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Hello everyone, welcome to today's lecture of the course mathematical aspects of biomedical 

electronic system design.  
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This is the last lecture on the module probability and random variables. In today's lecture, we will 

cover joint and marginal distributions, conditional distributions independence of random variables, 

covariance and correlation.  
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So, let us start today's lecture, we will start with the notion of joint distribution. Suppose, we have 

n random variables on the same space X1 … Xn on space (Ω, F) then the function this is from 

Rn→[0, 1] that is it takes n dimensional real vectors and gives an output that is a number between 

0, 1 defined by F(x1 … xn) = P[ X1 ≤ x1, X2 ≤ x2, …, Xn ≤ xn] that is probability of the event that 

intersection of the event Xi(Ω) ≤ xi. This function is called a joint distribution of X1 to Xn is called 

the joint distribution of X1 … Xn. 
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To proceed further let us consider the case of discrete and continuous random variable separately 

discrete random variables. So, now, we assume that the variables X1 to Xn are all discrete if X1 … 

Xn are all discrete then there exists a function 𝑝:ℝ𝑛 → [0,1] such that the joint distribution that is  

𝐹(𝑥1, … ,  𝑥𝑛) = ∑ ∑ ……… ∑ 𝑝(𝑦1, 𝑦2, ……𝑦𝑛)

𝑦𝑛≤𝑥𝑛𝑦2≤𝑥2𝑦1≤𝑥1

 

this function p is called the joint probability mass function. The function p which as we saw from 

Rn → [0, 1]is called the joint mass function of X1 to Xn. 
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Now considered continuous random variables, if X1 to Xn are all continuous then also there exist 

a function f: ℝn → ℝ+. So, this can take values larger than 1 such that the joint distribution of  

𝐹(𝑥1, 𝑥2  … 𝑥𝑛) = ∫ ∫ … .∫ 𝑓(𝑦1, 𝑦2  … 𝑦𝑛)𝑑𝑦1, 𝑑𝑦2  … 𝑑𝑦𝑛

𝑥𝑛

−∞

𝑥2

−∞

𝑥1

−∞

 

and this function small f is called the joint probability density function. The function f: ℝn → ℝ+ 

this is called the joint probability density function of X1 to Xn.  
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Let us, consider a simple example to illustrate a few of these concepts. Consider the following 

experiment a coin is tossed twice and let us define random variables X1 to be number of heads in 

the first flip in the first toss. Clearly X1 can take value 0 or 1, X2 is number of heads in the second 

toss and Y1 is number of tails in the first toss. 

In this case we can consider pairs of random variables X1 X2, X1 Y1, X2 Y1 etcetera and we can 

talk of their joint distributions. For instance, if we consider X1 and X2 the joint distribution of X1 

X2, 𝐹𝑋1𝑋2  can be obtained as follows. So,  

𝐹𝑋1𝑋2(0, 0) = 𝑃[𝑋1 ≤ 0, 𝑋2 ≤ 0] =
1

4
. 

𝐹𝑋1𝑋2(0, 1) = 𝑃[𝑋1 ≤ 0, 𝑋2 ≤ 0] =
1

2
. 

Similarly,  

𝐹𝑋1𝑋2(1, 0) =
1

2
. 

𝐹𝑋1𝑋2(1, 1) = 𝑃[𝑋1 ≤ 1, 𝑋2 ≤ 1] = 1. 

Similarly, if we consider X1, Y1 then joint distribution of X1, Y1 can be obtained as follows. So,  

𝐹𝑋1𝑌1(0, 0) = 𝑃[𝑋1 ≤ 0, 𝑌1 ≤ 0] = 0, 

that is no head in the first toss and no tail also in the first toss, this is impossible event. So, the 

probability of this event will be 0. 𝐹𝑋1𝑌2(0, 1) can be obtained at probability of no head in the first 

toss and 0 or 1 tail in the first toss. 

