
Mathematical Aspects of Biomedical Electronic System Design 

Welcome to another tier session of the NPTEL course, Mathematical Aspects of Biomedical 

Electronic System Design. So in this session, we will be discussing about the mechanical 

modeling or mathematical modeling of mechanical properties of tissues and its applications in 

biomedical engineering. So why characterize or why mechanically model the tissues and what 

is its importance? 
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So, that is a key question that you might be having. So, why it is important? So we know that 

human beings or even animals can have different diseases and these diseases will cause the 

change in the human body or the tissues as such. So from one pathology to another pathology, 

from a normal condition to an abnormal or cancerous condition, actually the properties of tissue 

changes and the changes in properties can be mechanical, electrical or several other different 

properties altogether. 

So in today’s session we try to understand the changes in mechanical properties and how we 

can actually model them, so that we can use these models to understand the tissue properties 

better, so as to invent or discover new treatment opportunities or the therapeutic applications 

or even for diagnosing different tissue conditions.  

So as a simple example say a person riding on a motorcycle and hits a car or meets with an 

accident and undergoes a brain injury or a head injury. So to prevent this we have been 

implementing several methods. In case of a bike accident, we implement helmets, but in case 



of a car accident, we enforce seat belts, so to prevent several injuries happening to human body 

during an accident.  

So, how do we come up with solutions like helmets? What should be the property of helmet so 

that it will be comfortable to a human to wear or what is the properties of a helmet that will 

enable it to absorb the energy once the person hits the floor or what should be the force at which 

an airbag opens up to prevent damage to the chest when an accident happens in a car. 

So all these things actually takes into consideration, the mechanical properties of our human 

body, how much stress our bones can survive or how much the force that our tissues can survive 

without getting damages. Similarly, when it comes to cancer, the necrosis and all other different 

properties or phenomena actually causes changes in different properties including mechanical 

properties of the tissue and similarly we also use mechanical properties or mechanical 

characterization when it comes to ultrasound imaging.  

So, there is a lot of forms of ultrasound imaging now like Doppler imaging, B-mode imaging. 

So, all these types of imaging that have been used currently all are based on mechanical 

properties of the tissue in one way or the other. So also when we come to wearable 

technologies, your designing is not band.  

So what should be the appropriate comfort, I mean the material property of that band like a 

rubbery material or a metallic band, which actually gives you the most comfort. So for all this 

we actually analyze the mechanical properties of the tissues and it is essential to mathematically 

model them when it comes to simulating the actual conditions in a FEM tool or when it comes 

to designing a product. So that is why we in this course discuss about the mathematical 

modeling of mechanical characteristic of tissues.  
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So say we have different models that have been put forth by different scientists over the period 

of time maybe after the mechanical properties of tissues might have been explored for last 50 

years, 60 years extensively and we have a lot of models that have been proposed, mathematical 

models that have been proposed to categorize the tissues.  

And before going deep into which are the specific models that have been used for tissues, we 

have to go through some basic understanding of different mechanical properties that we might 

discuss across this lecture. So as you can see the tissue models that have been proposed usually 

are viscous or elastic. We can broadly characterize them into viscous properties as well as 

elastic properties.  

Now what is the difference between both of this is that one this rate dependent properties are 

basically nothing but if you apply a force at some specific rate, the issue will behave like this. 

And the elastic properties is more like if you apply this much displacement or you compress 

the tissue this much or you pull the tissue this much, then what is the behavior of the tissue.  

So these are two different things that we have to understand towards developing these models. 

And the combination of several of these models have also been there such as viscoelastic model 

where the tissue have been modeled to compensate for both these behaviors together as well as 

hyper-elastic models and various scientists have devised their own models. 
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So now coming to basic understanding of the material properties before going towards tissues, 

we can actually understand what are the basic terms that we might use during this session. Now 

before going to even tissues, we will consider the properties of metals and polymers such as 

rubber in order to actually understand how these are similar to tissues and why we can use this 

polymers or other materials as analogous to tissues.  

So rather than explaining everything based on tissues, we can go for materials that are very 

similar to tissues such as rubber in order to characterize the tissues. Now you might already 

know what elasticity means. So elasticity is basically like you say, we have an elastic band or 

a rubber band, which we can pull and it goes back to its normal shape.  

So if we pull it like this with a force F, it stretches to a longer length and when you release this 

force, it goes back to its initial size. So you say this material is elastic. So basically elasticity is 

the ability of material to resist a deforming force and once this deforming force is removed its 

ability to come back to its original shape and size that is what elasticity is referred to as.  

