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Hello everyone, welcome to another lecture of the course Mathematical Aspects of Biomedical 

Electronic System Designing.  
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We are now going through the module on probability and random variables. In today's lecture, 

we will cover random variables, cumulative distribution functions, discrete and continuous 

random variables, probability mass functions, probability density functions etcetera. So, let us 

start today's lecture.  
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We will start with the notion of random variables. To understand random variables, let us recall 

the notion of probability space, recall that probability space is a Ω, script F and P where Ω is 

sample space, F is event space and P is a probability measure. Let us consider functions from 

sample space to real numbers.  

So, on one side we have space of sample points, on other side we have the space of real numbers 

and X is a mapping from Ω to R. Let us fix a point small x on R and look at all the points, all 

the sample points in Ω that are mapped to the segment -∞ to x. So, basically, we want to see 

all the points here that are mapped to this.  



Collection of these points is called preimage of [-∞, x]. {𝜔 ∈ Ω: 𝑥(𝜔) ≤ 𝑥}, this is called 

preimage of [-∞, x]. It is denoted by x-1([-∞, x]). Now, this preimage may or may not be an 

element of F that is event space. x-1([-∞, x]) may or may not belong to F.  
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Let us understand it with an example. Consider the random experiment of tossing a die. In this 

case the sample space is {1, 2, 3, 4, 5, 6}. Let us consider that event space F = {Φ, Ω, {1, 2}, 

{3, 4}, {5, 6}}to be empty set. Now, we consider a function x : Ω → R defined as follows. We 

define 𝑥(𝜔) =
𝜔

2
, so that for a number z, ceil is the smallest integer that is ≥ z.  

Ceil of z it is smallest integer that is ≥ z. For instance, ceil of 2.3 is 3. Ceil of 2 is 2. Ceil of 

2.01 is also a 3. We consider function 𝑥(𝜔) which is ceil of  
𝜔

2
. So, clearly it is such a function 



will map the sample space to real numbers as follows 1, 2, 3, 4, 5, 6. This is my sample space 

1 and 2 will be mapped to number 1; 3 and 4 will be mapped to number 2 and 5 and 6 will be 

mapped for number 3.  

In this case, if we consider preimage of [-∞, 1], it is clearly the set {1, 2}, and as we can see it 

is in the event space. On the other hand if we consider preimage of [-∞, 2] it is 1, 2, 3, 4, 5 

because all these numbers 1, 2, 3, 4 are mapped to either 1 or 2. Now, 1, 2, 3, 4 is not in script 

F.  

Similarly, if we consider the preimage of [-∞, 2.5] this will also be 1, 2, 3, 4 this is also not in 

F. So, we see that preimage of x-1([-∞, x]) may or may not belong to the event space. The 

special functions for which preimage of [-∞, x] is always part of the event space are called 

random variables.  
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So, let us write this definition X → Ω → ℝ such that preimage of [-∞, x] is part of the event 

space for all X and R is called a random variable. Let us illustrate this definition of random 

variables with a few more examples.  
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Let us again consider the experiment of tossing your die. As before the sample space is 1 to 6 

let us consider the event space to be empty set, the whole set {1, 3, 5} and {2, 4, 6}. It can 

easily verified that, such a script F is a sigma algebra that is it in an event space. Now, let us 

define a function x: Ω → ℝ as follows.  

𝑥(𝜔) {
1 𝑖𝑓 𝜔 is divisible by 3
0                     otherwise

. 

Clearly, under this function 1, 2, 4 and 5 are mapped to numbers 0 whereas 3 and 6 are mapped 

to number 1. Now, if we consider preimage of the set [-∞, x] then it is a collection of all points 

that are mapped to points under real and data, either 0 or left to 0, so, this preimage is {1, 2, 4, 

5}.  

And it is not in F. So, X is not a random variable. However, let us consider the following 

example. Again, as before Ω = {1,…..,6}, but, the event space now is empty set was set 1, 2, 

4, 5, 3, 6. Now, it can be checked that for any x on real line preimage of the set [-∞, x] will be 

part of script F. For instance, x-1[-∞, -1], this would be set of all points whose image is ≤ -1.  

So, this is clearly empty set. No pointer remains ≤ -1. x-1[-∞, 0]. Preimage of [-∞, 0], this would 

be {1, 2, 4, 5}. And this is now clearly an element of the event space. Similarly, x-1[-∞, 1] this 

will be the whole space Ω. So, clearly this is also script F.  