Clearly intersection of these two events will be even that there is no head in the first toss and that 

probability will be half. Similarly, the joint distribution evaluated at 1, 0 will also be half the joint 

distribution evaluated at 1, 1 will be the probability that there is 0 or 1 head in the first toss and 

there is 0 or 1 tail in the first toss. Clearly the probability of this event will be 1. So, this is how 

we can evaluate joint distributions.  
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Next we will move to marginal distributions. Suppose we are given n random variables on the 

same space and there is one distribution is F. So, given random variables X1 … Xn on same 

probability space and the joint distribution is F then the functions Fi: ℝ →[0, 1] defined by  

𝐹𝑖(𝑥𝑖) = 𝐹(∞,∞,… , 𝑥𝑖 , … ,∞) ∀ 𝑖 = 1,… , 𝑛. 

In fact, we can see that the right-hand side equals  

= 𝑃[𝑋1 < ∞,… , 𝑋𝑖−1 < ∞,𝑋𝑖 ≤ 𝑥𝑖 , 𝑋𝑖+1 < ∞,… , 𝑋𝑛 < ∞]. 

These functions are called marginal distributions are called marginal distributions. So, Fi marginal 

distribution of Xi. 
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We can again consider the cases of discrete and continuous random variables separately. So, let us 

just look at discrete random variables. So, imagine that X1 to Xn and are all discrete and have joint 

probability mass function. We define the table P, then the functions pi and pi: ℝ →[0, 1] define by  

𝑝𝑖(𝑥𝑖) =∑…∑∑…∑𝑝[𝑦1, … , 𝑦𝑖−1, 𝑥𝑖 , 𝑦𝑖+1, … , 𝑦𝑛]

𝑦𝑛𝑦𝑖+1𝑦𝑖−1𝑦1

, 

these functions are called the marginal probability mass functions.  

We can define marginal distributions also from marginal probability mass function in fact in terms 

of that  

𝐹𝑖(𝑥𝑖) = ∑ 𝑝𝑖𝑦𝑖
𝑦𝑖≤𝑥𝑖

. 
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Let us, now turn to the case of continuous random variables. Suppose X1 to Xn are all continuous 

these are all continuous with joint probability density function f, then we can define functions fi: 

ℝ → ℝ+  define by  

𝑓𝑖(𝑥𝑖) = ∫𝑦1 …∫𝑦𝑖−1
∫
𝑦𝑖+1

…∫
𝑦𝑛
𝑓[𝑦1, … , 𝑦𝑖−1, 𝑥𝑖 , 𝑦𝑖+1, … , 𝑦𝑛]𝑑𝑦1…𝑑𝑦𝑖−1𝑑𝑦𝑖+1…𝑑𝑦𝑛, 

these functions are called marginal probability density functions.  

In case of continuous random variables, we can obtain marginal distributions also from marginal 

probability density functions. For instance, it turns out that the  

𝐹𝑖(𝑥𝑖) = ∫ 𝑓𝑖(𝑦𝑖)
𝑥𝑖

−∞

𝑑𝑦𝑖. 

The concept of marginal distributions as defined above for n random variables might look 

complex, but can be easily motivated by considering the case of two random variables. 
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So, let us see the special case of n = 2 to better understand the idea of marginal distributions. So, 

in this case if X1, X2 are two random variables with joint distribution capital F then we can write 

the marginal distributions F1 and F2 as follows F1(x1) = F(x1,∞), F2(x2) = F(∞,x2). If x1 and x2 are 

discrete and have joint probability mass function joint pmf p, then we can obtain the marginal pmfs 

p1 and p2 as follows. So,  

𝑝1(𝑥1) =∑𝑝(𝑥1, 𝑦2),

𝑦2

 



𝑝2(𝑥2) =∑𝑝(𝑦1, 𝑥2).

𝑦1

 

In either case we can compute the marginal distribution as summation of marginal probability mass 

functions on the other hand if X1, X2 are continuous with joint probability density function f, then 

we can compute the marginal probability density functions f1 and f2 as follows marginal density 

functions  

𝑓1(𝑥1) = ∫
𝑦2
𝑓(𝑥1, 𝑦2)𝑑𝑦2. 

Similarly,  

𝑓2(𝑥2) = ∫𝑦1𝑓
(𝑦1, 𝑥2)𝑑𝑦1. 