Now to this as – even though we might term this as elasticity or elastic properties of the tissue, 

we need to quantify it somehow or for any material we need to quantify what exactly elasticity 

means. That is why people have devised or brought up terms such as elastic limit and elastic 

modulus. And what exactly this means?  

So this means that elastic limit is a maximum stress that the material can bear before it 

undergoes permanent deformation. That means if we apply some force F, the material stretches 



and it comes back to its stretches like this and it comes back to its initial form like this when 

you remove the force. But beyond a point, if beyond a force say F-max, what happens is, it will 

deform such that it will not come back to its previous shape.  

So it actually kind of gets damaged. So this is what actually is meant by the elastic limit and 

we through different material characterization steps, we have found this elastics in a limit for 

several materials. And say as you might already know, the elastic limits of metal is significantly 

higher than that of materials like rubber and other polymers, most polymers. 

Now the next parameter, so elastic limit is basically nothing but the maximum stress that you 

can apply so that the material does not get permanently damaged, you can say it like that. Now 

there is another term that we say is the elastic modulus. So, elastic modulus is nothing but the 

ratio stress and strain. So when you apply a force F, so when you apply a force F on a block 

and of cross-sectional area of A, it experiences a stress.  

This we might have studied in school itself so this stress σ = F/A. Now what is strain? This 

basically, when we apply this force, an elongation happens by say a mound ΔL. This is total 

displacing on both sides together. If it is ΔL and the original length of L then the strain ε can 

be expressed as ΔL/L. So this is the strain basically. Now so these two parameters, the stress 

and strain and the ratio of it is known as elastic modulus.  

So you can see the graph over here. So you can see a elastomer or something like a rubber 

when you stretch it, if it was – the length was like this and you stretch it this much, the stress 

developed in this rubber will be comparatively less than if you are stretching a same metal. So 

if you stretch a metal to the same extension as this rubber, the stress developed in the metal or 

a material of that much high stiffness will be way higher.  

So the elastic modulus of metal is very much higher than rubber. Now the deformation of 

material can be of 2 types and elastic and plastic. So the elastic deformation is basically what 

happens within this elastic limit and the permanent deformation when you cross the elastic 

limit is the first towards plastic deformation. Now the materials when we apply the force, the 

deformation happens.  

So if I draw a cube, consider this as a cube and you apply a force. Now when the cube get 

stretched in this direction, if it is a metal, what happens is, there will be a reduction in volume 

or reduction in width as well as breadth in these 2 directions is because the volume of the metal 



does not change much that is like when it gets stretched, the compensation happens from the 

other 2 sides.  

So, that the quantification of that effect is often referred to as Poisson’s ratio. So there is a 

change in volume associated with the stretching and this is referred to as a Poisson’s ratio of 

the material. Now how the deformation happens can be explained using 2 theories. And one is 

the molecular mechanics. It is not 2 theories, it is 2 principles that cause may be same metals 

and rubber or the elastic materials to show different behaviors and this can be classified as 

molecular mechanisms and phenomenal mechanisms.  
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Now say for this I will just show 2 – take 2 different cases, one being the behavior of metals 

and one being the behavior of rubber. Now, rubber or polymer or polymers; a few of the 

polymers, now, how these 2 materials are different? So for this we are just doing going through 

a simple experiment where we have a rubber maybe a rubber band or rubber material here and 

then you hang a weight to it, of weight W.  

So you will very intuitively understand that when you apply this weight W, it stretches, say it 

stretches by some distance length. Now if you apply some heat to this rubber when it is already 

under weight W you can notice that the rubber will shrink back may be not to its initial position 

but at least it will shrink back to a reduced length and this is called as Gough-Joule effect.  

So in case of metal, if we do the same experiment, you can say that the metal was there then 

you applied a weight W and when you heat it, it will again elongate and how exactly does this 



happen. Both are materials, both were subjected to the same weight and then you apply just 

temperature and the behavior totally change and how does this actually happen? And this can 

be explained based on thermodynamics.  

So this fdx or you might already know that it is the work or the work done. This work done can 

be represented by the changes in both internal energy dU as well as change in entropy of the 

system, entropy and internal energy. Now said this how but still how does it actually cause this 

material behavior in rubber as well as metal. How does this change happen?  