In the same way, we can check the preimage of any set of the form [-∞, x] will be an element 

of the sample space. So, x is a random variable.  
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Let us consider yet another example. I keep the sample space same as before, but my event 

space is the power set of Ω. But my event space is the power set of Ω that it is collection of all 

subsets of Ω. In this case, if we consider any x : Ω → ℝ.  

Since x-1[-∞, x] that is preimage of [-∞, x] will certainly be a subset of Ω. It is certainly an 

element of the event space. In this case, x is certainly a random variable. So, we see that the 

same function from Ω → ℝ may or may not be a random variable depending on the event 

space.  
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Now, consider 𝐵 ⊂ 𝐶 such that 𝑥−1(𝐵) ∈ 𝐹. For example, B = [-∞, x] or B = (x1,x2). It can be 

seen that if X is a random variable, then for all subsets there preimage will be elements of event 

space.  

In this case probability of the preimage that is 

𝑃(𝑥−1(𝐵)) = 𝑃({𝜔 ∈ Ω: 𝑥(𝜔) ≤ 𝐵}) is often simply return as 𝑃(𝑥 ∈ 𝐵). So, whenever we 

see a notation, 𝑃(𝑥 ∈ 𝐵), we should understand that it means the probability of the preimage 

of B.  
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Let us see an example. It is again consider the example of a die being tossed. And event space 

to be the power set of the sample space.  As in the first example, we consider a function x : Ω 

→ ℝ defined as 𝑥(𝜔) =
𝜔

2
  ∀  𝜔 ∈ 𝛺.  

Then preimage of this [2, 3] will be collection of all sample points that are mapped to numbers 

between 2 and 3 that is that are mapped to 2 or 3 and it can be easily observed that this preimage 

is {3, 4, 5, 6}. So, by 

𝑃(𝑥 ∈ [2,3]) = 𝑃(2 ≤ 𝑥 ≤ 3) = 𝑃({3,4,5,6}) =
4

6
. 
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Next we consider the notion of cumulative distribution functions of random variables. 

Cumulative distribution function: It is considered a probability space and x : Ω → ℝ ∀ 𝑥 ∈ 𝑅. 

From the definition of random variable x-1[-∞, x] that is preimage of [-∞, x] is an element of 

script F.  

And so it is probability is defined. Moreover, the probability is the number between 0 and 1. 

So, we can define a function, function capital F : ℝ→[0,1] as follows F(x) = P(x-1[-∞, x]) ∀ 𝑥 ∈

𝑅. This function is called cumulative distribution function of x.  

Cumulative distribution function in short, CDF of X. Notice that  

F(x) = 𝑃({𝜔 ∈ Ω: 𝑥(𝜔) ≤ 𝑥}) = 𝑃(𝑋 ≤ 𝑥). 
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Let us see a few examples, the first example is the die tossing example, seen before. Here, Ω = 

{1,…..,6} we take script F to be the sigma algebra. And as the first example, we consider the 

function 𝑥(𝜔) =
𝜔

2
  ∀  𝜔 ∈ 𝛺. We have already seen that such an x qualifies for a random 

variable.  

We can define the cumulative distribution function F of this random variable as follows. So, 

for instance, F(2) = 𝑃(𝑋 ≤ 2) = 𝑃{1,2,3,4} =
2

3
; F(2.5) = 𝑃(𝑋 ≤ 2.5) = 𝑃{1,2,3,4} =

2

3
.  

F(3) = 𝑃(𝑋 ≤ 3) = 𝑃{𝛺} = 1. In fact, it can be seen that the function F looks as follows. Here 

we have points 0, 1, 2, 3. Here we have 
1

3
, 
2

3
, 1 and F is of the form of this step function.  

Value of this function at x = 1 is 
1

3
. The value of this function at x = 2 is 

2

3
, and the value of the 

function at x = 3 is 1. The value of the function at all the points below 1 is 0. Value of the 

function at all the points above 3 is 1. So, this is a cumulative distribution function F of the 

random variable that we defined. 
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Let us see another example. Now we considered the experiment of a point being selected 

uniformly from interval [0, 2]. We consider x : [0,2] → ℝ defined as follows. 𝑥(𝜔) =

𝜔  ∀  𝜔 ∈ [0,2]. In other words, this F takes elements from an interval 0 to, and it maps them 

to elements in R and any point ω in 0 to map the 2, ω in R.  