Again for both x1 and x2 their marginal distributions can be computed by integrating the marginal 

probability density functions as described above. So, this was about marginal distributions.  
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Next let us, see the notion of conditional distributions. Here we will restrict attention to two random 

variables given two random variables X and Y on same space say (Ω, F). We define conditional 

distribution have X given Y = y and this is defined only if py(y) > 0 in case Y is discrete or fy(y) > 

0 in case Y is continuous.  

In such cases, we can define the conditional distribution of X by  



𝐹𝑋|𝑌(𝑥|𝑦) = 𝑃[𝑋 ≤ 𝑥|𝑌 = 𝑦]     ∀𝑥. 
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Let us, again consider the cases of discrete and continuous random variables separately. So, first 

let us consider the case of discrete random variables. If X and Y are discrete, then we can define 

conditional probability mass function have X given Y = y and of course, this is given that py(y|>0) 

as  

𝑝𝑋|𝑌(𝑥|𝑦) =
𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)
   ∀𝑥, 

that is a joint probability mass function divided by marginal probability mass function of y for all 

x.  

Notice that the right hand side can also be written using Bayes rule as follows, it can be written as  

=
𝑝𝑋(𝑥)𝑝𝑌|𝑋(𝑦|𝑥)

𝑝𝑌(𝑦)
, 

this is Bayes rule for discrete random variables. From conditional probability mass function, we 

can compute the conditional distribution of X as follows  

𝐹𝑋|𝑌(𝑥|𝑦) =∑𝑝𝑋|𝑌(𝑧|𝑦)

𝑧≤𝑥

. 

Further we can define conditional expectation of X given Y = y denote as  

𝐸[𝑋|𝑌 = 𝑦] =∑𝑥

𝑥

𝑝𝑋|𝑌(𝑥|𝑦), 



we can also define conditional variance of X given Y = y this is denoted as  

𝑉𝑎𝑟[𝑋|𝑌 = 𝑦] = 𝐸[(𝑋 − 𝐸[𝑋|𝑌 = 𝑦])2|𝑌 = 𝑦] 

and this turns out to be  

=∑𝑥2

𝑥

𝑝𝑋|𝑌(𝑥|𝑦) − (∑𝑥

𝑥

𝑝𝑋|𝑌(𝑥|𝑦))

2

. 

Notice that the first quantity is conditional second moment, second moment or second order 

moment whereas, the second quantity here is square of conditional expectation. This is conditional 

expectation. 
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Let us, see an example. Suppose we have two random variables X and Y discrete random variables 

that have joint probability mass function  

𝑝𝑋|𝑌(𝑥|𝑦) =

{
 

 
0.5  𝑖𝑓(𝑥, 𝑦) = (1,1)

0.1  𝑖𝑓(𝑥, 𝑦) = (1,2)

0.1  𝑖𝑓(𝑥, 𝑦) = (2,1)

0.3  𝑖𝑓(𝑥, 𝑦) = (2,2)

. 

From the joint probability mass function we can compute the marginal probability mass function 

of y as follows pY(1) =  pXY(1, 1) + pXY(2, 1) = 0.6. Similarly, pY(2) = 0.4, having computed the 



marginal probability mass functions we can compute the conditional probability mass function of 

X|Y in particular  

𝑝𝑋|𝑌(1|1) =
𝑝𝑋|𝑌(1,1)

𝑝𝑌(1)
=
0.5

0.6
=
5

6
. 

We could similarly compute  

𝑝𝑋|𝑌(0|1) =
𝑝𝑋|𝑌(0,1)

𝑝𝑌(1)
=
0.1

0.6
=
1

6
. 
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Next we turn our attention to continuous random variables. If X and Y are continuous, we define 

conditional probability density function of X given Y = y additional probability density function 

of X given Y = y of course, it is defined only when 𝑓𝑦(𝑦 > 0), this is defined  

𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑋|𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
. 

Again, using the Bayes rule, it can be seen that the right hand side expression here equals  

=
𝑓𝑋(𝑥)𝑓𝑌|𝑋(𝑥|𝑦)

𝑓𝑌(𝑦)
. 

So, here what we have to use is density version of the Bayes rule having obtained the conditional 

probability density function. 
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We can obtain the conditional distribution of X as follows; conditional distribution that is  

𝐹𝑋|𝑌(𝑥|𝑦) = ∫ 𝑓𝑋|𝑌(𝑧|𝑦)
𝑥

−∞

𝑑𝑧. 