That is because of a specific effect that happens in polymers or rubber that is adiabatic 

stretching and strain induced crystallization.  
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Now let us come here. So the internal structure of a metal might be like this. Say, there is a 

metal lattice like this where these are same metal atoms. Now this is very microscopic view so 

if this was a metal block and you were applying force like this, so what actually happens is 

these atoms which are in ionic interaction with the other atoms here undergoes deformation. 

So if it was say like a crystal structure like this, it might deform to something like this.  

So as you can see if this atom deforms to something like this, and this atom moves in. So you 

can see that there is a change in volume altogether. So this change in volume is caused by this 

force and this change in volume also causes change in internal energy of this metal, change in 

– now what the changes actually happens is in – the ionic bonds get distorted.  



So what happens? When you release the force these ionic forces are strong enough to bring it 

back to its original shape. So whatever force we applied here comes back to its initial state. 

This is what happens in case of metals. Now in case of polymers like rubber what happens is 

it is a polymer. So it is a combination of monomers that is within it and all these monomers are 

held together by covalent bonds and this monomers can be like this.  

Each monomer can be like oriented in different fashions. And maybe some carbon based, 

carbon-carbon bond or something like that will be there. And the angle between this carbon-

carbon bonds might be say restricted to say 109 degree. So when you apply the force since the 

covalent bond is strong enough to maintain this 109 degrees.  

The covalent bond will maintain the same angle and if you apply more force the covalent bond 

just breaks. So it will cause say plastic deformation, permanent deformation. So in most of the 

cases what just happens is, if you stretch the rubber the coiling of the monomers that you have 

seen here will just stretch out to become straight.  

That is the change what actually happens in rubber and when you leave it, so this state can be 

referred to as amorphous state. And here it is more like a crystalline state and the amorphous 

state are associated with huge entropy and here the entropy is lower. So most of the change 

when we stretch a metal, it contributes from the change in volume which is therein internal 

energy change.  

When it comes to rubber the stretching actually reduces to the – or the coiling of the monomers 

reduced to stretching and causes strain induced unbending or uncoiling of this thing. So 

basically what happens, the stretching causes strain crystallization. So when it becomes 

crystalline from an amorphous state basically the entropy reduces.  

So, most of the effect or the predominant effect that comes into the work done of a rubber 

material or a polymer when we apply and release is basically due to the change in entropy. Of 

course there is some change in volume but still most of the effect comes from the entropy 

change. That is why when we apply the temperature the rubber since the entropy term or the 

change in the entropy term is significant.  

And if the temperature we increase it, it actually reduces the work done and in the case of metal 

since the dU is the predominant one and the volume change is significant, it will dominate over 

the work done and which will cause the elongation of the material.  
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Now considering all these things, now we come to the viscoelastic behavior of the tissue. So 

why did I discuss all these things of the rubber as well as metal? To tell you that material like 

you could have a basic understanding like the rubber is very much similar to tissue when you 

feel it. And it is true that the mechanical properties of a rubber or a polymer is very much 

similar to that of a tissue in many ways.  

So these properties of the tissue can – always are most commonly represented by the 

characteristics of polymers itself. So whenever scientists try to explore the mechanical 

properties of tissue it is always very – I mean tightly aligned with the properties or 

characteristics of polymers in general. So the methods used to characterize the tissue are very 

much similar to the methods used to characterize the polymers.  



And this is why we discussed all these behaviors of rubber so far. Now so this is the basic idea 

that I wanted to give. And the conformation change that we discussed previously in the 

materials can – the rate of conformation change can be expressed using this or expression 

shown in here. Now coming back to the viscoelastic regime or what are the viscoelastic 

properties of tissue? You can see here.  

So now consider we have a rubber and we are pulling apart very slowly or a tissue that we are 

pulling it up very slowly. And there is another same tissue we are pulling it fast. And you can 

see that its behavior totally changes depending on the rate at which you pulled it. And similarly 

when it comes to the temperature that we discussed previously, the change in temperature 

causes different behaviors in the tissue or the polymer based on the thermodynamic principle 

that we discussed earlier.  

You can see here there is a plot of – the rate of deformation versus temperature and you can 

see that as temperature decreases the slope or the rate of reaction increases quickly. Now if you 

think about it, you take a rubber band or something, you can try this simple experiment in your 

house even the other I have told here the stretching and un-stretching of rubber, you can 

actually see this with a simple experiment at your house.  

You can take a rubber band, a usual rubber band or a rubber block, you can freeze it, you can 

freeze it in a refrigerator or something and you will find that the rubber actually becomes brittle 

and you can just break it. So take just a rubber band, keep it in a freezer and freeze it at some 

minus some degrees Celsius and you will see that when you break it, you will see a coiled kind 

of behavior in the cross-section of the rubber band.  