In this case, we can define the cumulative distribution function, F of the random variable X as 

follows. F(1) = 𝑃(𝑋 ≤ 1) = 𝑃([0,1]) and since the point is uniformly selected from 0, 2 this 

probability would be similarly, F(1.5) = P([0,1.5]) =
1.5

2
. F(−1) = 𝑃(𝑋 ≤ −1) =

𝑃({𝜔: 𝑥(𝜔) ≤ −1}). Clearly, for no value of ω, x(ω) ≤ -1. So, this probability will be 0, F(3) =

𝑃(𝑋 ≤ 3) = 𝑃(𝛺) = 1. In fact, it can be seen that the cumulative distribution function F in 



this case looks as follows. It is a RAM function between 0 and 2. Starts at 0, it ends up at 1. It 

is a flatline outside this interval.  
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Let us see yet another example. Now, we consider the experiment of a coin being tossed twice, 

is tossed last twice. Clearly, in this case, the sample space {H H, H T, T H, T T}. We define x 

: Ω → ℝ. x(ω) is number of threads in ω.  

In other words, we have a set {H H, H T, T H, T T} and X is a mapping from this set to set of 

real numbers, where H H is mapped to 2 H T and T H are mapped to 1. And the T T is mapped 

to 0. In this case, it can be seen that CDF of X Fx will have the form as shown in this graph. 

So, we will have 0, 1, 2 and Fx will be form of a step function with steps edges being half. So, 

this is half, half. F(0) = 0, F(1) = 
1

2
, F(2) = 1.  
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Similarly, we can define another random variable y to be number of tails in ω. So, y(ω) is 

number of tails in ω. Now, the function y looks as follows. Its domain is same as that of x. But 

it maps H H to 0, H T and T H to 1 and T T to 2. Clearly, x(ω) ≠ y(ω) ∀ω. This means x ≠ y.  

The random variables x and y are different. However, if we consider the CDF cumulative 

distribution function of y, say Fy then Fy = Fx. In other words, Fy(x) = Fx(x) ∀𝑥 ∈ ℝ. So, we 

see that if 2 random variables have same CDF, that does not mean that they are identical. So, 

2 random variables and have same CDF without being identical.  
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Let us now see a few properties of cumulative distribution functions. Properties: First property 

which one can see immediately is F(x) ≥ 0 ∀𝑥 ∈ ℝ, that is CDF are more negative. The second 

property is if x1, x2 ∈ ℝ such that x1 ≤ x2. Then F(x1) ≤ F(x2).  

That is CDFs are monotonically increasing. The third property is if as in the second property 

x1, x2 ∈ ℝ and x1 ≤ x2. Then  

𝑃(𝑥 ∈ [𝑥1, 𝑥2]) = 𝑃(𝑥1 < 𝑥 ≤ 𝑥2) = 𝐹(𝑥2) − 𝐹(𝑥1). 

Fourth property is that lim
𝜖→0

𝐹(𝑥 + 𝜖) = 𝐹(𝑥) ∀𝑥 ∈ ℝ. That is CDFs are right continuous. 

Property number 5 says that if 𝑥 ∈ ℝ, then 𝑃(𝑋 = 𝑥) = 𝐹(𝑥) − 𝐹(𝑥 −) > 0, if F has a jump 



or a discontinuity at x, jump at x. Property number 6 is that if 𝑃(𝑥 ∈ (−∞,∞)) =

𝑃(−∞ < 𝑥 < ∞) = 1 then lim
𝑥→−∞

𝐹(𝑥) = 0 𝑎𝑛𝑑 lim
𝑥→+∞

𝐹(𝑥) = 1. Note that 𝑃(−∞ < 𝑥 <

∞) < 1. That is in general 𝑃(−∞ < 𝑥 < ∞) ≤ 1. If 𝑃(−∞ < 𝑥 < ∞) < 1 then x is called 

improper random variable, improper random variable.  

However, we will restrict ourselves to proper random variables. So, for us probability of x 

being finite will be 1. Let us now see one more property which says that 𝐷! = {𝑥 ∈

ℝ: 𝐹(. )is discontinuous at x}. Finite or countable, that is there can be at most countably many 

jump points of F.  
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For example, let us recall the random experiment of a die being tossed. Your sample space was 

Ω = {1,…..,6}. Let us assume the event space to be F=2Ω and x : Ω → ℝ. You find as 𝑥(𝜔) =

𝜔

2
. All that in this case the CDF F(x) at the following form 0, 1, 2, 3, 1 by 3, 2 by 3, 1. So, this 

was F(x).  