We can also define conditional expectation of X given Y = y. This is denoted as  

𝐸[𝑋|𝑌 = 𝑦] = ∫ 𝑥𝑓𝑋|𝑌(𝑥|𝑦)
∞

−∞

𝑑𝑥. 

We can also define conditional variance of X given Y = y. This is denoted as  



𝑉𝑎𝑟[𝑋|𝑌 = 𝑦] = 𝐸[(𝑋 − 𝐸[𝑋|𝑌 = 𝑦])2|𝑌 = 𝑦] 

= ∫ 𝑥2𝑓𝑋|𝑌(𝑥|𝑦)
∞

−∞

𝑑𝑥 − (∫ 𝑥𝑓𝑋|𝑌(𝑥|𝑦)
∞

−∞

𝑑𝑥)

2

, 

as in discrete case, the first term is conditional second moment of X conditional second order 

moment of X and the second term is the square of the conditional expectation. So, this is 

conditional expectation. 
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Let us, illustrate a few of these notions again with an example. For this example, let us consider 

two random variables X and Y and region S defined as follows. So, this region, we call S is points 

0, 1 and 1. So X, Y pair takes values in this region and probability of X, Y pair taking any value 

in this region is same. So, joint density function of x and y is a constant, which is 2 for all x, y in 

S the reason to pick 2 here is we need to satisfy the following condition  

∫  
𝑆

𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1 

and this region itself has area half.  

So, we need to pick this to be equal to 2 to make this whole integral 1. So, this is the joint 

probability density function of X and Y. From joint probability density function, we can compute 

the marginal density of Y as follows. So we want to compute fY(y). Notice that for fixed y x can 

range from 0 to 1 - y.  

So, fY(y), which will be  

𝑓𝑌(𝑦) = ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥
∞

−∞

, 

= ∫ 2𝑑𝑥
1−𝑦

0

= 2(1 − 𝑦),   ∀𝑦 ∈ [0,1] 

having defined the marginal probability density function of X we can compute the conditional 

probability density function of X given Y that is  

𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑋𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
=

2

2(1 − 𝑦)
=

1

1 − 𝑦
. 

In this definition, we assume that y < 1 as when y = 1, the marginal density of y at 1 is 0. So, this 

conditional density is not defined. Having defined the conditional density of X we now turn to 

conditional expectation of X given Y = y and this is simply the expectation with respect to the 

above defined conditional density.  

So, it will be 

𝐸[𝑋|𝑌 = 𝑦] = ∫ 𝑥.
1

1 − 𝑦

1−𝑦

0

𝑑𝑥 =
1 − 𝑦

2
. 



We can also write conditional variance of X given Y = y, this will be  

𝑉𝑎𝑟[𝑋|𝑌 = 𝑦] = ∫
𝑥2

1 − 𝑦

1−𝑦

0

𝑑𝑥 − (
1 − 𝑦

2
)
2

 

and this turns out to be equal to  

(1 − 𝑦)2

3
−
(1 − 𝑦)2

4
=
(1 − 𝑦)2

12
. 

(Refer Slide Time: 34:38)  

 

 



Now, we will see the notion of independence of random variables, random variables X1 to Xn 

defined on same space are called independent if there is one distribution equals the product of 

marginal distribution that is if  

𝐹(𝑥1, … , 𝑥𝑛) =∏𝐹𝑖(𝑥𝑖)

𝑛

𝑖=1

  ∀𝑥1, … , 𝑥𝑛 ∈ ℝ. 

If the random variables X1 to Xn are discrete the equivalent definition of independence is that these 

random variables are independent if their joint probability mass function is a product of marginal 

probability mass functions that is  

𝑝(𝑥1, … , 𝑥𝑛) =∏𝑝𝑖(𝑥𝑖)

𝑛

𝑖=1

  ∀𝑥1, … , 𝑥𝑛 ∈ ℝ. 

Similarly, if these random variables X1 to Xn are continuous then also we have an alternate 

definition of independence that is these random variables are independent if their joint density is 

product of marginal densities this is  

𝑓(𝑥1, … , 𝑥𝑛) =∏𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

  ∀𝑥1, … , 𝑥𝑛 ∈ ℝ. 