And which is actually feasibly visible. And in the another rubber band you take it, you stretch 

it, stretch it using something and again freeze it and when you break it, you will see very aligned 

structure. So this basically shows the orientation change or the uncoiling of rubber or the these 

kind of materials.  

Now talking about this, so the temperature actually plays a significant role in the mechanical 

behavior of polymers like rubber as well as even for tissues and there is a temperature that is 

referred to as glass transition temperature, and this glass transition temperature is a very 

important temperature. And if you heat the material or the polymer beyond even this applies 

true for most materials even in glass or materials.  



What happens is when you heat it, above its glass transition temperature, it becomes rubbery 

or it becomes more elastic and if the temperature is reduced well below the glass transition 

temperature it becomes brittle and you might be already able to understand why this happens 

based on the previous thermodynamic explanation that we have already gone through.  
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Now let us come back to material characterization or material characterization of human 

tissues. I have shown here an example of a characterization of brain tissues. So a brain tissue 

was cut into a diameter of 8 mm in this research work that I have cited here. And they are 

keeping it between 2 plates as you can see here. So what are they trying to do? So the materials 

have been characterized using different methods like the tension test, compression, then maybe 

a fatigue test, so a shear test.  

A lot of tests have been done. In tension test, a material will be pulled to its – to understand its 

and once we pull it, we plot the stress versus strain and to see what is the elastic modulus, 

elastic limit, what is the elastic modulus, all these things and same for the compression. You 

apply a force to compress the tissue or the material to know the behavior. You load it and 

unload it at very high rates to understand the fatigue.  

You apply the load in an angular way to understand the sheer behavior of the material. So all 

these tests have done a lot but when it comes to tissues the most important characterization that 

people do is the creep test, relaxation test and the dynamic or sinusoidal loading test. So why 

these tests are important to all these tests that we have already discussed like tension, 

compression, all these can be done, all these can be done always.  



And these are very much similar to any other material but when it comes to specific case of 

tissues this is - that is when it actually becomes important to do this creep test, stress relaxation 

test and dynamic loading and you will understand over the course of a few slides that comes 

down that why it is actually important.  
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First we will talk about the creep test. So now we will talk about the creep test or the creep 

behavior of the tissue. So you can see a graph over here. When you apply a strain and you plot 

it against time. So as you can see there are 1, 2, 3 plots here and I am naming them as – so what 

basically creep that we will explain first.  

Now you apply stress on a material, you apply some force on a material. Initially you can apply 

a force on the tissue at a slower rate, slowly you pull it or you apply a force slowly then you 

increase the speed at which you apply the force, the speed at which or the rate at which you 

apply the load or the F. If you change this that is like you apply force faster.  

If you apply the force slower, you will actually get different strains when it comes to this kind 

of material such as tissues or polymers. And this is known as creep of the material or it is 

basically the time dependent strain or that rate dependent strain of the material and hence the 

strain ε can be represented as a function of time and this δ here is the tissue displacement since 

also displacement changes with time and this is the initial length L0.  

So basically the strain can be expressed as a function of time in this case. And you can see here 

say if the stress in this case. So what basically what we can – what we usually do to do a creep 



test is you keep a tissue, you almost instantaneously apply a force F. So the stress in this tissue 

will become say something like a σ0 and this is what happens in a creep test basically.  

Now if you apply double the load that is 2σ0 and the 4σ0, you can see that the strain observed 

will also get doubled like from σ0 to 2σ0, the strain rate at every instant of time will be almost 

double. If you make it 4 times the initial value it will become 4 times so this is what creep 

means that is when you apply different – if you apply different loadings rates to the tissue its 

behavior changes and this is called as creep.  

So, now creep is understandable. There is a strain that is a function of time and since the 

displacement is a function of time. Now you need to say quantify it or normalize it with respect 

to the stress that you apply. For example, the strain correspond to, the strain that correspond to 

σ0 force, and the strain that correspond to 2σ0 force.  

We need to actually compare them somehow. What is the actual effect of this? So that is why 

we have brought in a term known as creep compliance and this is basically nothing but the ratio 

of the strain that is a function of time with respect to the stress that has been applied.  

