an exercise. 
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Now, let us see a few properties of complex exponentials, properties of 𝜑2(n). So, first thing is 

periodicity in n, that is 𝜑𝑘(n+N) = 𝜑𝑘(n)  ∀n, and this is called a periodicity. Similarly, we 

have 𝜑𝑘+𝑁(n) = 𝜑𝑘(n) and this is called periodicity in K. This is the property that we just saw, 

periodicity in K. 

The next property is if we add these complex exponentials and it equals to let us say 0 to N-1, 

the summation turns out to be N, if K = 0, ±N, ±2N, etcetera and it is 0 otherwise. This is a 

property that can be easily verified by carrying out the summation. Finally, the fourth property 

says that  

𝜑𝑘(n)𝜑𝑚(n) = 𝜑𝑘+𝑚(n).  

So, next question is given a periodic signal x(n), how do we find this component, these 

coefficients, Fourier series coefficients. 
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Just as we pose this question in continuous-time case. So, findings Fourier series coefficients, 

it turns out that if x(n) is periodic with fundamental period capital N, then ak Fourier series 

coefficients are given by 

𝑎𝑘 =
1

𝑁
∑ 𝑥(𝑛)𝑒−𝑗

2𝜋

𝑁
𝑘𝑛𝑁−1

𝑘=0   

Notice that 
2𝜋

𝑁
 is what we call fundamental frequency. Also as in the continuous-time case, we 

could change the limits of summation to any value as long as the terms in the summation are 

capital N. So, we can sum from K =K0 to N+K0-1. And we would get that same Fourier 

coefficients, Fourier series coefficients. So, this is a formula that is equally valid. This 

expectedly is called analysis equations. Let us see an example. 
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Let us consider  

𝑥(𝑛) =  1 + sin (
2𝜋

10
𝑛) + 𝑐𝑜𝑠(

4𝜋

10
𝑛 +

𝜋

4
)  

Notice that this signal is periodic with period 10, whereas this is periodic with period 5. So, 

their summation will be periodic with period which is equal to LCM of 10 and 5 that is 10. So, 

this whole thing is periodic with capital N =10. 

Now, we can see that  

𝑥(𝑛) =  1 +
1

2𝑗
𝑒𝑗

2𝜋
10

𝑛 −
1

2𝑗
𝑒−𝑗

2𝜋
10

𝑛
 

This is by just writing this sinusoid terms of first sinusoid, in terms of complex exponentials. 

Similarly, the second term can be written as summation of the following two terms  



1

2
𝑒𝑗

𝜋
4𝑒𝑗

4𝜋
10

𝑛 +
1

2
𝑒−𝑗

𝜋
4𝑒−𝑗

4𝜋
10

𝑛
 

So, in this special case, we see that  

𝑥(𝑛) = 1 +
1

2𝑗
𝜑1(n) −

1

2𝑗
𝜑−1(n) +

1

2
𝑒𝑗

𝜋
4𝜑2(n) +

1

2
𝑒−𝑗

𝜋
4𝜑−2(n) 

If we do term by term comparison, we find that this is a1, this is a-1, this is a2, and this is a-2. 

The rest of the Fourier series coefficients are 0 in this special case, the rest of the coefficients 

are 0. Now, before we go ahead let us see the following property of Fourier series for discrete-

time signals. This is analogous to similar property for continuous case. 



(Refer Slide Time: 67:13) 

 

Properties says that if x is real then a*-k=ak. Notice that in discrete case the Fourier series 

coefficients are also periodic, they repeat. So, a-k = an-k. Combining the qualities, we obtain that 

a-k = a*k. So, this is an important property of Fourier series coefficients in discrete-time case. 

This is all that we have to see about Fourier series, we end this lecture by summarizing the 

properties of Fourier series in continuous and discrete-time. 
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Here is the summary, we have continuous-time and the discrete-time. We saw synthesis 

equations and analysis equations; very quickly what these equations are  

                                                          𝑥(𝑡) = ∑ 𝑎𝑘𝑒𝑗𝑘
2𝜋

𝑇
𝑡∞

𝑘=−∞   



In case of discrete time,  

𝑥(𝑛) = ∑ 𝑎𝑘𝑒𝑗𝑘
2𝜋
𝑁

𝑛

𝑁−1

𝑘=0

 

As far as analysis equations goes,  

𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)𝑒−𝑗𝑘

2𝜋
𝑇

𝑡𝑑𝑡

𝑇

 

And in discrete case, 

𝑎𝑘 =
1

𝑁
∑ 𝑥(𝑛)𝑒−𝑗𝑘

2𝜋
𝑁

𝑛

𝑁−1

𝑘=0

 

We see a symmetry in synthesis and analysis equations in both cases namely, the signs of the 

exponents in complex exponential they reverse. In case of synthesis equations, we have positive 

exponents. Whereas in case of analysis equations, they become negative exponents. This brings 

us to the end of this chapter. Thank you. 

 