Here there are 3 jump points, 1, 2 and the 3. The other property says that in general there can 

be either finite or countably many jump points. Further, let x1, x2 ….. be the jump points or 

discontinuity points, points of F, then 𝑃(𝑋 = 𝑥𝑖) = 𝑃(𝑥𝑖) = 𝑃𝑖 ≔ 𝐹(𝑥𝑖) − 𝐹(𝑥𝑖 −).  

For instance, in the above example, F(2) = 2/3, F(2-) = 1/3. Hence, 𝑃(𝑋 = 2) =
2

3
−
1

3
=

1

3
. 

Similarly, F(2.5) = 2/3 and F(2.5-) = 2/3. So, 𝑃(𝑋 = 2.5) =
2

3
−
2

3
= 0.  

So, we see that the P(X) taking certain values will be non-zero only if those values are jump 

points. In the following we will be interested in 2 special types of cumulative distribution 

functions.  
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The first special type is when F is made up of jumps say at x1, x2, … and flat portions. An 

example is the above die tossing example, example where F was of the form as desired here. 

So, F here is made up of jumps at points 1, 2 and 3, and it is flat everywhere else. So, F is made 

up of jumps and flat portions.  

In such a case, the random variable X is called discrete random variable. In other words, X is 

called a discrete random variable. If its CDF is made up of jumps and flat portions. In this case, 

X is called a discrete random variable. In this case, 𝑃(𝑋 = 𝑥𝑖) = 𝑃(𝑥𝑖) = 𝑃𝑖 ≔ 𝐹(𝑥𝑖) −

𝐹(𝑥𝑖 −).  

And, F(x) can be expressed in terms of these probabilities as follows.  



𝐹(𝑥) = ∑ 𝑃𝑖
𝑖:𝑥𝑖≤𝑥

 ∀𝑥 ∈ ℝ. 

The function P:xi→Pi is called the probability mass function of X, mass function of.   
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For instance, in the above die tossing example P : {1, 2, 3} → R and P(1) = P(2) = P(3) = 1/3. 

If X is a discrete random variable and its CDF say F has discontinuities at {xi, i ≥1}, we often 

say that X takes values {xi, i ≥1}. X takes values {xi, i ≥1}, if the discrete random variable X 

is proper then clearly  

∑𝑃(𝑥𝑖)

𝑖≥1

= 1. 
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The second type of CDFs that we will be interested in are those that are continuous. So, F is 

continuous, if F continuous that is does not have jump points, does not have jumps then the 

random variable X is called a continuous random variable, continuous random variable. We 

are now seeing continuous random variables.  

In the case of continuous random variables, there exists a function f : R →R+ such that  

𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞

  ∀𝑥 ∈ ℝ. 

This function f is called probability density function of the random variable X, this function is 

called probability density function, function in short PDF of random variable X.  



Observe that 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
   ∀𝑎, 𝑏 ∈ ℝ, 𝑎 ≤ 𝑏. If X is proper if the continuous 

random variable X is proper then  

∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

= 1. 

The collection of values at which F(x) is strictly positive is called the support of the PDF F or  

often called support of the random variable X. Further the PDF F(x) is related to the CDF F(x) 

as follows f(x) =F´(x) wherever CDF is differentiable.  
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Let us see a couple of examples. Let us first consider a random variable X that is a continuous 

random variable with CDF F given as 

𝐹(𝑥) = {

0,                   𝑖𝑓 𝑥 < 0

𝑥2, 𝑖𝑓 0 ≤ 𝑥 ≤ 1
1 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

If we plot the CDF is looks like this this point is 1 so, is this. As we can see, the CDF does not 

have any jump it is continuous.  

So, X is continuous random variable in this case probability density function f can be obtained 

f(x) =F´(x) at all the points x at which F is differentiable. So, this is = 2𝑥  ∀ 0 < 𝑥 < 1 and 

f(x) = 0 outside this window.  

𝑃 (
1

2
≤ 𝑋 ≤ 1) = 𝐹(1) − 𝐹 (

1

2
) = 1 − (

1

2
)
2

=
3

4
. 