And you could just see that if you apply or if you double the stress what actually happens is 

from the basic say if this was ε1(t) and if it was ε1(t) for σ0 when you make it 2σ0, the stress 

when you double it or the initial stress, the stress that you initially applied gets doubled, what 

happens is the strain also gets doubled. So that is the basic understanding.  
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Now we can also do what is like to take the plot of this creep, creep compliance against 

logarithmic of time. You can see the variation from the glassy state to the rubbery state of the 

material when we change – over the period of time.  
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Now let us talk about the next characterization method that is known as the stress relaxation. 

Now we discuss that you apply a specific amount of stress to a material at different rates and 

you will get different strain rates. And similarly the vice versa of this is basically, you apply 

different strain or initially, this was the tissue, you compressed it to say x distance and in the 

next case, you compressed it to 2x distance and you apply it to 3x distance.  

Now what happens is each different, different displacements also causes different, different 

stress in the materials. So each time if the material is linear, linear elastic, what happens is 

when you double the strain that you have given or if you double the displacement that you have 

given, the stress also just gets doubled when it comes to a linear elastic material or linear 

behavior of the material.  

So what happens is, now after applying this displacement you just keep on measuring what is 

the stress in the material, you will understand that over the period of time the stress in the 

material comes down. That means the tissue or the material relaxes or the stress reduces so this 

is called as the stress relaxation.  

And this is referred to as – you say we have quantified this using the term relaxation modulus 

and this you are already familiar. The elastic modulus of the material can be given by 



𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠(𝐸) =
𝑆𝑡𝑟𝑒𝑠𝑠(𝜎)

𝑆𝑡𝑟𝑎𝑖𝑛(𝜖)
. 

So it is the same thing but just that the variation with respect to time is also important here. So 

the initial strain that you apply is ε0 and the relaxation modulus as a function of time can be 

plotted. 

So this is the basic understanding of 2 different processes. Stress relaxation as well as creep. 

Now both creep and relaxation are both manifestations of the same molecular mechanisms but 

you will feel that even these two are related. Basically that  

𝐶𝑐𝑟𝑝(𝑡) =
ε(t)

𝜎0
 

and  

𝐸𝑟𝑒𝑙(𝑡) =
σ(t)

𝜀0
. 

Both are very much similar like you might feel that this  

𝐶𝑐𝑟𝑝 =
1

𝐸𝑟𝑒𝑙
. 

They might be dimensionally same but effect wise they are not the same and the rate at which 

the relaxation happens compared to the stabilization of creep is actually faster in case of stress 

relaxation so there is difference between both, one is not the reciprocal of the other.  

 

 

 

 

 

 

 

 



(Refer Slide Time: 38:50) 

 

Now, both these characterization methods that we have discussed so far like the creep as well 

as stress relaxation. As you can easily see, you can see that they need time so either you apply 

some stress and weight for it to get the behavior or you apply some strain already and try – 

wait for it to give some results. So you need some time to characterize the materials.  

So basically this time depending on the material it actually changes maybe from minutes to 

hours or to days. But in our daily application to understand the behavior we do not have that 

much time that is why we go towards dynamic loading of the material. In dynamic loading 

what we do is, we very quickly apply force like at an instant we stretch the material and another 

instant we compress the material and we will repeat this for very long time or so this is one 

form of dynamic test.  

So there are various ways you can do it maybe you can apply a sinusoidal so this is the strain 

with as a function of time. You can apply a sinusoidal foam, a foam kind of strain or what you 

can do is, you can just give a step kind of response or the strain. So all these things we can try 

it out and these methods can also give us similar results or similar information as we can get 

through creep as well as stress relaxation test.  
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So now let us see if we can try an example with this. So if I apply a strain as a function of time, 

which is sinusoidal in nature. So this is a harmonic kind of strain that we are applying, so 

basically like this we are applying. Now this is the peak strain that we apply. Now it is observed 

that the stress that is developed in the material, σ(t) = σ0cos(ωt+δ) where δ is a lag.  

It is very much similar to the electrically when we have a resistor and a capacitor or a resistor 

and a inductor. So we know that when we apply the current or when we apply a potential 

between these 2 there can be a lag or lead of current and potential. Similar to that in case of 

mechanical dynamic in loading the stress actually lax the strain that we apply by a amount of 

δ.  

So this expression can also be written in a complex form that is σ*= σ0´. So if I represent – this 

generated stress as a function, as a complex function and which is having a real as well as 

imaginary part, which have a face of 90 degree apart. We can represent the same stress 

generated in this foam.  

So if we have this thing, if we apply ε so there can be a stress with a lag of δ. This is the 

imaginary part and this is a real part. We move towards with a angular vacancy of ω and the 

tan(δ) can be represented or the face in forming of tan(δ) can be represented as  

tan(δ) =
σ0´´

σ0´
. 

