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Probability: Important measures and generating functions 

Hello everyone, welcome to today’s lecture of the course Mathematical Aspects of Biomedical 

Electronic System Design.  
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We will continue our discussion on probability and random variables. In today’s lecture, we 

will cover expectation and higher moments, variants and standard deviation. We will also see 

probability in moment generating functions. 
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So, let us start today’s lecture. We will begin with expectation of random variables. Expectation 

is a measure of center or average value of a random variable. We will consider the cases of 

discrete and continuous random variable separately. So, let us begin with discrete random 

variables.  

Suppose X is a discrete random variable with cumulative distribution function F. So, F has 

jumps and flat portions. Suppose F has jumps at {xi, i ≥ 1}. This means that the random variable 

X has point masses pi at this point xi, pi has P( X = xi). So, point masses pi which are P( X = xi) 

= F(xi) - F(xi-1) ∀ i ≥ 1. 

In fact for this definition, we can assume that F(x0) = 0, then expectation is given by the 

following formula. Expectation denoted as  

𝐸[𝑋] = ∑ 𝑝𝑖𝑥𝑖

𝑖≥1

. 

If X takes values in the set of non-negative integers, then we have an alternating formula of 

expectation we will see that below. So, if X {0, 1, 2, ……}, then as per the previous formula 

expectation would be given by  

𝐸[𝑋] = ∑ 𝑖𝑝𝑖

𝑖≥1

. 

As I said we also have an alternative formula that says that expectation will be  

𝐸[𝑋] = ∑(1 − 𝐹(𝑖)) =

𝑖≥0

∑ 𝑃(𝑋 > 𝑖)

𝑖≥0

= ∑ 𝑃(𝑋 ≥ 𝑖)

𝑖≥1

. 



So, we have this alternate formula for expectation.  

We will see few examples very soon but for now let us turn to continuous random variables. 

Suppose X is a continuous random variable with cumulative distribution function cdf F and 

probability density function small f, then expectation x denoted as  

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

. 

If X is a non-negative random variable, then as in discrete case we also have an alternate 

expression of expectation, which is given as follows. So, if X is a non-negative random 

variable, then expected value of X is also given by  

𝐸[𝑋] = ∫(1 − 𝑓(𝑥))𝑑𝑥

∞

0

. 

Let us now see a few examples. 
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Let us consider a simple example where a die is tossed and we define a random variable X as 

defined as 𝑋(𝜔) =
𝜔

2
. We have seen this example quite a few times earlier also. Then clearly 

X takes values 1, 2, and 3 moreover 𝑝𝑖 =  𝑃(𝑋 = 𝑖) =
1

3
  ∀𝑖 = {1,2,3}. So,  

𝐸[𝑋] =
1

3
× 1 +

1

3
× 2 +

1

3
× 3 = 2 
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Let us consider another example. Now assume that X is a continuous random variable with 

density that is probability density function. f given as  

𝑓(𝑥) = {
𝑒−𝑥      𝑥 ≥ 0
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

So, this density looks as follows. Then, expectation of X can be computed using the formula 

suggested that is  

𝐸[𝑋] = ∫ 𝑥𝑒−𝑥𝑑𝑥

∞

0

= −𝑒−𝑥 − 𝑥𝑒−𝑥∫
0

∞
= 1. 

I will tell that in this case we can compute the cdf of x as follows, F(x) will be so cdf,  



𝐹(𝑥) = {∫ 𝑒−𝑧𝑑𝑧

𝑥

0

      𝑥 ≥ 0

0                     𝑥 < 0

. 

So, this turns out to be  

= {
1 − 𝑒−𝑥      𝑥 ≥ 0
0                   𝑥 < 0

. 

Now we could use even the alternate formula given above to compute the expectation that is  

𝐸[𝑋] = ∫(1 − 𝑓(𝑥))𝑑𝑥

∞

0

= ∫ 𝑒−𝑥𝑑𝑥

∞

0

= 1. 
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Let us now see another example. Say that X is a discrete random variable, and X takes values 

in Z++. This fact that X takes values in Z++ is often written in short simply as X ∈ Z++. And 

probability mass function of X is given as follows.  