The same can also be obtained by  

𝑃 (
1

2
≤ 𝑋 ≤ 1) = ∫ 𝑓(𝑥)𝑑𝑥

1

1
2

= ∫ 2𝑥𝑑𝑥
1

1
2

=
3

4
. 

Let us see one more example.  
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Let us now consider a random variable X again continuous random variable, whose PDF is a 

constant between 0 and 1. So, it is a constant between 0 and 1. So, let us say it takes value C 

between 0 and 1 and it is 0 outside this interval [0, 1]. Such a random variable X is called 

uniformly distributed on [0, 1]. Recall that the PDF must satisfy this relation  

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞

. 

So, in this case  

𝐶 ∫ 𝑑𝑥 = 1
1

0

  ⟹ 𝐶 = 1. 

So, the PDF now is  

𝑓(𝑥) = {
1,      𝑖𝑓 𝑥 ∈ [0,1]          
0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       .

 

 

In this case, we can obtain the CDF of X from PDF as follows  

𝐹(𝑥) = ∫ 𝑓(𝑧)𝑑𝑧
𝑥

−∞

= {

𝑥,         𝑖𝑓 𝑥 ∈ [0,1]
0,              𝑖𝑓 𝑥 < 0 
1,              𝑖𝑓 𝑥 ≥ 1

. 
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Now suppose Y = X2. Consider another random variable Y = X2. Then CDF of Y can be 

obtained from CDF of X as follows. CDF of Y say Fy can be obtained as follows.  

𝐹𝑦(𝑦) = 𝑃(𝑌 ≤ 𝑦).  

So, this is = 𝑃(𝑋2 ≤ 𝑦), which is = 𝑃(𝑋 ≤ √𝑦), which is = 𝐹𝑥(√𝑦) = √𝑦 from the graph 

above, if √𝑦 ∈ [0,1] or 𝑦 ∈ [0,1]. It can also easily be seen that  

𝐹𝑦(𝑦) = {
0 𝑖𝑓 𝑦 < 0
1 𝑖𝑓 𝑦 ≥ 1

. 

From the CDF of y, we can obtain its PDF by differentiate.  
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So, PDF of y is less, let us say fy, can be obtained as follows.  

𝑓𝑦(𝑦) = 𝐹´𝑦(𝑦) =

{
 
 

 
 1

2√𝑦
 𝑖𝑓 𝑦 ∈ [0,1]

0 𝑖𝑓 𝑦 < 0
1 𝑖𝑓 𝑦 ≥ 1

. 
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In general, we can have a random variable that is neither continuous nor discrete. In general, 

there can be a random variable X say X, there can be a random variable say X that is neither 

discrete nor continuous. In other words, such a random variable will have discontinuity points 

{xi, i ≥1} and also a function f : ℝ→[0,1] such that it is a CDF that  

𝐹(𝑥) = ∑ 𝑃(𝑥𝑖) +

𝑖:𝑥𝑖≤𝑥

∫ 𝑓(𝑧)𝑑𝑧
𝑥

−∞

    ∀𝑥 ∈ ℝ. 

In this case, if X is proper, then  

∑𝑃(𝑥𝑖) +

𝑖≥1

∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

= 1. 
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Let us consider an example. Suppose a point is uniformly picked from interval [0,2], and I 

define a random variable X as follows, define a random variable X as follows.  

𝑋(𝜔) = {
𝑟𝑜𝑢𝑛𝑑(𝜔)     𝑖𝑓 |𝜔 − 𝑟𝑜𝑢𝑛𝑑(𝜔)| ≤ 0.2

𝜔                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Let me tell what we mean by round of a number.  

So, ∀𝑥 ∈ ℝ round(x), is defined to be the nearest integer, nearest integer of x. For instance, 

round(1.2) = 1, round(2.9) = 3, round(3) = 3. So, we define a random variable  

𝑋(𝜔) = {
𝑟𝑜𝑢𝑛𝑑(𝜔)     𝑖𝑓 |𝜔 − 𝑟𝑜𝑢𝑛𝑑(𝜔)| ≤ 0.2

𝜔                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Otherwise, it can be checked that X is neither continuous nor discrete, checked that the random 

variable X is neither discrete nor continuous. We will not continue this discussion as we will 

only be interested in random variables that are either continuous or discrete. In other words, 

we will not consider such mixed random variables. This brings us to the end of this lecture. 

Thank you.  

 