And also you can say the magnitude of this complex stress function as  



σ0 = √(σ0´)2 + (σ0´´)2. So basically what it is, it means is the σ0´ = σ0𝑐𝑜𝑠𝛿 and σ0´´ =

σ0𝑠𝑖𝑛𝛿.  

So I guess you might have understood this part. Now so basically the stress function can be 

grouped as a real part as well as imaginary part or a – so the stress is basically categorized into 

2 different parts and so converting this stress into the modulus or elastic modulus that we 

discussed, modulus that we discussed earlier. 
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We can write it as, the real part of modulus is given by 
σ0´

𝜀0
 and the imaginary part can be said 

as 𝜀0. So this is the rationale behind bringing these two apart like the complex part as well as 

or the imaginary part as well as the real part of the stress function will be understood after some 

– after a little bit later. So now you understood there will be a real part as well as imaginary 

part for the modulus also. 

Now why this kind of a representation is good or why do we do this. This we can tell based on 

a quantity known as strain energy. So this is very much similar to the work done that we 

discussed earlier in kind of thermodynamic. So it is basically nothing but when you apply a 

strain so some sort of energy stored within the material.  

And this strain energy say W can be represented by  

𝑊 = ∮ 𝜎(𝑑𝜖) 



so this stress generated in the material with respect to the strain that we apply. So when we take 

the ∮ 𝜎(𝑑𝜖) for the cycle of dynamic loading, we will know the strain energy stored in the 

material during the cycle. So we will do the same for this dynamic loading that we discussed 

so far. W is equal to, we can also represent this as, I am just adding dt on numerator and 

denominator.  

Now this σ we can represent it as 2 terms right. So I am just grouping them apart for a single 

cycle 2𝜋ω. So this is the real part. When you integrate this, you understand that this entire real 

part this is the imaginary part. This entire real part becomes 0. You know this mathematically 

and this term comes out to be 𝜋 and σ0´´ ε0.  

So you will see that so during an entire cycle the energy stored by the real part of the stress is 

actually 0. That means whatever force that we applied or whatever stress that we applied, which 

caused an energy change or storing of energy, the real part of stress actually became 0 over a 

complete cycle. That is whatever energy that was given in was given out once the cycle was 

complete.  

But at the same time the imaginary part there he is something that remains that means there is 

an energy loss associated with the dynamic loading that is whenever you apply a load or a 

loading cycle there will be some amount of energy lost and this energy can be lost as heat. So 

there is the behaviour of tissue or material where some part of the energy that was transferred 

during this dynamic loading cycle that is being lost.  

That is usually represented by the imaginary part or the loss part that is why we actually 

represent the stress as well as strain relationship in case of dynamic loading and the lag between 

them as a complex function, so that we will actually understand what is its actual significance. 

Now let us talk about – so now you might have understood the basic understanding of dynamic 

loading. 
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Now we move towards the different models that we use for this kind of applications. So 

basically you know Hooke’s law where force is F = kx where k is the spring constant. So when 

you apply a force on a spring, the spring can be better represented like this because we are 

going to use that kind of a terminology later on of a stiffness k and when you apply a force, it 

displaces by a distance x.  

So this is basically what our expression for Hooke’s law is. Now the same expression analogous 

to F = kx. We can say σ = kε. These are very analogous. Instead of force, we have stress and 

instead of displacement we have strain and this can be represented using a usual spring itself.  

So any material can be represented as a combination of springs as well as something that we 

called as a – this is spring as well as something called as a dash pot. So, dash pot or a like 

damper. This is very – this kind of a mechanism is always used in electric models also. So you 

might be familiar with that during the previous lectures. So the dash pot what actually does is 

it does not consider anything relevant to the strain but it is not concerned towards strain rate.  

So it is basically more like a damper so if you apply the force slowly, if you apply force at a 

slower rate the resistance that it will give is also slow. If you apply a very fast rate then the 

damper will give you a higher resistance. So in this case the stress can be represented as  

𝜎 = 𝜂𝜀̇ 

 where 𝜀̇ is nothing but the strain rate. 



So a dash pot is an element where the stress is dependent upon the strain rate and instead of the 

stiffness K that we discussed, stiffness K that we discussed earlier in a dash pot, we define 

viscosity. So now we understand maybe like the material or the tissue or the rubber or any other 

polymer can have this stiffness or elastic properties as well as the viscosity or the strain 

dependent, strain rate dependent, strain rate dependent behaviour.  