𝑝𝐾 =  𝑃[𝑥 = 𝐾] =
6

𝜋2𝐾2
, ∀𝐾 ≥ 1. 

It can be checked that ∑ 𝑝𝐾 = 1𝐾≥1 . So, this p is a valid probability mass function.  

Now the  

𝐸[𝑋] = ∑ 𝐾
6

𝜋2𝐾2
=

∞

𝐾=1

6

𝜋2
∑

1

𝐾

∞

𝐾=1

= ∞. 



So, expectation turns out to be infinity. This tells that expectation of a random variable can be 

infinity.  
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Let us see one more example. This time we will consider a continuous random variable with 

density that is pdf, f given a  

𝑓(𝑥) =  
2

𝜋

𝛼

𝛼2 + 𝑥2
, ∀𝑥 ∈ ℝ+. 

f(x) = 0, ∀𝑥< 0 so x is a non-negative random variable. In this case the cdf of x say F is 

computed as follows.  

F(x) = 0, ∀x < 0 because x is a non-negative random variable but for all non-negative values 

of x,  

𝐹(𝑥) = ∫ 𝑓(𝑧)𝑑𝑧

𝑥

0

=
2𝛼

𝜋
∫

1

𝛼2 + 𝑧2

𝑥

0

𝑑𝑧 =
2

𝜋
tan−1 (

𝑥

𝛼
) , ∀𝑥 ∈ ℝ+. 

Now we can compute the expectation of X using one of the 2 formulae given above.  

So, let us use for instance the formula that using – that uses density. So,  

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

0

=
2

𝜋
∫

𝛼𝑥

𝛼2 + 𝑥2

∞

0

𝑑𝑥 =
𝛼

2𝜋
∫

𝑥

𝛼2 + 𝑥2

∞

0

𝑑𝑥 = ∞. 

So, again we see that expectation of a continuous random variable can be finite or infinite.  

There are also random variables which expectations are not defined. However, we will not be 

interested in those random variables. We will restrict to random variables which expectation is 

defined. It could be finite or infinite. Having seen the expectation of a random variable, we will 



now turn to functions of random variables and we will see how their expectations could be 

computed.  

Next we see functions of random variables, suppose X is a random variable and 𝑔: ℝ →  ℝ, 

then g(X) may or may not be a random variable. However, we are interested in scenarios where 

g(X) is a random variable and in those scenarios we are interested in expectation of g(X). 

Assume g(X) is a random variable question is what is expectation of g(X)?  

We will again consider the 2 cases of X being discrete and continuous separately, so we will 

first consider the scenario where X is discrete random variable. Suppose X has point masses 

{pi, i ≥1}, at points {xi, i ≥1}. In this case, expectation of g(X) can be computed as follows,  

𝐸[𝑔(𝑋)] = ∑ 𝑝𝑖

𝑖≥1

𝑔(𝑥𝑖). 

On the other hand, if X is a continuous random variable, say X has density function or pdf f, 

then  

𝐸[𝑔(𝑋)] = ∫ 𝑔(𝑥)

∞

−∞

𝑓(𝑥)𝑑𝑥. 
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Let us see a few examples. First example is where we assume X to be discrete random variable, 

so X is a discrete random variable. Suppose the probability mass function of X is as follows. 

So, p(x) pmf p is as follows,  

𝑝(𝑥) = {

0.2 𝑖𝑓 𝑥 = 0
0.5 𝑖𝑓 𝑥 = 1
0.3 𝑖𝑓 𝑥 = 2

. 

This means that x takes values 0, 1, 2 with probability 0.2, 0.5, 0.3 or x has point masses, 0.5, 

0.2, 0.5 and 0.3 at 0, 1 and 2 respectively.  