Here is a property of independent random variables. If X1, …, Xn are independent then expectation 

of their product that is 

𝐸 [∏𝑥𝑖

𝑛

𝑖=1

] =∏𝐸[𝑥𝑖]

𝑛

𝑖=1

. 
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Let us see an example to see that independence is required for such a condition to hold. Example 

let X be a 0 mean random variable that is E[X] = 0. Suppose Y is also a random variable on the 

same space and Y = 2X, then, E[Y] = 2E[X] = 0.  

However, if we consider product of X and Y and take its expectation expected value of X, Y, this 

will be  

𝐸[𝑋𝑌] = 𝐸[2𝑋2] = 2𝐸[𝑋2] > 0 ≠ 𝐸[𝑋]. 𝐸[𝑌], 

this illustrates that independence of random variables is required for the above relation to hold.  
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Let us, see 1 more fact. If X and Y are independent random variables and f and g are functions 

such that f(X) and g(Y) are also random variables. Then, f(X) and the g(Y) are also independent.  
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Let us, now see a couple of more examples that illustrate how the property of independence of 

random variables can be used to compute the probability mass function or probability density 

function of some of those random variables. Examples as the first example it is assumed that X1 

and X2 are two independent binomial random variables X1 is binomial which parameter n1 and p 

and X2 a binomial which parameters n2 to p. X1 and X2 are independent. 

Let Y = X1 + X2, we are interested in probability mass function of Y that is we are interested in 

probability that Y will be some number m. Notice that {Y = m} = {X1 + X2 = m} and this later 

event is = ⋃ {𝑋1 = 𝑘, 𝑋2 = 𝑚 − 𝑘}𝑚
𝑘=0 . 



If any of these events happen, the above event would also happen, then using law of total 

probability we can write  

𝑃(𝑌 =  𝑚) = ∑𝑝(𝑋1 = 𝑘, 𝑋2 = 𝑚 − 𝑘)

𝑚

𝑘=0

 

at this point, we can exploit the fact that X1 and X2 are independent to write the right-hand side as 

=∑𝑝𝑋1(𝑋1 = 𝑘) 𝑝𝑋2( 𝑋2 = 𝑚 − 𝑘)

𝑚

𝑘=0

. 

Since both X1 and X2 are binomial random variables, the terms inside the summation it become 

equal to  

=∑(
𝑛1
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 (

𝑛2
𝑚 − 𝑘

)𝑝𝑚−𝑘(1 − 𝑝)𝑛−(𝑚−𝑘)
𝑚

𝑘=0

. 

In writing this I assume that m is smaller than both n1 and n2, but similar calculation can be for 

other values of m also. If we do the calculations correctly, the right-hand side turns out to be  

𝑃(𝑌 =  𝑚) = (
𝑛1 + 𝑛2
𝑚

)𝑝𝑚(1 − 𝑝)𝑛1+𝑛2−𝑚. 

 So, looking at the form of probability mass function of Y, we can infer that Y is also binomial 

random variable with parameters (n1 + n2, p). So, sum of two independent binomial random 

variables is also a binomial random variable.  
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Let us, now take a second example and now we assume that X1 and X2 are independent Poisson 

random variables. So, that is X1 is Poisson with parameter 𝜆1 and X2 is Poisson with parameter 𝜆2 

X1 and X2 are independent and as before, we defined Y = X1 + X2 and we are interested in 

probability mass function of Y. That is, we are interested in P(Y = m) for an integer m and as in 

the binomial case, I can write it as  

𝑃(𝑌 =  𝑚) =∑𝑃[𝑋1 = 𝑘, 𝑋2 = 𝑚 − 𝑘]

𝑚

𝑘=0

. 



Again, exploiting the fact that X1 and X2 are independent, we can write this summation as  

=∑𝑝𝑋1(𝑘) 𝑝𝑋2( 𝑚 − 𝑘)

𝑚

𝑘=0

 

and since X1 and X2 both are Poisson, we can further the right-hand side at  

=∑
𝑒−𝜆1𝜆1

𝑘

𝑘!