So combing this kind of elements Maxwell proposed the Maxwell model that he said that we 

can say that the materials can be a combination of a spring and a dash pot in series. So whatever 

force that you apply you apply the same force on both the elements. So if this is spring and this 

is the dash pot the stress in spring is must be stress in dash pot.  

So we called it σ only. And the total stretch that happens when you apply a force, the total force 

that you apply and that when you apply that force is total strain that will be caused will be sum 

of these strains in spring and that in dash pot. 
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So that is what actually is the Maxwell model. So this is why – so as you have seen earlier, the 

material will have a plot of the varying say sigma versus time then why does it relax or when 

you plot the creep that is epsilon versus time why there is a change with respect to time. This 

is explained by the presence of the dash pot there.  

So the dash pot actually is affected by the strain rate and that is why the behaviour of the 

material changes with time so that is why Maxwell proposed this model with a spring as well 

as dash pot in series with each other. Now from the previous expressions that we wrote already, 

that is equal to σ =  kε that is 1 and 𝜎 = 𝜂𝜀̇ that is 2.  



We can say the – since we also discussed that ε = εs + εd we can say the strain rate of the total 

system can be represented as correct and so this can also be written as,  

=
�̇�

𝑘
+

𝜎

𝜂
. 

Now this is the stress rate in case of spring. Now to better give an idea about the k as well as 

or the stiffness as well as viscosity of this model, there is a thing called as relaxation time.  

Unit or a parameter known as relaxation time is defined 𝜏 is given by 𝜏 =
𝜂

𝑘
 which has same 

unit as time. So, maybe seconds or something or minute depending on the unit that you take 

for viscosity as well as stiffness. So this relaxation time will come everywhere. So if you just 

solve this, you will get  

𝑘𝜀̇ = �̇� +
1

𝜏
. 𝜎. 

So this expression that I have given here is known as the constitutive equation for Maxwell 

material. So basically the stiffness as well as the viscosity which is included in this relaxation 

time and the different strain rate as well as stress rate in the material will be related in this – as 

per constitutive equation for the material. Now, how is this significant, how does this be useful? 
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So for that I will just show an example. So there is a material and there was a material and you 

were loading it to a suddenly to a strain of ε0, you strained it like this and you are keeping like 



this. Now you have seen stress relaxation. So this stress will actually reduce with time and the 

stress is reducing with time.  

So the σ(t) actually decreases with time, correct. So the same expression using this constitutive 

equation, we will try to solve how it works. Now in this case, and in this kind of strain that we 

applied you will know that after we apply the strain, there is no more strain rate or we are not 

applying strain anymore or there is no change in strain after we apply the constant strain ε0.  

So what happens is the 𝜀̇ term actually become 0, so whatever left out will be this will be �̇� =

−1

𝜏
. 𝜎 or this can also be written as 

𝑑𝜎

𝑑𝑡
=

−1

𝜏
. 𝜎, correct. And we when we integrate it between 

the total change in stress with respect to total change in time what we can do is so basically I 

am just rearranging it separating the variables and integrating. It goes here.  

And when you solve it, 𝜎 − 𝜎0 =
−𝑡

𝜏
 or this stress, let us say function of time can be given as 

𝜎0 (
−𝑡

𝜏
). So basically the relaxation that happens in case of a Maxwell model for the applied 

strain as shown in this case is exponentially decaying of the stress that we applied initially or 

the stress generated initially by a strain of ε0 actually reduces with time exponentially.  

And this is the plot and this relaxation time can be physically quantified as the time at which 

the stiffness of the material the k or the stiffness of the material is reduced to – reduced by 
1

𝑒
 

times or 
𝑘

𝑒
 times that is usually defined as the relaxation time as in most of the electrical analog 

cases.  
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So this is one of the most basic mechanical model that people have proposed over the time. So 

there were modifications of – but this model or the Maxwell model cannot actually exactly 

represent the case of the stretch of polymers. The Maxwell model cannot actually show it 

properly. So that is why the standard linear solid model or standard Maxwell model of the 

expression was developed.  

So in this model – this model was developed because most polymers do not exhibit the 

unrestricted flow as shown by the Maxwell model. So except for some materials like this Silly 

Putty or warm tar most of the other materials do not actually follow the simple Maxwell model 

as we discussed. So it is very limited to the materials that we can say of.  