Consider a function of this random variable capital X, g(X) =X2. In this case expected value of 

X2 can be computed using the formula given above. So,  

𝐸[𝑋2] = ∑ 𝑥𝑖
2

3

𝑖=1

𝑝𝑖 = 0.2 × 02 + 0.5 × 12 + 0.3 × 22 = 1.7. 

Let us consider another example this time of a continuous random variable. X is a continuous 

random variable with density f given as follows  

𝑓(𝑥) = {
1      ∀𝑥 ∈ [0,1]
0      ∀𝑥 ∉ (0,1)

. 

Recall that we refer to this random variable as uniformly distributed over 0, 1. This is how the 

density looks like.  

Now consider a function g(X) =X3. Then expected value of X3 can be computed using the 

formula given above that suggest that expected value of X3 will be  

𝐸[𝑋3] = ∫ 𝑥3

1

0

𝑓(𝑥)𝑑𝑥 

because that is the interval over which f(x) is positive and in fact it is 1 over this interval. So, 

this becomes  

= ∫ 𝑥3

1

0

𝑑𝑥 =
1

4
. 

Let us know see a few properties of expectation. Suppose x1, x2 …. xn are random variables, 

define on the same probability space, say, (Ω, F, P), then their ∑ 𝑥𝑖
𝑛
𝑖=1 . This is also a random 



variable and expectation of this new random variable is sum of expectations of individual 

random variables. This property is called linearity of expectation. This is quite useful property 

and in fact we will see one of its uses very soon.  

Similarly if α, β are constant, say they are real numbers, then αx + β is also a random variable 

if x is a random variable. 𝐸[αx +  β] = 𝛼𝐸[𝑥] + 𝛽. Let us see an example. Suppose a die is 

rolled thrice, die is tossed thrice. Let Xi be the outcome of the ith roll, outcome of the ith roll, i 

toss where i is varying from 1, 2, 3.  

Also, let 

𝑋 = ∑ 𝑋𝑖

3

𝑖=1

, 

then expected value of X from linearity of expectation will be  

𝐸[𝑋] = ∑ 𝐸[𝑋𝑖]

3

𝑖=1

 

and each of these we can compute. So, for instance expected value of Xi would be 

= ∑ 𝑗.
1

6

6

𝑗=1

=
7

2
= 3 ×

7

2
=

21

2
. 
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After expectation we now turn our attention to the so called higher moments of random 

variables, higher moments. For a random variable, X and a non-negative integer rather a 

positive integer n the quantity E[Xn]. This quantity is called the nth order moment of X or 

sometimes simply nth moment of X, is called nth order moment of X. Related concept is that of 

central moment. The quantity E[(X – E[Xn])]. This is called nth order central moment of X or 

sometimes simply nth central moment of X, nth order central moment of X. 

Of special interest is the scenario when n = 2, special case is when n = 2. In this case, the 

quantity E[X2] is clearly second order moment and E[(X-E[X])2]. This is second order central 

moment and this second order central moment of X is what is widely known as variance of X, 

widely referred to as variance of X.  



In fact it is denoted by Var[X], so Var[X] = E[(X-E[X])2] = E[X2]- (E[X])2. So, variance is 

nothing but second order moment minus square of expectation, square root of variance is 

known as standard deviation of random variable.  

Let us see standard deviation, standard deviation of a random variable is square root of 

variance. It is often denoted as 𝑠𝑡𝑑 𝑑𝑒𝑣 [𝑋] = √𝑉𝑎𝑟[𝑋]. Now we can use any of the above 2 

formulae for variance. So for instance it can be written as = √E[X2] −  (E[X])2, so this is 

standard deviation. So, we have thus defined variance and standard deviation of random 

variables. 

Let us see an example, a random variable X it is discrete random variable so consider discrete 

random variable X with pmf P given as 𝑃(𝑋 = 𝑛) =
𝐶

𝑛3
, n ≥ 1. So, C here is a constant, random 

variable X is thus taking all positive integer values and these are the point masses at those 

points. And notice that for P to be a valid probability mass function, we require that  

∑ 𝑃(𝑋 = 𝑛) = 1

∞

𝑛=1

. 