𝑒−𝜆2𝜆2
𝑚−𝑘

(𝑚 − 𝑘)!

𝑚

𝑘=0

. 

And this summation turns out to be equal to 

=
𝑒−(𝜆1+𝜆2)(𝜆1 + 𝜆2)

𝑚

𝑚!
. 

Again looking at the probability mass function of Y, we can infer that Y is also a Poisson random 

variable Y is Poisson which parameter (𝜆1 + 𝜆2). So, we see that sum of two Poisson random 

variables if they are independent, is also Poisson random variable with the parameter of this new 

variable the sum of the parameters of the original value.  
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Now, let us see the notion of covariance. Given two random variables X and Y on same space, 

their covariance is defined as COV, this is the notation 𝐶𝑂𝑉(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]. 



Notice that the product here depends on both X and Y. So, this is expectation with respect to joint 

distribution, this expectation is with respect to the joint distribution of X and Y.  

Expression turns out to be = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]. The second expression is obtained using 

linearity of expectation. As above the first expectation here is taking using a joint distribution of 

X and Y.  
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Let us, see a few properties of covariance. First properties is if X Y and Z are random variables, 

and α,β are 2 numbers, then, 𝐶𝑂𝑉(𝛼𝑋 + 𝛽𝑌, 𝑍) = 𝛼𝐶𝑂𝑉(𝑋, 𝑍) + 𝛽𝐶𝑂𝑉(𝑌, 𝑍), further the 

𝐶𝑂𝑉(𝑋, 𝛼𝑌 + 𝛽𝑍) = 𝛼𝐶𝑂𝑉(𝑋, 𝑌) + 𝛽𝐶𝑂𝑉(𝑋, 𝑍).  

Second property is 𝐶𝑂𝑉(𝑋, 𝑋) = 𝑉𝑎𝑟(𝑋). Another property is if X and Y are independent random 

variables, then their covariance 𝐶𝑂𝑉(𝑋, 𝑌) = 0.  
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Let us, see a couple of examples to understand the notion of covariance. The first example 

illustrates that X and Y need not be independent for their covariance to be 0. Suppose, X is a 

random variable its expectation 0 and the third moment of X is also 0. Let Y = X2 then certainly 

X and Y are not independent. 

Now, let us compute the covariance of X and Y, 

𝐶𝑂𝑉(𝑋, 𝑌) = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] = 𝐸[𝑋3] − 0 = 0 

Notice that Y = X2, so the first term becomes 𝐸[𝑋3]. As far as second term goes, 𝐸[𝑋] = 0, though 

𝐸[𝑌] which is 𝐸[𝑋2] is not 0, the second term becomes 0. From the hypothesis, the first term is 

also 0. So, we see that covariance of X and Y is 0, even though they are not independent.  
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We take one more example that also shows the same fact. Let X be a random variable that is 

uniformly distributed over {1, 2, 3}. Let Y be another random variable be another random variable 

and this Y is independent of X and this is uniformly distributed over {-1, 1}. Let us define the third 

random variable Z = XY.  

Now, consider X and Z, we will first show that X and Z are not independent. Towards this let us 

consider the joint distribution of X and Z evaluated (1, 1). So,  

𝐹𝑋𝑍(1,1) = 𝑃[𝑋 ≤ 1, 𝑍 ≤ 1] 

= 𝑃[𝑋 ≤ 1, 𝑋𝑌 ≤ 1] 

= 𝑃[𝑋 ≤ 1] =
1

3
. 

Clearly, the marginal distribution of X at 1, 𝐹𝑋(1) = 𝑃[𝑋 ≤ 1] =
1

3
.  

Now, see the marginal distribution of Z at 1 that is  

𝐹𝑍(1) = 𝑃[𝑍 ≤ 1] 

= 𝑃[𝑋𝑌 ≤ 1] 

= 𝑃[𝑋 ≤ 1] + 𝑃[𝑋 > 1, 𝑌 = −1] 

=
1

3
+
2

3
.
1

2
=
2

3
. 



Notice that,  

𝐹𝑋𝑍(1,1) =
1

3
≠ 𝐹𝑋(1)𝐹𝑍(1). 