But when it comes to polymers that we discussed earlier there is a lot of entanglements between 

the polymers. So it cannot exactly be represented by the simple Maxwell model. So that is why 

this model standard linear solid or SLS model was proposed where we have a resistor in parallel 

with the Maxwell model that we already discussed.  

So if this spring in series is having stiffness of k1 and the viscosity of the damper is 𝜂 and we 

have the stiffness of the other spring, the parallel spring is to be say Ke that I am showing as 

here and we can model the same model or the can do the same way as we have shown in the 

previous case. Now in the previous case what happened was whatever stress or the force that 

applied across the series of spring and damper created the same stress in both.  



But the elongation was the sum of both. But in this case the stress will be distributed among 

the two arms of the model, correct, right. So the total stress in this case will be the stress across 

this individual spring 𝜎𝑒 plus that of the previous model that we already discussed in the 

Maxwell model that is 𝜎𝑚. Now trying to solve this model using the previous approach will be 

actually little bit difficult.  

So we will approach the same problem or solving this model using the Laplace transform model 

or taking the Laplace of the same thing. Now so how do we do that? So we start from the 

constitutification and we take the Laplace of the same thing. So here the – this was a 

constitutification and now in this specific case of this one or the right side branch with the 

spring and dash pot and series.  

We can say the stiffness is K1 and when we take the Laplace of the differential or the change 

in strain, what we get is s into the change in strain or the dash over the strain rate shows the 

Laplace transform of that same function. And if we solve for 𝜎𝑚 dash as we did in previous 

case, it will get so it is the – we are approaching the same problem that we did previously but 

using Laplace transform. So that we can do the combinations later on easily  

So now if I try to find the stress here and here also if we take the Laplace the total strain in 

Laplace domain can be given by – and so basically this result can be represented as 𝜎 = 𝜀𝜖.̅ So 

it is more like the previous expression that we wrote. So and where this e or the ε can be is 

equal to ke plus or basically it is nothing but this constant within the bracket.  

So you can actually this is basically model parameter that relates to stress as well as strain in 

the Laplace domain. So this expression totally is known as the associated viscoelastic 

constitutive equation. So similar to this SLS model or the Maxwell model various other models 

are there for the tissues that or the polymers that we know of. 
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And so before winding up we will just do one example with this case. So as we discussed 

earlier, we applied a strain with respect to time like this, like we applied a step of ε0. So instead 

of that this time we will say apply say unit function so I can write the function as ε(t) = ε0u(t) 

where 𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

.  

So if we apply a unit step function and the Laplace of this function will be 
𝜀0

𝑆
, correct. So the 

previous equation that we derived will become  

𝜎

𝜀0
=

𝑘𝑒

𝑆
+

𝑘1

𝑆 +
1
𝜏

. 



So now we can take the inverse Laplace of these terms to get what we will get  

𝜎(𝑡)

𝜀0
= 𝑘𝑒 + 𝑘1exp (−𝑡

𝜏⁄ ) 

so basically this expression you are very similar familiar.  

This expression is nothing but the expression for stress that you got for Maxwell expression. 

You might be remembering them. So when we derived it for Maxwell model, we got the 

expression the stress is a function of time, exponentially. So it is the same plot but what we 

have got now by it offset by so that it is a previous one but we have an offset of k.  

So this is how the modified function or modified Maxwell model or the standard Maxwell 

model actually changes from the previous Maxwell model that we have discussed. So we have 

discussed lot of things so far so starting from how we categorize different materials what is the 

importance of characterizing materials mechanically, what are the differences between the 

metal and a polymer and how this polymers are similar to the tissues and how the polymer 

based models can be used for the applications for the tissue.   

So we have discussed a lot of models. Similar to this Maxwell models we have Kelvin model 

and the standard Kelvin model that is little bit more complex than the Kelvin model or the 

Voigt model. So we have a lot of models like this which are used to depict the mechanical 

properties of tissue using dynamic testing.  

So depending on the tissue behaviour one model might fit better than the other model. So 

different materials will have the different type of tissues even will have different correlation 

with different, different models. A deceased tissue might be a better fit using maybe a Maxwell 

model. I am just telling, I mean not really but maybe a normal tissue will be more towards SLS 

model.  

So depending on the application, depending on the experimented data we can use different 

types of models like this and we can actually find the parameters K. So once you do the 

experiment then you get a result like this, what you can do is you can fit this curve and obtain 

different values for Ke or K1 so that these models can be used further for various simulation 

applications as well as designing various tools. So, I hope you found this lecture or this session 

useful. Thank you.  