That is we require that  

𝐶 ∑
1

𝑛3
= 1

∞

𝑛=1

. 

So, C has to be set,  

𝐶 =
1

∑
1

𝑛3
∞
𝑛=1

. 

And so is this constant. For this reason the C is also termed as normalizing constant. So, let us 

see what will be the expectation and variance of this random variable. Expectation of X can be 

computed using the formula given above. So, it will be  

𝐸[𝑋] = ∑ 𝑛

∞

𝑛=1

𝐶

𝑛3
= 𝐶 ∑

1

𝑛2

∞

𝑛=1

=
6𝐶

𝜋2
. 
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Now let us look at the second point, E[X2]. This from the formula of expectation of functions 

of random variables can be written as  

𝐸[𝑋2] = ∑ 𝑛2

∞

𝑛=1

𝐶

𝑛3
= 𝐶 ∑

1

𝑛

∞

𝑛=1

= ∞. 

So, the second moment, second order moment of X in this case is ∞.  

Now let us turn to variance, Var[x]. As we have seen above, it is difference of second order 

moment n2 of expectation, but the second order moment is ∞. Second term is finite but the first 

is infinite. So, this is also infinite. Clearly, in this case, the std dev[x] =∞. 
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Next let us see the notion of probability generating functions. These are called PGFs in short. 

Probability generating functions are defined for discrete random variables that is non-negative 

integer values. Consider a discrete random variable X taking values in {0, 1, 2, 3 …}that is in 

the set z+.  

Suppose the pmf of X is P. X has pmf P[X=k] = p(k) ∀𝑘 ≥ 0, then the probability generating 

function of X pgf is a function G: R → R defined as follows the  

𝐺(𝑧) =  𝐸[𝑧𝑥] = ∑ 𝑝(𝑘)

∞

𝑘=0

𝑧𝑥 ,       ∀𝑧 ∈ ℝ. 

So, this is how we define probability generating function.  



Let us see a couple of examples. First example is suppose is X is a discrete random variable, 

and it takes value 0 or 1. Moreover, P[x = 1] = p(1) = p clearly p(0) = 1 - p, then pgf of X,  

𝐺(𝑧) =  (1 –  𝑝) +  𝑝𝑧, ∀𝑧 ∈ ℝ. 

Let us consider another example, suppose again X is a discrete random variable but now it is 

taking value in z+ …, suppose X has pmf P that is given as follows given as  

𝑃(𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!
, ∀𝑘 ≥ 0, 𝜆 > 0.  

Now we can use the formula above to compute the probability generating function of X that is 

G as  

𝐺(𝑧) = ∑
𝑒−𝜆𝜆𝑘

𝑘!

∞

𝑘=0

𝑧𝑘 = 𝑒𝜆(𝑧−1). 

Now let us see a few properties of probability generating functions. The first property is the 

pmf of a random variable can be recovered from its probability generating function. Pmf of X 

can be recovered from its pgf, G(z). In particular  

𝑝(𝑘) =  𝑃(𝑋 =  𝑘) =
1

𝑘!

𝑑𝑘𝐺(𝑧)

𝑑𝑧𝑘
|

𝑧=0

,   ∀𝑘 ≥ 1. 

In fact, p(0) = G(0). So, this is how we can recover the whole pmf from the pgf of the random 

variable.  

The second property says that probability generating functions uniquely determine the 

distributions. Probability generating functions uniquely determine distributions, what this 

means is that if x and y are two discrete random variables taking values in z+. Suppose their 

PMFs are px and probability. Their pgfs are Gx and Gy. If Gx and Gy are same that is if Gx(z) = 

Gy(z) ∀𝑧 ∈ ℝ, then their PMFs will also be same that is px(k) = py(k) ∀𝑘 ≥ 0. 