So, X and Z are not independent. But as we show below covariance of X and Z is 0. To see this let 

us first observe what is expectation of (XZ).  

𝐸[𝑋𝑌] = 𝐸[𝑋2𝑌] = 𝐸[𝑋2]𝐸[𝑌] = 0. 

Expectation of X alone is  

𝐸[𝑋] =
1 + 2 + 3

3
= 2. 

Expectation of Z alone will be  

𝐸[𝑍] = 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌] = 0. 

Now, we can see that  

𝐶𝑂𝑉(𝑋, 𝑍) = 𝐸[𝑋𝑍] − 𝐸[𝑋]𝐸[𝑍] = 0. 

This is because the first term is 0 and here the last term is also Z. So, again we see that covariance 

of two random variables can be 0 even though they are not independent.  
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Finally, let us see the notion of correlation of random variables. Correlation given two random 

variables X and Y on same probability space there correlation is defined as  

𝜌(𝑋, 𝑌) =
𝐶𝑂𝑉(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 

for any two random variables X and Y, the absolute value of covariance turns out to be  

|𝐶𝑂𝑉(𝑋, 𝑌)| ≤ √𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌). 

  



This implies that correlation of the random variables X and Y is always between -1 and +1. Further, 

the random variables X and Y are said to be uncorrelated, if the correlation is 0, which is same as 

saying that their covariance is 0, if COV(X,Y) = 0, this quantity 𝜌(𝑋, 𝑌) is also known as 

correlation coefficient, also referred to as correlation coefficient.  

Let us, see a few more facts about correlation. If the two random variables X and Y are 

independent, then they are also uncorrelated. We have already seen that in this case, X and Y have 

0 covariance that means they have 0 correlations, they are also uncorrelated, but converse is not 

true.  

That is if the correlation between two random variables is 0 that does not mean that there would 

be independent, we have already seen examples where two random variables at 0 covariance that 

means they were uncorrelated, but they were not independent. Next fact is if X and Y are 

uncorrelated, then variance of their summation is simply sum of their variances. 

The next fact is generalization of this fact it says  

𝑉𝑎𝑟 (∑𝑋𝑖

𝑛

𝑖=1

) =∑𝑉𝑎𝑟(𝑋𝑖)

𝑛

𝑖=1

+ 2 ∑ 𝐶𝑂𝑉(𝑋𝑖, 𝑋𝑗)
(𝑖,𝑗):1≤𝑖,𝑗≤𝑛

. 

So, this is the expression of variance of sum of random variables, this is general expression this 

does not need the random variables to be independent. Clearly, if the random variables are 

independent, in that case, they are uncorrelated, the second summation here becomes 0 and 

variance of summation becomes sum of variances. So, in fact, if X1, …., Xn are pairwise 

uncorrelated, that is, the pairwise correlations are 0. All the terms in the second summation above 

become 0. So, variants of sum of these random variables become sum of the variances.  
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We end with discussing the notion of covariance matrices given random variables X1 …Xn on the 

same space a matrix, ∑ ∈ ℝ𝑛×𝑛 with elements ∑𝑖𝑗 = 𝐶𝑂𝑉(𝑋𝑖, 𝑋𝑗) that is it is a matrix which 

elements are covariance’s of pairs of random variables, this matrix is called covariance matrix of 

the random vector X = X1 … Xn.  

Let us, see a few facts about covariance matrices first facts is covariance matrix ∑ is symmetric 

positive semi definite matrix, symmetric positive semi definite. Next the inverse of covariance 

matrix if the covariance matrix is invertible that if the inverse exists this inverse is called the 

precision matrix of the random vector X it is X = X1 … Xn.  



Finally, the covariance matrix turns out to be ∑ = 𝐸[𝑋𝑋𝑇] if X1 … Xn are all 0 mean notice that 

here in writing this  

𝑋 =

[
 
 
 
 
𝑋1
.
.
.
𝑋𝑛]
 
 
 
 

. 

 So,  

𝑋𝑇 = [𝑋1… … 𝑋𝑛], 

this implies that XXT is a n × n matrix random matrix and above fact we are talking of expectation 

of this matrix. This brings us to the end of today's lecture. Thank you everyone. 

 

 