The third property says that  

𝐺(1) = ∑ 𝑝(𝑘) = 1

∞

𝑘=0

 

given that x is a proper random variable that is an assumption that we are making all through. 

The fourth property tells that expectation can be computed from PGF of the random variable 

in particular  



𝐸[𝑋] =
𝑑𝐺(𝑧)

𝑑𝑧
|

𝑧=1

 

In fact moments of all orders of x can be recovered from the pgf can be computed from the pgf. 

We will not look at moments of all orders but we will be interested in second moment and 

variance. It turns out that second moment of x that is  

𝐸[𝑋2] =
𝑑2𝐺(𝑧)

𝑑𝑧2
|

𝑧=1

+
𝑑𝐺(𝑧)

𝑑𝑧
|

𝑧=1

. 

 Clearly, we can write even variance of x using the above 2 expressions in terms of pgf of x 

particular variance of x is given by  

𝑉𝑎𝑟[𝑋] =
𝑑2𝐺(𝑧)

𝑑𝑧2
|

𝑧=1

+
𝑑𝐺(𝑧)

𝑑𝑧
|

𝑧=1

− (
𝑑𝐺(𝑧)

𝑑𝑧
|

𝑧=1

)

2

. 

Let us now illustrate this relations with couple of examples. In fact we will revisit the 2 

examples that we saw above example.  

First example is above, recall that in the first example above  

𝐺(𝑧) =  (1 –  𝑝) +  𝑝𝑧, ∀𝑧 ∈ ℝ. 

so mean of the random variable x here can be computed as derivative of pgf that is p evaluated 

at z = 1 so this is simply p. The second derivative of G(z) at z = 1 plus its first derivative at z = 

1, the second derivative of G(z) = 0. First derivative computed at z = 1 is p so that is how we 

get the second moment and the variance of x can now be computed at p – p2 = p(1-p).  
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Let us know see the second example above recall that in this example  



𝐺(𝑧) = 𝑒𝜆(𝑧−1) 

so expectation of the random variable X can be computed as derivative of G(z) evaluated at z 

= 1. Its derivative is 𝜆𝑒𝜆(𝑧−1) when evaluated at 1 we simply get 𝜆.  

𝐸[𝑋2] = 𝜆2𝑒𝜆(𝑧−1)|
𝑧=1

+ 𝑒𝜆(𝑧−1)|
𝑧=1

= 𝜆2 + 𝜆 

from the above 2 we can see that 𝑉𝑎𝑟[𝑋] = 𝜆2 + 𝜆 − 𝜆2 = 𝜆.  

Finally, let us see the notion of moment generating functions. In short, those are called MGFs. 

The moment generating function of a random variable, X is a mapping, M:ℝ → ℝ defined by 

𝑀(𝑡) = 𝐸[𝑒𝑋𝑡], ∀𝑡 ∈ ℝ. We assume that this expectation adjusts. Note that  

𝑒𝑋𝑡 = ∑
𝑡𝑛𝑋𝑛

𝑛!

∞

𝑛=0

 

so  

𝑀(𝑡) = ∑
𝑡𝑛𝐸[𝑋𝑛]

𝑛!

∞

𝑛=0

. 

Let us see a few examples. The first example let us again consider X to be random variable, 

discrete random variable, that takes value 0 and 1, p(1) = P[X=1] = p, p(0) = 1 - p. In this case, 

following the above definition, we can write MGFs, 

𝑀(𝑡) = (1 − 𝑝) + 𝑝𝑒𝑡, ∀𝑡 ∈ ℝ. 

Let us see another example. Now we assume that X is discrete and it has PMF. P as follows,  

𝑝(𝑘) =
𝑒−𝜆𝜆𝐾

𝐾!
, ∀𝐾 ≥ 0. 

In this case,  

𝑀(𝑡) = ∑
𝑒−𝜆𝜆𝐾

𝐾!

∞

𝐾=0

𝑒𝐾𝑡 = ∑
𝑒−𝜆(𝜆𝑒𝑡)𝐾

𝐾!

∞

𝐾=0

= exp (𝜆(𝑒𝑡 − 1)). 
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Let us see one more example and this time we take X to be a continuous random variable and 

probability density function of X is,  

𝑓(𝑥) = {𝜆𝑒−𝜆𝑥 ,   𝑥 ≥ 0
0,           𝑥 < 0

. 

Now for this random variable,  

𝑀(𝑡) = ∫ 𝜆𝑒−𝜆𝑥

∞

0

𝑒𝑡𝑥𝑑𝑥 

and it can be seen that this function is only defined when t is less than the in which case, the 

function turns out to be  

=
𝜆

𝜆 − 𝑡
 

 

so here is t < 𝜆. MGF is defined only for t less than that.  

Let us know see a few properties of moment generating functions. The first property is like 

probability generating functions, moment generating functions also uniquely determined the 

distributions. Moment generating functions uniquely determine distributions, that is if we have 

2 random variables X and Y, 2 random variables and say these random variables have 

cumulative distribution functions FX and FY and moment generating functions MX and MY. If 

MX = MY that is if MX(t) = MY(t) ∀𝑡 ∈ ℝ, then FX = FY that is FX(x) = FY(x) ∀𝑥 ∈ ℝ, so the 

distributions of the 2 random variables are also seen. 



The second property says that 𝑀(0) = 𝐸[𝑒0𝑥] = 1. The third property says that expectation of 

the random variable can be recovered from the moment generating function in particular the 

expected value of X turns out to be  

𝐸[𝑋] =
𝑑𝑀(𝑡)

𝑑𝑡
|

𝑡=0

. 

In fact as in the case of probability generating functions moments of all orders can also be 

recovered from moment generating functions. In particular ∀ n ≥ 1, the nth order moment of 

random variable X turns out to be equal to nth derivative of moment generating function 

evaluated at t = 0. So clearly, we can compute second order moment variance et cetera from 

the moment generating function in particular  

𝑉𝑎𝑟[𝑋] =
𝑑2𝑀(𝑡)

𝑑𝑡2
|

𝑡=0

− (
𝑑𝑀(𝑡)

𝑑𝑡
|

𝑡=0

)

2

. 

Let us see few examples to illustrate this relations. We will revisit the examples that we have 

seen above. So first example above, I recall that in the first example above the moment 

generating function was 𝑀(𝑡)  = 1 −  𝑝 +  𝑝𝑒𝑡 so the expectation of the random variable X 

can be obtained as derivative of the moment generating function that is 𝐸[𝑋] = 𝑝𝑒𝑡|𝑡=0 = 𝑝.  

The second moment can be obtained as – the second derivative of moment generating function 

that is again 𝐸[𝑋2] = 𝑝𝑒𝑡|𝑡=0 = 𝑝 and so before Var[X] = p(1-p). 
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Let us know look at one more example which is actually the third example seen above. Recall 

that in the third example above, the moment generating function 𝑀(𝑡) =
𝜆

𝜆−𝑡
, ∀𝑡 < 𝜆. So, 

expectation of x the random variable x can be computed by  

𝐸[𝑋] =
𝑑𝑀(𝑡)

𝑑𝑡
|

𝑡=0

=
𝜆

(𝜆 − 𝑡)2
|

𝑡=0

=
1

𝜆
. 

Next the second moment of the random variable,  

𝐸[𝑋2] =
𝑑2𝑀(𝑡)

𝑑𝑡2
|

𝑡=0

=
2𝜆

(𝜆 − 𝑡)3
|

𝑡=0

=
2

𝜆2
. 

So, variance of x can be computed as  

𝑉𝑎𝑟[𝑋] =
2

𝜆2
− (

1

𝜆
)

2

=
1

𝜆2
. 

From variance we can also compute the standard deviation of x this is simply 𝑠𝑡𝑑𝑑𝑒𝑣[𝑋] =
1

𝜆
. 

So, this much about moment generating function. This brings us to the end of this lecture. 

Thank you. 

 


